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A COMPARISON PRINCIPLE FOR FUNCTIONS
OF A UNIFORMLY RANDOM SUBSPACE

JOEL A. TROPP

ABSTRACT. This note demonstrates that it is possible to bound the expectation of an arbitrary
norm of a random matrix drawn from the Stiefel manifold in terms of the expected norm of a
standard Gaussian matrix with the same size. A related comparison holds for any convex function
of a random matrix drawn from the Stiefel manifold. For certain norms, a reversed inequality is
also valid.

1. MAIN RESULT

Many problems in high-dimensional geometry concern the properties of a random k-dimensional
subspace of the Euclidean space R™. For instance, the Johnson—Lindenstrauss Lemma [JL84
shows that, typically, the metric geometry of a collection of N points is preserved when we project
them onto a random subspace with dimension O(log N). Another famous example is Dvoretsky’s
Theorem [Dvo61l, IMil71l, Bal97], which states that, typically, the intersection between the unit ball
of a Banach space with dimension N and a random subspace with dimension O(log N) is comparable
with a Euclidean ball.

In geometric problems, it is often convenient to work with matrices rather than subspaces.
Therefore, we introduce the Stiefel manifold,

Vi={Q Mt Q=T
which is the collection of real n x k matrices with orthonormal columns. The elements of the Stiefel
manifold Vi are sometimes called k-frames in R™. The range of a k-frame in R" determines a
k-dimensional subspace of R”, but the mapping from k-frames to subspaces is not injective.

It is easy to check that each Stiefel manifold is invariant under orthogonal transformations on the
left and the right. An important consequence is that the Stiefel manifold V} admits an invariant
Haar probability measure, which can be regarded as a uniform distribution on k-frames in R™. A
matrix ¢ drawn from the Haar measure on V! is called a random k-frame in R™.

It can be challenging to compute functions of a random k-frame . The main reason is that
the entries of the matrix @ are correlated because of the orthonormality constraint Q*Q = L.
Nevertheless, if we zoom in on a small part of the matrix, the local correlations are very weak
because orthogonality is a global property. In other words, the entries of a small submatrix of Q
are effectively independent for many practical purposes [Jia06].

As a consequence of this observation, we might hope to replace certain calculations on a random
k-frame by calculations on a random matrix with independent entries. An obvious candidate is
a matrix G € M™** whose entries are independent N(0,n~!) random variables. We call this the
normalized Gaussian distribution on M"™*F,

Why is this distribution a good proxy for a random k-frame in R"? First, a normalized Gaussian
matrix G verifies E(G*G) = I, so the columns of G are orthonormal on average. Second, the
normalized Gaussian distribution is invariant under orthogonal transformations from the left and
the right, so it share many algebraic and geometric properties with a random k-frame. Furthermore,
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we have a wide variety of methods for working with Gaussian matrices, in contrast with the more
limited set of techniques available for dealing with random k-frames.

These intuitions are well-established in the random matrix literature, and many authors have
developed detailed quantitative refinements. In particular, we mention Jiang’s paper [Jia06] and
its references, which discuss the proportion of entries in a random orthogonal matrix that can be
simultaneously approximated using independent standard normal variables. The present note has
more limited aspirations, but it should complement earlier work.

We argue that there is a general comparison principle for random k-frames and normalized
Gaussian matrices of the same size. Recall that a convex function is called sublinear when it is
positive homogeneous. Norms, in particular, are sublinear. Theorem [Ilensures that the expectation
of a nonnegative sublinear function of a random k-frame is dominated by that of a normalized
Gaussian matrix. This result also allows us to study moments and, therefore, tail behavior.

Theorem 1 (Sublinear Comparison Principle). Assume that k = pn for p € (0,1]. Let Q be
uniformly distributed on the Stiefel manifold Vi, and let G € M™% be a matriz with independent
N(0,n71) entries. For each nonnegative sublinear function |-| on M™* and each weakly increasing,
convez function ¢ : R — R,
Eo(|Q]) <E®((1+ p/2) |G]).
In particular, for all k < n,
E®(|Q|) <E®(1.5|G|).

Note that the leading constant in the bound is asymptotic to one when k& = o(n). When k = n,
however, the constant 1.5 cannot be improved within our method. We establish Theorem [ in
Section [B] as a consequence of a more comprehensive result, Theorem M for convex functions of a
random k-frame.

A simple example suffices to show that Theorem [I does not admit a matching lower bound, no
matter what comparison factor § we allow. Indeed, suppose that we fix a positive number 8. Write
|-/l for the Frobenius norm, and consider the weakly increasing, convex function

O(t) := ((t)+ — \/E)+ where (-)+ := max{0, - }.
For a normalized Gaussian matrix G € M™**, we compute that
E2(3]Gly) =E (8Gls — V) >0
because there is always a positive probability that § |G|y > VEk + 1. Meanwhile, the Frobenius
norm of a random k-frame @ in R" satisfies | Q| = Vk, so

Eo(|Qly) =E®(VE) = 0.

Inexorably,
E2(B|Gly) <E2(|Qlp) = B<0.

Therefore, it is impossible to control ®(8|G|) using ®(|Q]) without additional restrictions. But
turn to Section Ml for some partial converses.

2. A FEw EXAMPLES

Before proceeding with the proof of Theorem [Il we present some applications that may be
interesting. We need the following result, which is essentially due to Gordon Thm. 3.20].

Proposition 2 (Spectral Norm). Assume that k < n, and let G € M"™** be a normalized Gaussian

matriz. Then
E|Gllgey <1+ v/E/n.
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2.1. Spectral norm of a random orthogonal matrix. The first example is trivial. Consider
a uniformly random orthogonal matrix Q € VJ'. Evidently, its spectral norm ||Q| = 1. Let
G € M"*"™ be a normalized Gaussian matrix. Theorem [Il and Proposition [2] ensure that

1—E|Q|| < L5E |G| <3.

Thus, the constant 1.5 in Theorem [I] cannot be improved by a factor greater than three.

2.2. Maximum entry of a random orthogonal matrix. Consider a uniformly random orthog-
onal matrix @ € V7', and let G € M"™*" be a normalized Gaussian matrix. Using Theorem [ and
a standard bound for the maximum of standard Gaussian variables, we estimate that

2log(n?) + 1 I 1/4
Emax|Q;;| < 1.5Emax|G;;| < 1.5 % -3 W
[2¥) ,]

Jiang [Jia05] has shown that a sequence {Q(} of random orthogonal matrices almost surely

satisfies
lim inf n - max ‘Q(-n” =2 and limsup o - max ‘Q(’.‘)‘ = /6.
n—oo \[logn g 'Y n—oo \ logn ij 'Y

We see that our simple estimate is not sharp, but it is very reasonable.

2.3. Spectral norm of a submatrix of a random k-frame. Consider a uniformly random k-
frame @Q € Vi, and let G € M™** be a normalized Gaussian matrix. Define the linear map %
that restricts an n x k matrix to its first j rows and rescales it by y/n/j. As a consequence, the
columns of the j x k matrix .Z;(Q) approximately have unit Euclidean norm. We obtain

ElZ@)I < (1 + (k/20) E[Z5(G)|| < (1 + (k/2n))(1 + Vk/3)
because of Theorem [l and Proposition 21
This estimate is interesting because it applies for all values of j and k. Note that the leading
constant is asymptotic to one whenever k = o(n). In contrast, we recall Jiang’s result [Jia06] that
the total-variation distance between the distributions of .Z;(Q) and .Z;(G) does not vanish unless
Jok = o(y/n). A related fact is that, under a natural coupling of @ and G, the matrix fo,-norm
distance between .Z;(Q) and .Z;(G) does not vanish in probability unless k = o(n/logn).

3. PROOF OF THE COMPARISON PRINCIPLE

The main tool in our proof is a well-known theorem of Bartlett that describes the statistical

properties of the QR decomposition of a standard Gaussian matrix, i.e., a matrix with independent
N(0, 1) entries. See Muirhead’s book for a detailed derivation of this result.

Proposition 3 (The Bartlett Decomposition). Assume that k < n, and let T' € M"*¥ be a standard
Gaussian matriz. Then

Lok ~ Quxik Bixi

where the factors Q and R are statistically independent. The matriz Q is uniformly distributed on
the Stiefel manifold V.. The matriz R is a random upper-triangular matriz of the form

(X1 Y2 Yiz o ... Yik
Xy Yos e Yo
R= L
X1 Y1k
L Xk ] i

where the diagonal entries XZ-2 ~ X?L—i—l—l and the super-diagonal entries Yi; ~ N(0,1); furthermore,
all these random variables are mutually independent.
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We may now establish a comparison principle for a general convex function of a random k-frame.

Theorem 4 (Convex Comparison Principle). Assume that k < n. Let Q € M™ ¥ be uniformly
distributed on the Stiefel manifold V7, and let T' € M" ¥ be a standard Gaussian matriz. For each
convex function f: M™% — R, it holds that

Ef(Q) <Ef(a™'T) where «o:=ak,n):= %Zle E(X;)

and X? ~ X%_Hl. Similarly, for each concave function g : M™* — R, it holds that
Eg(Q) > Eg(a™'T).

Proof. The result is a direct consequence of the Bartlett decomposition and Jensen’s inequality.
Define T, @, and R as in the statement of Proposition Bl Let P € MF** be a uniformly random
permutation matrix, independent from everything else.

First, observe that

Ty _ _ Lk
E(PRP) = (Etr(R)) - I=ol where a:= Zizl E(X;).
Jensen’s inequality allows that
Ef(Q)=Ef(a 'QEPRPY)) <E f(a 'QPRPT).

Since Q is uniformly distributed on the Stiefel manifold, Q@ ~ QS for each fixed permutation S. It
follows that

E[f(a"'QPRP")|P| =E[f(a”'QRP") | P] = E[f(a”'TP")| P] =E f(a"'T)
because I' ~ T'ST for each fixed permutation S. Combining the last two relations, we reach
Ef(Q) <EE[f(oa”'QPRPT)|P|=Ef(a”'T).
The proof for concave functions is analogous. O
For Theorem [ to be useful, we need to make some estimates for the constant «(k,n) that arises

in the argument. To that end, we state without proof a simple result on the moments of a chi-square
random variable.

Proposition 5 (Chi-Square Moments). Let Z2 be a chi-square random variable with p degrees of
freedom. Then

_ V2 T((p+1)/2)
I'(p/2)
Given the identity of Proposition Bl standard inequalities for this ratio of gamma functions allow
us to estimate the constant « in terms of elementary operations and radicals.

E(=)

Lemma 6 (Estimates for the Constant). The constant a(k,n) defined in Theorem []) satisfies

1 k-1 1 k—1
Ezizo Vn—(i+1/2) < alkn) < Ezizo Vn —i.
Proof. We require bounds for
1 k
a= Zi:l E(X;) where X7~ x2_;i1.
Proposition [{] states that

_ V2-T((pi+1)/2)

E(X:) T(p/2)

forp,=n—1i+1.
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This ratio of gamma functions appears frequently, and the following bounds are available.

/o< V2 F((p/—;)l)ﬂ) <p forp>1/2.

Combine these relations and reindex the sums to reach the result.

The upper bound can be obtained directly from Jensen’s inequality and the basic properties of a
x? variable: E(X;) < [E(X?)]"/? = v/n —i + 1. In contrast, the lower bound seems to require hard
analysis. O

For practical purposes, it is valuable to simplify the estimates from Lemma [6] even more. To
accomplish this task, we interpret the sums in terms of basic integral approximations.
Lemma 7 (Simplified Estimates). The constant a(k,n) defined in Theorem []] satisfies
2 nd3/2 _ 3/2 2 1 32 2 1
— k)32 < k < [/ —k3/} —[ —Vn—k|.
— [ -0 < k) = [0 -0+ o [V - Vi
The minimum value for the lower bound occurs when k = n, and

2 2
g\/ﬁ < a(n,n) < g\/ﬁ—ko(l) as n — 0o.

Furthermore, when k = pn for p € (0,1], it holds that
1 1

- <«

alpn,n) T Vn

Proof. Define the real function h(z) = v/n — x, and observe that h is concave and decreasing on its
natural domain. The lower bound for « from Lemma [6] implies that

k
_kzl_ (i+1/2) > ;/0 h(z) da.

To justify the second inequality, we observe that the sum corresponds with the midpoint-rule
approximation to the integral. Because the integrand is concave, the sum must overestimate the
integral. Evaluate the integral to obtain the stated lower bound.

To see that the minimum value for the lower bound occurs when k = n, notice that

1k
kl—)—/hxdaz
k Jo

is the running average of a decreasing function. Of course, the running average also decreases.
Next, we use the relation k = pn to simplify (the reciprocal of) the lower bound, which yields

(14 p/2).

<15.p V2. P 12 2).
ol = n 1= (1= ) <n (1+p/2)

The second inequality holds because the fraction is a convex function of p on the interval (0, 1], so
we may bound it above by the chord p — (2 4 p)/3 connecting its endpoints.

The proof of the upper bound follows from a related principle: The trapezoidal rule underesti-
mates the integral of a concave function. Lemma [6] ensures that

k
a<sz01 _k[/ h(a;)der%(h(O)—h(k))

Here, we have applied the trapezoidal rule on the interval [0, k] and then redistributed the terms
associated with the endpoints. Evaluate the integral to complete the bound. ]

We are now prepared to establish the main result.
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Proof of Theorem[1. Let Q be a random matrix distributed uniformly on the Stiefel manifold V7,
and let G € M™* be a normalized Gaussian matrix. We can write G = n~'/2T" where T is a
standard normal matrix.
Suppose that || is a nonnegative, sublinear, convex function and that ® is a weakly increasing,
convex function. Then the function M +— ®(|M]|) is also convex. Theorem [ demonstrates that
E®(|Q) <E®(|a™'T|) =E®(a 'Vn-|GY).
For k = pn, Lemma [7] ensures that the constant a satisfies

a t/n <14 p/2.

Given that the function @ is increasing and |G| > 0, we conclude that
E®(Q)) < ®(a”'Vn-|G|) < &((1+p/2) - |G]).

This argument establishes the main part of the theorem. To establish the remaining assertion, we
simply assign p = 1, the maximum value allowed. O

4. PARTIAL CONVERSES

There are at least a few situations where it is possible to reverse the inequality of Theorem [II

To develop these results, we record another basic observation about Gaussian matrices [Mui82].

Proposition 8 (Polar Factorization). Assume that k < n. Let T € M" ¥ be a standard Gaussian
matriz. Then

Lok ~ QuxikWixk

where the factors Q and W are statistically independent. The matrixz Q is uniformly distributed
on the Stiefel manifold Vii. The matrix W is the positive square root of a k x k Wishart matriz
with n degrees of freedom.

The first converse concerns a (right) operator ideal norm; that is, a norm ||| that satisfies the
relation ||[AB]| < ||A] - ||B||, where ||-|| is the spectral norm.

Theorem 9 (Partial Converse I). Assume that k = pn for p € (0,1]. Let Q be uniformly distributed
on the Stiefel manifold Vi, and let G € M"*F be a normalized Gaussian matriz. For each right
operator ideal norm ||-||, it holds that

ElGl <1+ vp)-ElQI-

Proof. The proof uses the polar factorization of the Gaussian matrix described in Proposition [l
For a standard Gaussian matrix I' € M™**,

E|G]=n""E|T| =nPEIQW] < n ' E(IQI - W) =n"2ElQI) - (EIWI).

The last relation relies on the independence of the polar factors. To continue, we note that the
Wishart square root W has the same distribution as (I'*T')!/2. Therefore,

nPE|W| = o 2E (D T|V?) = o 2E|T) = E |G| < 1+ VE/n
W | T < ;
where the last bound follows from Gordon’s result, Proposition 2 O

We have a second result that holds for other types of operator norms, but the constant here is
no longer explicit. We omit the proof, which, by now, should be obvious.

Theorem 10 (Partial Converse II). Assume that k < n. Let Q be uniformly distributed on the
Stiefel manifold V7, and let G € MF*™ be a normalized Gaussian matriz. Suppose that ||-||y is a
norm on R* and |||, is a norm on R™. Then

E HGHY—>Z < (”_1/2E HTHY—>Y) (E ||QHY—>Z)
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where T is either the upper-triangular matriz R defined in Proposition [ or the Wishart square
root W defined in Proposition [3.
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