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In several recent publications, Bettencourt, West and collaborators
claim that properties of cities such as gross economic production,
personal income, numbers of patents filed, number of crimes com-
mitted, etc., show super-linear power-scaling with total population,
while measures of resource use show sub-linear power-law scaling.
Re-analysis of the gross economic production and personal income
for cities in the United States, however, shows that the data cannot
distinguish between power laws and other functional forms, includ-
ing logarithmic growth, and that size predicts relatively little of the
variation between cities. The striking appearance of scaling in pre-
vious work is largely artifact of using extensive quantities (city-wide
totals) rather than intensive ones (per-capita rates). The remaining
dependence of productivity on city size is explained by concentration
of specialist service industries, with high value-added per worker, in
larger cities, in accordance with the long-standing economic notion
of the “hierarchy of central places”.

Applied statistics | Model comparison | Urban economics | Urban scaling |
Central place hierarchy | Non-parametric smoothing

Abbreviations: MSA, metropolitan statistical area; GMP, gross metropolitan product;

BEA, Bureau of Economic Analysis; RMS, root mean square

Recent dramatic advances in explaining metabolic scaling
relations in biology by the properties of optimal transport

networks [1, 2] suggest the possibility of examining social as-
semblages, especially cities, in similar terms. In a well-known
series of papers, Bettencourt, West and collaborators [3, 4]
claim that many social and economic properties of cities —
gross economic production, total personal income, number of
patents filed, number of people employed in “supercreative”
[5] occupations, number of crimes committed, etc. — grow as
super-linear powers of population size, while measures of to-
tal resource use grow as sub-linear powers. These two claims
imply that per capita output grows as a positive power of
population, while per capita resource use shrinks as a nega-
tive power. If reliable and precise scaling laws of this type
exist, they would be of considerable importance for both sci-
ence and policy [6]1.

Reasonable arguments from long-standing principles of
economic geography would lead one to expect that larger cities
would have higher economic output per capita, through a com-
bination of the benefits to firms in related industries cluster-
ing together (“agglomeration economies”), and the tendency
of firms and specialists with large increasing returns to scale
to be located high in the “hierarchy of central places”. (For
reviews of these concepts, including historical notes, mathe-
matical models and empirical evidence, see Refs. [7, 8, 9].)
These arguments would carry over to producing technologi-
cally useful knowledge and to “supercreative” services as well.
However, these economic considerations do not point to either
a particular functional form for the growth of per-capita out-
put with population, or suggest that it should be very strong.
Moreover, these theories do not look at individual cities as
isolated monads, as scaling arguments do, but rather rely on
there being assemblages of multiple cities (and rural areas),
coupled by common economic processes, and assuming dis-
tinct roles in those processes through a history of mutual in-
teraction and combined and uneven development.

The purpose of this note is to argue that, at least for
the United States, while there is indeed a tendency for per-
capita economic output to rise with population, power-law
scaling predicts the data no better than many other func-
tional forms, and worse than some others. Furthermore, the
impressive appearance of scaling displayed in Refs. [3, 4] is
largely an aggregation artifact, arising from looking at exten-
sive (city-wide) variables rather than intensive (per-capita)
ones. The actual ability of city size to predict economic out-
put, no matter what functional form is used, is quite modest.
These conclusions hold whether economic output is measured
by gross metropolitan product or by total personal income.
If we control for metropolitan areas’ varying concentration
of industrial sectors, we find that the remaining scaling with
population is negligible, and much of the variance across cities
is predicted by the extent to which they host specialist service
providers with strongly increasing returns, as predicted by the
idea of the hierarchy of central places.

I begin by re-analyzing the gross metropolitan product
data, showing that scaling is far weaker than it seemed in
Refs. [3, 4]. I then re-analyzes the data on walking speed,
originating in Ref. [10] and presented in Ref. [3], which makes
the problems with the scaling analysis very clear. Rather,
per-capita productivity is better predicted by how much a
city depends on industrial sectors which indicate a high po-
sition in the hierarchy of specialist service provision. This
actually eliminates any significant role for scaling with size.
The conclusions summarize the scientific import of the data
analyses.

Appendices show that (i) scaling is also weak for personal
income, (ii) the hypothesis of power-law scaling cannot be
saved by positing a mixture of distinct scaling relations, and
that (iii) contra Ref. [4], neither a Gaussian nor a Laplace dis-
tribution is a good fit to the deviations from the power-law
scaling relations.

All calculations were done using R [11], version 2.12.
Code for reproducing figures and analyses is available at
http://www.stat.cmu.edu/~cshalizi/urban-scaling.

Reserved for Publication Footnotes

1Bettencourt and West summarize their claims regarding this “unified theory of urban living” [6]
thus: “We have recently shown that these general trends [to cities] can be expressed as simple
mathematical laws”; “Our work shows that, despite appearances, cities are approximately scaled
versions of one another . . . : New York and Tokyo are, to a surprising and predictable degree, non-
linearly scaled-up versions of San Francisco in California or Nagoya in Japan. These extraordinary
regularities open a window on underlying mechanism, dynamics and structure common to all cities”;
“Surprisingly, size is the major determinant of most characteristics of a city; history, geography and
design have secondary roles”.
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Weakness of Scaling in Gross Metropolitan Products
Ref. [3] reported a power-law scaling between the population
of cities in the United States and their economic output. To
be precise, the units of analysis are “metropolitan statisti-
cal areas” (MSAs) as defined by the official statistical agen-
cies2. The measure of economic output is the gross domestic
product for each metropolitan area (“gross metropolitan prod-
uct” or GMP), as calculated by the U.S. Bureau of Economic
Analysis (http://www.bea.gov/regional/gdpmetro/), which
is supposed to be the sum of all “incomes earned by labor and
capital and the costs incurred in the production of goods and
services” in the metropolitan area [13]3. Ref. [3] analyzed
data for 2006, deflated to constant 2001 dollars, and I will do
likewise; the 2008 and 2004 data are not much different.

Ref. [3] propose that output scales as a power of popula-
tion, Y ∝ Nb. This is connected to the data via the linear
regression model

ln Y = ln c+ b lnN + ǫ, [1]

with ǫ being a mean-zero noise term. For later compar-
isons, it will be convenient to denote this by Y ∼ cNb.
Ref. [3] estimated b by least squares [15], i.e., by minimiz-
ing n−1

∑n

i=1
(ln Yi − ln c− b lnNi)

2, where the index i runs
over metropolitan areas, of which there are n = 366. Re-
peating this analysis4, I estimate the best-fitting scaling ex-

ponent b̂ = 1.12, with 95% bootstrap confidence interval of
(1.10, 1.15) [15]. Figure 1 shows the data and the fitted trend,
with both axis plotted on a logarithmic scale, so that a power
law relationship appears as a straight line. The root-mean-
squared (RMS) error for predicting ln Y is 0.23, and the “co-
efficient of determination” R2 is 0.96, i.e., the fitted values
retain 96% of the variance in the actual data.

Visually, this looks like reasonable data collapse. But
there is a simple test of the model which has not, so far as I
know, been applied before. If production does scale as some
power of population, Y ∼ cNb, then per-capita production
should also scale, Y/N ≡ y ∼ cNb−1, and vice versa. Fig-
ure 2 accordingly plots per-capita output y as a function of
population N .

Figure 2 shows a trend curve for the the power-law scal-
ing implied by Ref. [3]. (The exponent estimated for y is 0.12,
matching that estimated for Y , as it must.) The figure also
shows a logarithmic scaling relationship, i.e., y ∼ r lnN/k (es-
timated by nonlinear least-squares), which is extremely close
to the power law over the range of the data. It also shows
an attempt to find a scaling relationship without requiring
any particular function form by fitting a smoothing spline
[16, 17] to the logged data5, corresponding to the relationship

y ∼ es(lnN). Note that the fitted curve is not even monotoni-
cally increasing in N .

While the three curves in Figure 2 correspond to very dif-
ferent modeling assumptions — the differences between the
implications of power-law and logarithmic growth are per-
haps especially striking — they all account for the data about
equally well, or rather, equally poorly, because there is sub-
stantial variation in per-capita production which is unrelated
to population. (Note that the vertical axis is plotted on a lin-
ear and not a logarithmic scale.) The RMS error of the power
law is, on the natural log scale, 0.23, while that of the spline
is 0.22. They would predict y, for a randomly chosen city,
to within ±26, ±26 and ±25 percent, respectively. Predicting
the same value of y for all cities, however, has an RMS error of
0.27, a margin of ±30%, and the R2 values are, respectively,
0.24, 0.23 and 0.29. On the linear scale, i.e., in terms of dollars
per person-year, the RMS errors of the power law, logarithmic
and spline curves are, respectively, 7.9 × 103, 7.9 × 103 and
7.7×103, as compared to 9.2×103 for predicting the mean for

all cities.6 In other words, even allowing for quite arbitrary
functional forms, city size does not predict economic output
very well.

The similarity of the RMS errors, and indeed of the curves,
arises in part from the limited range of y. The difference be-
tween the largest and smallest per-capita products (6.3× 104

dollars/person-year) is “only” a factor of 5.2, i.e., not even
one order of magnitude. This is too small, with only 366 ob-
servations, to distinguish among competing functional forms
for the trend, while still being quite consequential in human
and economic terms. Per-capita production is simply not very
strongly related to population.

Taking any per-capita (intensive) quantity which is statis-
tically independent of population, and looking at the corre-
sponding aggregate (extensive) quantities will yield a scaling
exponent close to one. The overwhelming majority of the ap-
parent fit of the scaling relationship in Figure 1 is just such
an artifact of aggregation. This can be shown in three differ-
ent ways: by extrapolating the different per-capita functional
forms back to city-wide totals, by constrained regression, and
by permutation.

Figure 3 shows the same data and scaling curve as Figure
1, but with three additional trend lines. Two of these come
from taking the logarithmic and spline fit to the per-capita
data, and plotting the implied aggregates, i.e., these are the

regressions Y ∼ r̂N lnN/k̂ and Y ∼ Neŝ(lnN). These are, vi-

sually, almost indistinguishable from the power law Y ∼ ĉN b̂.
The figure also shows a second power law scaling curve, con-
strained to have exponent 1. (This was obtained by a linear
regression with the slope fixed at 1 but an adjustable inter-
cept.) This curve corresponds to exactly linear scaling. It is
a bit low, systematically, at large N , but it still has an R2 of
0.82, as opposed to the common 0.96 for the unconstrained
power law, per-capita logarithmic growth, and the per-capita
spline. (Examples like this are why regression textbooks ad-
vise against using R2 to check goodness of fit [18, 19, 20].)

Figure 4 demonstrates in a different way that the data do
not support the idea of power-law scaling. The circles in the
figure show the actual data values. The stars, by contrast, are
surrogate data simulated from the fitted logarithmic growth
model, with the actual population sizes. The surrogate per-

capita output values ỹ were set equal to r̂ logN/k̂, and then
randomly perturbed according to the empirical distribution
of deviations from that model. The figure plots the surrogate
aggregate products ỹN , which look very much like the data.

If a power-law scaling relation is fit to the surrogate data
from the logarithmic-growth regression, then, averaging over
many simulations, the median scaling exponent is 1.12, with
95% of the estimates falling between 1.10 and 1.14, and the
median R2 of the power-law was 0.96. Recall that the es-

2To quote Ref. [12], MSAs are “standardized county-based areas that have at least one urbanized
area with a population of 50,000 or more plus adjacent territory that has a high degree of social
and economic integration with the core, as measured by commuting ties.”
3A word on the BEA’s procedure is in order [14]. The BEA estimates gross products for each
industry for each state, and conducts surveys to estimate what fraction of each industry’s state-
wide earnings is located in each metropolitan area. Multiplying these ratios by the state-wide gross
products, and summing over industries, gives the gross metropolitan product. The BEA provides
no estimates of measurement uncertainty for these numbers.
4Which is easily shown to yield reliable estimates of c and b, unlike least-squares regression of
log-transformed values in the superficially parallel situation of fitting a power-law distribution.
5That is, the estimated spline is the function s minimizing n−1

∑
i
(lnyi − s(lnNi))

2 +

λ
∫

(s′′(x))2dx, with the smoothness penalty λ > 0 chosen by cross-validation. Smoothing

splines of this type are universal approximating functions, and picking the penalty by cross-validation
controls the risk of over-fitting non-generalizing aspects of the data — see Ref. [17] for details. A
smoothing spline fit to the un-transformed data was similar, but visually somewhat more jagged.
6All of these measures of error are calculated on the same data used to fit the models, which
of course makes them over-optimistic estimates of the models’ predictive powers. However, using
six-fold cross-validation to estimate the out-of-sample risk gives RMS errors of 0.23 for all three
models.

2 www.pnas.org — — Footline Author
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timate for the actual data was 1.12, with a 95% confidence
interval of (1.10, 1.15), and R2 = 0.96.

It is true that the RMS error for ln y on the real data is
very slightly lower for the power law (0.2322) than for the
logarithmic model (0.2336), but such a minute difference can
easily arise by chance. Repeating both fits for the surrogate
data, in fact, the power law is a better fit to ln ỹ by at least
the empirically-observed margin on 45% of the simulations
from the other model. Reliably discriminating between the
two models simply requires more information (in the sense of
[21]) than the data provides: either much smaller fluctuations
of y around the regression curve, or many more data points.

To sum up, the appearance of a strong, super-linear re-
lationship between gross production Y and population N is
mostly driven by production growing in proportion to popu-
lation — that is, linearly. Per-capita production y does not
have a strong scaling relationship with N , and the data are un-
able to distinguish between different functional forms for such
trends as there are. Lacking ready access to the data sets on
patents, crime, infrastructure and resource consumption used
in Ref. [3], I cannot say whether the reported scaling relations
for those aggregate variables suffer from the same problem. I
return to the question of why there is a weak and noisy ten-
dency for per-capita output to rise with population in Sections
and below.

“The Pace of Life”.A further claim of Ref. [3] is that the
speed at which people walk grows as a positive power of the
number of people in a city. The source given for this is Ref.
[10], a two-page letter to Nature in 1976. The authors of Ref.
[10] went to 15 cities, towns and villages, picked locations
and individuals which seemed to them to be comparable, and
timed how long it took them to walk fifty feet (15.2 meters).
Such unsystematic data, however intriguing, is too weak to
support substantial scientific conclusions. Nonetheless, it is
instructive to examine it, as in Figure 5.

The original plot (Figure 1 in Ref. [10]) showed popula-
tion on a log scale, and speed on a linear scale, as in Figure 5.
The linear regression, for this transformation of the data, cor-
responds to assuming that speed grows logarithmically with
population, v ∼ r lnN/k. Figure 2a in Ref. [3] re-plots the
same data, but with the vertical axis on a logarithmic scale,
so the linear regression assumes speed grows as a power of pop-
ulation, v ∼ cNb. (Neither figure included error bars, though
Bornstein and Bornstein give the standard deviations in their
caption.) As can be seen from Figure 5, the two regressions
are very similar in this data, while they embody very different
assumptions, and at most one can be right.

The explanation for this apparent paradox is that the
range of reported walking speeds is small, from 0.7 m/s to
1.8 m/s, and if |x| ≪ 1, then ln 1 + x ≈ x. Observed over a
narrow range, then, logarithmic and power law scaling simply
are very similar, and hard to distinguish. This is also why the
the power-law and logarithmic fits to per-capita production
in Figure 2 were so close.

Hierarchy as an Alternative to Scaling
The idea of the hierarchy of central places, introduced by
Lösch and Christaller in the 1930s, has become a corner-stone
of urban economic geography. In outline, the idea is that
developed economies contain many specialized goods, and es-
pecially services, that the mass of consumers need only rarely
(such as the services of a surgeon), or indirectly (such as the
services of a professor of surgery, or a maker of surgical in-
struments). The provision of such services has comparatively

high fixed costs (the time needed to train a surgeon) but
low marginal costs (the time needed to perform an opera-
tion), leading to increasing returns to scale. It thus becomes
economically efficient for these specialists to locate in central
places, where their fixed costs can be distributed over large
consumer bases, and the more specialized they are, the more
centrally located they need to be, and the larger the customer
base they require. This logic leads to the formation of a hi-
erarchy of market centers and cities, in which increasingly
specialized skills, with (as it were) increasingly increasing re-
turns, can be had, and so predicts positive associations be-
tween the population of urban centers, the concentration of
specialist skills within them, and (owing to increasing returns)
their per-capita economic output. Good reviews of the the-
ory, including historical citations and connections to modern
economic models of increasing returns, may be found in Refs.
[7, 9].

This is relevant to the problem at hand because the BEA
also makes available estimates of the shares of gross metropoli-
tan products which are attributable different industrial sec-
tors, some of which correspond to the specializations empha-
sized in central place theory. I specifically consider “Infor-
mation, Communication, and Technology (ICT)”, “Financial
activities”, “Professional and technical services” and “Man-
agement of companies and enterprises” (industry codes 106,
102, 58 and 62, respectively)7. Writing the proportions of
gross metropolitan product deriving from each of these sec-
tors as x1 through x4, the level of per-capita production can be
predicted by a log-additive model which incorporates power-
law scaling with city size:

ln y = ln c+ b lnN +

4∑

j=1

fj(xj) + ǫ, [2]

where each of the “partial response” functions fj summa-
rizes the contribution of the jth industrial sector, and is esti-
mated by non-parametric spline smoothing, through an iter-
ative “back-fitting” procedure [16]. Doing so adjusts for the
correlations between the industrial sectors and each other, and
all of them with city size N , and will result in a different value
of the scaling exponent b than in the pure power law model
of Eq. 1.

Fitting Eq. 2 to the data yields the partial response func-
tions shown in Figure 6. (The fitting was done using the
mgcv library [22].) As expected from the urban-hierarchy ar-
gument, all four of the partial response functions are mono-
tonically increasing, so that rising shares of those industries
predict increasing per capita production. Very notably, how-
ever, the estimated power-law scaling exponent is actually
negative, −2.6×10−3, but statistically indistinguishable from
zero (standard error 2.8× 10−2). That is, in the log-additive
model, controlling for these four industrial sectors makes pop-
ulation effectively irrelevant for predicting urban productiv-
ity. Indeed, dropping population from the model altogether
produces no appreciable difference in the fit. At least at the
level of expectation values, controlling for these four indus-
trial sectors “screens off” the effects of city size on per-capita
production.

Statistically, there is no question that the log-additive
model predicts better than the simple scaling model. The
RMS error of the former, on the log scale, is 0.218, correspond-
ing to an R2 of 38.8%, and an accuracy of ±24% or $6.8×103,

7The BEA withholds the GMP-contribution figures for some industry-MSA combinations, when
the sector is so concentrated in that city that releasing the number would provide consequential
business information about specific firms. I have fit the model discussed below for the 133 cities
with complete data in the four selected sectors. Experimenting with various forms of imputation
for the missing data did not materially change the results.
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better than any model based on size alone. The log-additive
model is a more flexible specification, and so over-fitting to the
data is an issue, but this can be addressed by cross-validation,
which directly measures the ability of a model to extrapo-
late from one part of the population to another [16]. The
cross-validated mean squared error of the log-additive model
is 0.053, while that of the pure power law is 0.067, clearly
showing that the extra complexity of the former is being used
to capture genuinely predictive patterns, and not merely to
memorize the training data8.

The simple log-additive model is unlikely to be a fully
adequate predictor of systematic differences in urban produc-
tivity. If nothing else, these four coarse-grained industrial
sectors were selected merely for convenience, as approximate
indicators of position in the urban hierarchy, and presumably
one could do better. Moreover, it does not even try to rep-
resent the interactive processes which lead cities to have the
industrial mixes that they do. In reality, these industries can
be so concentrated towards the largest cities, at the top of the
hierarchy (e.g., New York), and away from lower-rank cities
(e.g., San Francisco, Peoria), only because all these cities are
part of a single national, and even international, division of
labor [9].

Conclusion
Neither gross metropolitan product nor personal income scales
with population size for U.S. metropolitan areas. The appear-
ance of scaling in Refs. [3, 4] is an artifact of inappropriately
looking at extensive variables (city-wide totals) rather than
intensive ones (per-capita values). Scaling is also unpersua-
sive for walking speed. I was not able to examine the other
variables claimed to show scaling in Refs. [3, 4], but, as they
were all extensive variables, the analyses reported there could
be subject to the same aggregation artifacts. It is also possi-
ble that cities in the United States are anomalous, and that
scaling of income and economic output holds elsewhere.

It is evident from Figures 2 (and Supplemental Figure S1)
that there is a weak tendency for per-capita output and in-
come to rise with population, though the relationship is sim-
ply too loose to qualify as a scaling law. (Arguably, the real
trend in those figures is for the minimum per-capita output
to rise with population, though I would not want to press
this point.) Qualitatively, this is what one would expect from
well-established findings of economic geography [8]. The data
do not really support any stronger quantitative statement. In
particular, asserting any specific functional form, such as a
power law, goes far beyond the what the data can support.
Accordingly, extrapolations based on such claims (e.g., the
finite-time singularity in the model for city growth in [3]) are
speculative at best. The amplitude of fluctuations around the
trend lines are, in any case, so large that predictions based on
size alone can have very little utility.

By taking account of the shares of just a few industries
in the gross metropolitan product, we can obtain much bet-
ter predictions of the level of per-capita production. In this
statistical model, elaborated in Section , population plays no
significant direct role in predicting per capita economic out-
put. Rather, the industrial sectors used are chosen as signs of
where metropolitan areas stand in the urban hierarchy, which
is also related, of course, to size. One could interpret this as
the mechanism by which size scaling happens (to the limited
extent that it does), but this would imply that an exogenous
increase in a city’s population would automatically shift its
industrial pattern, which is implausible. Indeed, the whole
scaling picture for cities seems to rest on an oddly monadic,
interaction-free view of metropolitan areas. The logic of cen-

tral place theory, in contrast, relies on cities being part of an
interactive assemblage, coupled by processes of production,
distribution and exchange. This not only seems more plausi-
ble, but also better matches the evidence at hand.

As Refs. [3, 4, 6] have stressed, developing a sound sci-
entific understanding of cities should be a priority for an in-
creasingly urban species. In seeking such understanding, it is a
sound strategy to begin with simple hypotheses, and to reject
them in favor of more complicated ones only as they prove un-
able to explain the data. This is not because the truth is more
likely to be simple, in some metaphysical sense, but because
this strategy leads us to the truth faster and more reliably
than ones which invoke needless complexities [23]. The ele-
gant hypothesis of power-law scaling marked a step forward
in our understanding of cities, but it is now time to leave it
behind.

Appendix

Personal Income.The BEA also makes available estimates of
personal income by metropolitan area, a variable closely re-
lated to, but not quite the same as, the gross metropolitan
product. (See http://www.bea.gov/regional/reis/ for def-
initions, estimation techniques, and data.) Ref. [4] reports
that total personal income L also scales as a power of popu-
lation, implying per capita personal income L/N ≡ l should
scale likewise. Figure 7 plots l versus N , with the best-fitting
power law, logarithmic relationship, and spline.

Once again, the appearance of power-law scaling in the
aggregate variable is not supported by examination of the per-
capita values. The RMS error, on the log scale, of predicting
a constant per capita income over all cities is 0.18, while the
RMS errors of the power-law and logarithmic scaling relations
are both 0.16 (indeed they match to three significant digits),
and that of the spline 0.15. Repeating the procedures of Fig-
ures 3 and 4 from the main text yields similar results. Thus,
personal income also fails to display non-trivial scaling with
population.

Mixtures of Scaling Relations.Recall that the posited scaling
relation is y ∼ cNb. As shown above, this does not fit the
data, at least not assuming, following Ref. [3], that both pa-
rameters, the scaling exponent b and the pre-factor c, are the
same for all cities. A natural way to try to reconcile the data
with the model would be to modify the latter, allowing c to
depend on the type of the city. The rationale for such a regres-
sion would be that there are several different kinds of cities,
and that city type shifts the over-all level of production up or
down, but, once that is factored out, all cities scale with size
in the same way. This common scaling exponent would not,
naturally, be the same as the one estimated from the pooled
data.

Formally, we introduce a latent variable Z for each city,
treated as a discrete random variable independent of N , and
consider the statistical model y ∼ cZN

b. This leads to a
“mixture-of-regressions” or “latent-class regression” model,
which can be fit by the expectation-maximization algorithm
[24]. Such fitting would lead not only to estimates of b and
the pre-factors cz, but also to the probability that each city
belonged to each of the different city types or mixture com-
ponents, categorizing cities inductively from the data.

8Dropping population size N from the log-additive model altogether does however lower the cross-
validation score very slightly, to 0.052.

4 www.pnas.org — — Footline Author
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To investigate this, I fit mixture-of-regression models to
the data from Figure 2 in the main text, varying the num-
ber of mixture components from 1 to 10, using the software
of Ref. [24].9 To determine the correct number of mixture
components, I used both Schwarz’s “Bayesian” information
criterion and cross-validation, which are both known to be
consistent for such mixture problems, unlike the Akaike in-
formation criterion, which over-fits [25]. Both BIC and cross-
validation strongly favored one mixture component, meaning
that the fit to the data is not actually improved by allowing
for multiple scaling curves.

This does not completely rule out the y ∼ cZN
b model,

as only 366 observations may not have enough information to
simultaneously induce appropriate categories and fit scaling
relations. An alternative would be to expand the information
available, by defining the categorical variable Z in terms of
measurable attributes of cities other than N and y, such as
geographic location or the mix of industries. (See Ref. [26] on
such variable-intercept, constant-slope regressions with known
categories.) Success with such models hinges on selecting cat-
egories to represent important features of the data-generating
process, a task I must leave to other inquirers.

Assuming that such a statistical model works, there would
still be the question of its interpretation. Whether one would
judge such a model to really show scaling in urban assemblages
would depend on how much importance one gives, on the one
hand, to a common scaling exponent, and on the other to
most of the fit coming from the un-modeled differences across
city types.

Residuals.Ref. [4] proposes ranking cities not by their per
capita values of quantities like economic production or patents
or crime, but by the deviation, positive or negative, from the
scaling relationship, i.e., by the residuals of the trend lines.
(It does not compare this to ranking by per capita values.
The Spearman rank correlation between the two variables is
0.87 for GMP and 0.83 for personal income.) They consider
both a Gaussian distribution for the residuals, i.e., a prob-

ability density f(x) ∝ e−x2/2σ2

, and a Laplace distribution,

f(x) ∝ e−λ|x|, and claim that both fit very well.
Figure 8 shows the situation for GMP. Visually, nei-

ther distribution matches the residuals well. Quantitatively,
goodness-of-fit can be checked by “data-driven smooth tests”
[27], which transform their inputs so that they will be uniform
if and only if the postulated distribution holds, and then mea-
sure departures from uniformity (coefficients from expanding
the transformed empirical distribution in a series of orthogo-
nal polynomials). Such tests reject both the Gaussian and the
Laplace distribution with high confidence (p-values of 1×10−3

and 8× 10−3, respectively, calculated using code provided by
Ref. [28]).

Results for personal income are similar (Figure 9). The
Gaussian distribution can be rejected with high confidence
(p < 10−4). While the data do not rule out the Laplace dis-
tribution in the same way (p = 0.27), the limited power of the
test at the comparatively small sample size means that there
is not strong evidence in its favor either. (See Ref. [29] on the
evidential interpretation of significance tests.)
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Fig. 1. Horizontal axis: population of the 366 US metropolitan statistical areas in 2006, log

scale; vertical axis, 2006 gross product of each MSA, in constant 2001 dollars, log scale. (In

all figures, grey inner ticks on axes mark observed values.) Solid line: ordinary least squares

regression of log gross metropolitan product on log population, i.e., the regression Y ∼ cNb,

with estimated exponent b̂ = 1.12.
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Fig. 2. Horizontal axis: population, as in Figure 1, log scale. Vertical axis: gross product

per capita, but on a linear and not a logarithmic scale. The two largest values are 7.8× 104

dollars/person-year (in Bridgeport-Stamford-Norwalk, CT, a center for hedge funds and other

financial firms) and 7.7 × 104 dollars/person-year (in San Jose-Sunnyvale-Santa Clara, CA,

i.e., Silicon Valley), and the smallest are 1.5× 104 dollars/person-year (in McAllen-Edinburg-

Mission, TX and Palm Coast, FL). Solid line: fitted power-law scaling relation. Dotted line:

fitted logarithmic scaling relationship. Dashed curve: smoothing spline fitted to the logged

data.
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Fig. 3. As in Figure 1, but with the addition of (i) dotted line, showing logarithmic growth

of per-capita income, (ii) dashed line, showing spline fit to per-capita income (both as in Figure

2), and (iii) solid grey line, showing a fitted linear (not super-linear) scaling relationship. Note

that (i) and (ii) are extremely close to the solid power-law line.
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Fig. 4. Axes: as in Figure 1 and 3. Circles: Actual values. Stars: simulated values, with

per-capita production figures drawn from the logarithmic (not power-law) scaling model.
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Fig. 5. Horizontal axis: city population, logarithmic scale. Vertical axis: estimated pedes-

trian speed in meters/second, plus or minus one standard deviation, linear scale. Solid line: the

regression v ∼ r lnN/k, as proposed by Ref. [10]. Dashed line: the regression v ∼ cNb,

as proposed by Ref. [3]. (Data from Ref. [10], who report the mean and standard deviation of

the time taken to walk 50 feet = 15.2 meters; I calculated standard deviations by propagation

of error.)
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Fig. 6. Partial response functions for the log-additive model (Eq. 2). Horizontal axes indicate the fraction of each metropolitan area’s gross product derived from each

industry, while the vertical axis shows the predicted logarithmic increase, or decrease, to per capita output, relative to the baseline of the mean over all cities. Solid curves are

the main estimate, with dashed curves at ±2 standard errors in the partial response function. Dots show “partial residuals”, the difference between actual log y values and

those predicted by the model including all the other variables.
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Fig. 7. Personal income per capita versus population, 2006. Horizontal axis: population of

MSAs (log scale). Vertical axis: personal income per capita, in nominal 2006 dollars (linear

scale). Solid line: power-law scaling curve (estimated exponent 0.082). Dotted line: logarith-

mic growth curve. Dashed line: spline fit to logged data.
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default bandwidth choice — see Ref. [30]). Dashed line: maximum likelihood Gaussian fit to

residuals. Dotted line: maximum likelihood Laplace (doubly-exponential) fit to residuals.
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Fig. 9. As in Figure 8, but showing the deviations of personal income from power-law scaling.
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