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Matrix Probing and its Conditioning∗

Jiawei Chiu † and Laurent Demanet ‡

Abstract. When a matrix A with n columns is known to be well approximated by a linear combination of basis
matrices B1, . . . , Bp, we can apply A to a random vector and solve a linear system to recover this
linear combination. The same technique can be used to recover an approximation to A−1. A basic
question is whether this linear system is invertible and well-conditioned. In this paper, we show
that if the Gram matrix of the Bj ’s is sufficiently well-conditioned and each Bj has a high numerical
rank, then n ∝ p log2 p will ensure that the linear system is well-conditioned with high probability.
Our main application is probing linear operators with smooth pseudodifferential symbols such as
the wave equation Hessian in seismic imaging [6]. We demonstrate numerically that matrix probing
can also produce good preconditioners for inverting elliptic operators in variable media.
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1. Introduction. Randomized algorithms have their roots in numerical analysis, in the
form of Monte Carlo integration, Monte Carlo Markov chains [1] and so on. These methods
have widespread applications, from physics, econometrics to machine learning. However, they
may often referred to as the method of last resort, because they are easy to implement but
produce solutions of low and uncertain accuracy.

In the last few decades, a new breed of randomized algorithms has been developed by the
computer science community. These algorithms remain easy to implement, sometimes par-
allelizable like the Monte Carlo methods, and in addition, have failure probabilities that are
provably negligible and run no slower than some of the most sophisticated deterministic algo-
rithms, e.g., Karger’s algorithm for the min-cut problem [13]. The design of such algorithms
revolves around a few principles such as “foiling an adversary”, “abundance of witnessess”
and “random sampling” [14, 17].

In recent years, these evolved randomized algorithms have found their way back to nu-
merical analysis. One particularly attractive application is that we can learn the range of a
matrix A by applying it to random vectors [11, 20]. This can then be used to obtain truncated
singular value decompositions which are useful in data analysis and scientific computing.

Our work carries a similar flavor: often, the matrix A can be approximated as a linear
combination of a small number of matrices and the idea is to obtain these coefficients by
applying A to a random vector or just a few of them. We call this “forward matrix probing.”
What is even more interesting is that we can also probe for A−1 by applying A to a random
vector. We call this “backward matrix probing” for a reason that will be clear soon.

Due to approximation errors, the output of “backward probing” C is only an approximate
inverse. Nevertheless, as we will see in Section 4, C serves very well as a preconditioner for
inverting A, and we believe that its performance could rival that of multigrid methods for
elliptic operators in smooth media.
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1.1. Forward Matrix Probing. Let B = {B1, . . . , Bp} where each Bj ∈ C
m×n is called a

basis matrix. Let u be a Gaussian or a Rademacher sequence, that is each component of u is
independent and is either a standard normal variable or a symmetric Bernoulli variable taking
±1 with equal probability.

Define the matrix L ∈ C
m×p such that its j-th column is Bju. Let A ∈ C

m×n be the
matrix we want to probe and suppose A lies in the span of B. Say

A =

p∑

i=1

ciBi for some c1, . . . , cp ∈ C.

Observe that Au =
∑p

i=1 ci(Biu) = Lc. Given the vector Au, we can obtain the coefficient
vector c∗ = (c1, . . . , cp) simply by solving the linear system

Lc = Au. (1.1)

In practice, A is not exactly in the span of a small B and Equation (1.1) has to be solved
in a least squares sense, for example by applying the pseudoinverse of L to the vector Au,
that is c = L+(Au) = (L∗L)−1L∗(Au).

1.2. Conditioning of L. Whether Equation (1.1) can be solved accurately is an important
issue and depends on cond(L), the condition number of L. This is the ratio between the largest
and the smallest singular values of L and can be understood as how different L can stretch or
shrink a vector. If we treat the rows of L as a frame, then cond(L) is also the square root of
the ratio between the frame bounds.

Intuitively, whether cond(L) is small lies in the following two properties of B.
1. The Bi’s “act differently” in the sense that 〈Bj, Bk〉 ≃ δjk for any 1 ≤ j, k ≤ p.1

2. Each Bi has a high rank so that B1u, . . . , Bpu ∈ C
n exist in a high dimensional space.

When B possesses these two properties and p is sufficiently small compared to n, it makes
sense that L’s columns, B1u, . . . , Bpu, are likely to be independent, thus guaranteeing that L
is invertible, at least.

We now make the above two properties more precise. Let

M = L∗L ∈ C
p×p and N = EM. (1.2)

Clearly, cond(M) = cond(L)2. If EM is ill-conditioned, there is little chance that M or L
is well-conditioned. This can be related to Property 1 by observing that

Njk = EMjk = Tr(Bj
∗Bk) = 〈Bj , Bk〉 . (1.3)

If 〈Bj, Bk〉 ≃ δjk, then the Gram matrix N is approximately the identity matrix which
is well-conditioned. Hence, a more quantitative way of putting Property 1 is that we have
control over κ(B) defined as follows.

Definition 1.1. Let B = {B1, . . . , Bp} be a set of matrices. Define its condition number
κ(B) as the condition number of the matrix N ∈ C

p×p where Njk = 〈Bj, Bk〉.
1Note that 〈·, ·〉 is the Frobenius inner product and δjk is the Kronecker delta.
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On the other hand, Property 2 can be made precise by saying that we have control over
λ(B) as defined below.

Definition 1.2. Let A ∈ C
m×n. Define its weak condition number2 as

λ(A) =
‖A‖n1/2
‖A‖F

.

Let B be a set of matrices. Define its (uniform) weak condition number as

λ(B) = max
A∈B

λ(A).

We justify the nomenclature as follows. Suppose A ∈ C
n×n has condition number k,

then ‖A‖2F =
∑n

i=1 σ
2
i ≥ nσ2min ≥ n‖A‖2/k2. Taking square root, we obtain λ(A) ≤ k. In

other words, any well-conditioned matrix is also weakly well-conditioned. And like the usual
condition number, λ(A) ≥ 1 because we always have ‖A‖F ≤ n1/2‖A‖.

The numerical rank of a matrix A is ‖A‖2F /‖A‖2 = nλ(A)−2, thus having a small λ(A) is
the same as having a high numerical rank. We also want to caution the reader that λ(B) is
defined very differently from κ(B) and is not a weaker version of κ(B).

Using classical concentration inequalties, it was shown [6] that when λ(B) and κ(B) are
fixed, p = Õ(n1/2)3 will ensure that L is well-conditioned with high probability.

In this paper, we establish a stronger result, namely that p = Õ(n) suffices. The implica-
tion is that we can expect to recover Õ(n) instead of Õ(n1/2) coefficients. The exact statement
is presented below.

Theorem 1.3 (Main Result). Let C1, C2 > 0 be numbers given by Remark B.1 in the Ap-
pendix. Let B = {B1, . . . , Bp} where each Bj ∈ C

m×n. Define L ∈ C
n×p such that its j-th

column is Bju where u is either a Gaussian or Rademacher sequence. LetM = L∗L, N = EM
κ = κ(B) and λ = λ(B). Suppose

n = p (Cκλ log p)2 for some C ≥ 1.

Then

P

(
‖M −N‖ ≥ t‖N‖

κ

)
≤ (2C2np)p

−α where α =
tC

eC1
.

The number C1 is small. C2 may be large but it poses no problem because p−α decays
very fast with larger p and C. With t = 1/2, we deduce that with high probability,

cond(M) ≤ 2κ+ 1.

In general, we let 0 < t < 1 and for the probability bound to be useful, we need α > 2,
which implies C > 2eC1 > 1. Therefore the assumption that C ≥ 1 in the theorem can be
considered redundant.

2Throughout the paper, ‖ · ‖ and ‖ · ‖F denote the spectral and Frobenius norms respectively.
3Note that Õ(n) denotes O(n logc n) for some c > 0. In other words, ignore log factors.
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We remark that Rauhut and Tropp have a new result (a Bernstein-like tail bound) that
may be used to refine the theorem. This will be briefly discussed in Section 4.1 where we
conduct a numerical experiment.

Note that when u is a Gaussian sequence, M resembles a Wishart matrix for which the
distribution of the smallest eigenvalue is well-studied [8]. However, each row of L is not
independent, so results from random matrix theory cannot be used in this way.

An intermediate result in the proof of Theorem 1.3 is the following. It conveys the essence
of Theorem 1.3 and may be easier to remember.

Theorem 1.4. Assume the same set-up as in Theorem 1.3. Suppose n = Õ(p). Then

E‖M −N‖ ≤ C(log p)‖N‖(p/n)1/2λ for some C > 0.

A numerical experiment in Section 4.1 suggests that the above is not tight with respect
to p and n. We find that for E‖M −N‖/‖N‖ to vanish as p → ∞, n growing strictly faster
than p log p may suffice, but Theorem 1.4 would require n to grow faster than p log2 p.

1.3. Multiple Probes. Fix n and suppose p > n. L is not going to be well-conditioned or
even invertible. One way around this is to probe A with multiple random vectors u1, . . . , uq ∈
C
n at one go, that is to solve

L′c = A′u,

where the j-th column of L′ and A′u are respectively




Bju1
...

Bjuq


 and




Au1
...

Auq


 .

For this to make sense, A′ = Iq ⊗ A where Iq is the identity matrix of size q. Also
define B′

j = Iq ⊗ Bj and treat the above as probing A′ assuming that it lies in the span of
B′ = {B′

1, . . . , B
′
p}.

Regarding the conditioning of L′, we can apply Theorem 1.3 to A′ and B′. It is an
easy exercise (cf. Proposition A.1) to see that the condition numbers are unchanged, that
is κ(B) = κ(B′) and λ(B) = λ(B′). Applying Theorem 1.3 to A′ and B′, we deduce that
cond(L) ≤ 2κ+ 1 with high probability provided that

nq ∝ p(κλ log p)2.

Remember that A has only mn degrees of freedom; while we can increase q as much as we
like to improve the conditioning of L, the problem set-up does not allow p > mn coefficients.
In general, when A has rank ñ, its degrees of freedom is ñ(m+n− ñ) by considering its SVD.

1.4. When to Probe. Matrix probing is an especially useful technique when the following
holds.

1. We know that the probed matrix A can be approximated by a small number of basis
matrices that are specified in advance. This holds for operators with smooth pseudod-
ifferential symbols, which will be studied in Section 3.
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2. Each matrixBi can be applied to a vector in Õ(max(m,n)) time using only Õ(max(m,n))
memory.

The second condition confers two benefits. First, the coefficients c can be recovered
fast, assuming that u and Au are already provided. This is because L can be computed in
Õ(max(m,n)p) time and Equation (1.1) can be solved in O(mp2+p3) time by QR factorization
or other methods. In the case where increasingm,n does not require a bigger B to approximate
A, p can be treated as a constant and the recovery of c takes only Õ(max(m,n)) time.

Second, given the coefficient vector c, A can be applied to any vector v by summing over
Biv’s in Õ(max(m,n)p) time . This speeds up iterative methods such as GMRES and Arnoldi.

1.5. Backward Matrix Probing. A compelling application of matrix probing is computing
the pseudoinverse A+ of a matrix A ∈ C

m×n when A+ is known to be well-approximated in
the space of some B = {B1, . . . , Bp}. This time, we probe A+ by applying it to a random
vector v = Au where u is a Gaussian or Rademacher sequence that we generate.

Like in Section 1.1, define L ∈ C
n×p such its j-th column is Bjv = BjAu. Suppose

A+ =
∑p

i=1 ciBi for some c1, . . . , cp ∈ C. Then the coefficient vector c can be obtained by
solving

Lc = A+v = A+Au. (1.4)

The right hand side is u projected onto null(A)⊥ where null(A) is the nullspace of A.
When A is invertible, A+Au is simply u. We call this “backward matrix probing” because
the generated random vector u appears on the opposite side of the matrix being probed in
Equation (1.4). The equation suggests the following framework for probing A+.

Algorithm 1 (Backward Matrix Probing). Suppose A+ =
∑p

i=1 ciBi. The goal is to retrieve
the coefficients c1, . . . , cp.

1. Generate u ∼ N(0, 1)n iid.
2. Compute v = Au.
3. Filter away u’s components in null(A). Call this ũ.
4. Compute L by setting its j-column to Bjv.
5. Solve for c the system Lc = ũ in a least squares sense.

For the conditioning of L, we may apply Theorem 1.3 with B replaced with BA :=
{B1A, . . . , BpA} since the j-th column of L is now BjAu. Of course, κ(BA) and λ(BA) can
be very different from κ(B) and λ(B); in fact, κ(BA) and λ(BA) seem much harder to control
because it depends on A. Fortunately, as we shall see in Section 3.5, knowing the “order” of
A+ as a pseudodifferential operator helps in keeping these condition numbers small.

When A has a high dimensional nullspace but has comparable nonzero singular values,
λ(BA) may be much larger than is necessary. By a change of basis, we can obtain a tighter
result. The proof is in Section 2.3

Corollary 1.5. Let C1, C2 > 0 be numbers given by Remark B.1 in the Appendix. Let
A ∈ C

m×n, ñ = rank(A) and BA = {B1A, . . . , BpA} where each Bj ∈ C
n×m. Define L ∈ C

n×p

such that its j-th column is BjAu where u ∼ N(0, 1)n iid. LetM = L∗L, N = EM , κ = κ(BA)
and λ = (ñ/n)1/2λ(BA). Suppose

ñ = p (Cκλ log p)2 for some C ≥ 1.
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Then

P

(
‖M −N‖ ≥ t‖N‖

κ

)
≤ (2C2ñp)p

−α where α =
tC

eC1
.

Notice that ñ = rank(A) has taken the role of n, and our new λ = max1≤j≤p ñ
1/2‖BjA‖/‖BjA‖F

ignores the n− ñ zero singular values of each BjA. Clearly, λ can be much smaller than λ(BA).

2. Conditioning of L and Proofs.

2.1. Proof of Theorem 1.3. Our proof is decoupled into two components: one linear
algebraic and one probabilistic. The plan is to collect all the results that are linear algebraic,
deterministic in nature, then appeal to a probabilistic result developed in the Appendix.

To facilitate the exposition, we use a different notation for this section. We use lower case
letters as superscripts that run from 1 to p and Greek symbols as subscripts that run from 1
to n or m. For example, the set of basis matrices is now B = {B1, . . . , Bp}.

Our linear algebraic results concern the following variables.

1. Let T jk = Bj∗Bk ∈ C
n×n and Tξη ∈ C

p×p such that the (j, k)-th entry of Tξη is the
(ξ, η)-th entry of T jk.

2. Let Q =
∑

1≤ξ,η≤n T
∗
ξηTξη.

3. Let S =
∑p

j=1B
jBj∗ ∈ C

m×m.

4. Let F = (Tξη)1≤ξ,η≤n ∈ C
np×np, a block matrix.

The reason for introducing T is that M can be written as a quadratic form in Tξη with
input u:

M =
∑

1≤ξ,η≤n

uξuηTξη.

Since uξ has unit variance and zero mean, N = EM =
∑n

ξ=1 Tξξ.
Probabilistic inequalties applied to M will involve Tξη, which must be related to B. The

connection between these n by n matrices and p by p matrices lies in the identity

T jk
ξη =

m∑

ζ=1

Bj
ζξB

k
ζη. (2.1)

The linear algebraic results are contained in the following propositions.

Proposition 2.1. For any 1 ≤ ξ, η ≤ n,

Tξη = T ∗
ηξ .

Hence, Tξξ and N are Hermitian. Moreover, they are positive semidefinite.

Proof. Showing that Tξη = T ∗
ηξ is straightforward from Equation (2.1). We now check that

Tξξ is positive semidefinite. Let v ∈ C
p. By Equation (2.1), v∗Tξξv =

∑
ζ

∑
jk v

jvkBj
ζξB

k
ζξ =

∑
ζ

∣∣∣
∑

k v
kBk

ζξ

∣∣∣
2
≥ 0. It follows that N =

∑
ξ Tξξ is also positive semidefinite.

Proposition 2.2.

Qjk = Tr(Bj∗SBk) and Q =
∑

1≤ξ,η≤n

TξηT
∗
ξη.
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Proof. By Equation (2.1), Qjk =
∑

l

〈
T lj, T lk

〉
=
∑

l Tr(B
j∗BlBl∗Bk). The summation

and trace commute to give us the first identity. Similarly, the (j, k)-th entry of
∑

ξη TξηT
∗
ξη is∑

l

〈
T kl, T jl

〉
=
∑

l Tr(B
l∗BkBj∗Bl). Cycle the terms in the trace to obtain Qjk.

Proposition 2.3. Let u ∈ C
p be a unit vector. Define U =

∑p
k=1 u

kBk ∈ C
m×n. Then

‖U‖2F ≤ ‖N‖.

Proof. ‖U‖2F = Tr(U∗U) = Tr(
∑

jk u
jukBj∗Bk). The sum and trace commute and due to

Equation (1.3), ‖U‖2F =
∑

jk u
jukN jk ≤ ‖N‖.

Proposition 2.4.
‖Q‖ ≤ ‖S‖ ‖N‖ .

Proof. Q is Hermitian, so ‖Q‖ = maxu u
∗Qu where u ∈ C

p has unit norm. Now let u be an
arbitrary unit vector and define U =

∑p
k=1 u

kBk. By Proposition 2.2, u∗Qu =
∑

jk u
jukQjk =

Tr(
∑

jk u
jukBj∗SBk) = Tr(U∗SU). Since S is positive definite, it follows from “‖AB‖F ≤

‖A‖‖B‖F ” that u∗Qu = ‖S1/2U‖2F ≤ ‖S‖‖U‖2F . By Proposition 2.3, u∗Qu ≤ ‖S‖‖N‖.
Proposition 2.5. For any 1 ≤ j ≤ p,

‖Bj‖ ≤ λn−1/2‖N‖1/2.

It follows that

‖Q‖ = ‖
∑

ξη

TξηT
∗
ξη‖ ≤ pλ2‖N‖2/n.

Proof. We begin by noting that ‖N‖ ≥ maxj |N jj| = maxj
〈
Bj, Bj

〉
= maxj ‖Bj‖2F . From

Definition 1.2, ‖Bj‖ ≤ λn−1/2‖Bj‖F ≤ λn−1/2‖N‖1/2 for any 1 ≤ j ≤ p, which is our first
inequality. It follows that ‖S‖ ≤ ∑p

j=1 ‖Bj‖2 ≤ pλ2‖N‖/n. Apply Propositions 2.4 and 2.2
to obtain the second inequality.

Proposition 2.6. F is Hermitian and

‖F‖ ≤ λ2‖N‖(p/n).

Proof. That F is Hermitian follows from Proposition 2.1. Define F ′ = (T jk) another block
matrix. Since reindexing the rows and columns of F does not change its norm, ‖F‖ = ‖F ′‖.
By Proposition 2.5, ‖F ′‖2 ≤

∑p
j,k=1 ‖T jk‖2 ≤

∑p
j,k=1 ‖Bj‖2‖Bk‖2 ≤ λ4‖N‖2(p/n)2.

We now combine the above linear algebraic results with a probabilistic result in Appendix
B. Prepare to apply Proposition B.6 with Aij replaced with Tξη. Note that R =

∑
ξη TξηT

∗
ξη =

Q by Proposition 2.2. Bound σ using Propositions 2.5 and 2.6:

σ = C1 max(‖Q‖1/2, ‖R‖1/2, ‖F‖)
≤ C1‖N‖max((p/n)1/2λ, (p/n)λ2)

≤ C1‖N‖(p/n)1/2λ.
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The last step goes through because our assumption on n guarantees that (p/n)1/2λ ≤ 1.
Finally, apply Proposition B.6 with t‖N‖/κ = eσu.

2.2. Sketch of the Proof for Theorem 1.4. Follow the proof of Proposition B.6. Letting
s = log p, we obtain

E‖M −N‖ ≤ (E‖M −N‖s)1/s

≤ C1(2C2np)
1/ssmax(‖Q‖1/2, ‖R‖1/2, ‖F‖)

≤ C(log p)‖N‖(p/n)1/2λ.

2.3. Proof of Corollary 1.5. Let u ∼ N(0, 1)n iid. Say A has a singular value decompo-
sition EΛF ∗ where Λ is diagonal. Do a change of basis by letting u′ = F ∗u ∼ N(0, 1)n iid,
B′

j = F ∗BjE and B′
Λ = {B′

1Λ, . . . , B
′
pΛ}. Equation (1.1) is reduced to L′c = Λu′ where the

j-th column of L′ is B′
jΛu

′.

Since Frobenius inner products, ‖ ·‖ and ‖ ·‖F are all preserved under unitary transforma-
tions, it is clear that κ(B′

Λ) = κ(BA) and λ(B′
Λ) = λ(BA). Essentially, for our purpose here,

we may pretend that A = Λ.

Let ñ = rank(A). If A has a large nullspace, i.e., ñ ≪ min(m,n), then B′
jΛ has n − ñ

columns of zeros and many components of u′ are never transmitted to the B′
j’s anyway. We

may therefore truncate the length of u′ to ñ, let B̃j ∈ C
n×ñ be B′

jΛ with its columns of zeros

chopped away and apply Theorem 1.3 with B replaced with B̃ := {B̃1, . . . , B̃p}. Observe that
κ(B̃) = κ(B′

Λ), whereas λ(B̃) = (ñ/n)1/2λ(B′
Λ) because ‖B̃j‖F = ‖B′

jΛ‖F and ‖B̃j‖ = ‖B′
jΛ‖

but B̃j has ñ instead of n columns. The proof is complete.

3. Probing Operators with Smooth Symbols.

3.1. Basics and Assumptions. We begin by defining what a pseudodifferential symbol is.

Definition 3.1.Every linear operator A is associated with a pseudodifferential symbol a(x, ξ)
such that for any u : Rd → R,

Au(x) =

∫

ξ∈Rd

e2πiξ·xa(x, ξ)û(ξ)dξ (3.1)

where û is the Fourier transform of u, that is û(ξ) =
∫
x∈Rd u(x)e

−2πiξ·xdx.

We refrain from calling A a “pseudodifferential operator” at this point because its symbol
has to satisfy some additional constraints that will be covered in Section 3.5. What is worth
noting here is the Schwartz kernel theorem which shows that every linear operator A : S(Rd) →
S ′(Rd) has a symbol representation as in Equation (3.1) and in that integral, a(x, ξ) ∈ S ′(Rd×
R
d) acts as a distribution. Recall that S is the Schwartz space and S ′ is its dual or the space

of tempered distributions. The interested reader may refer to [9] or [19] for a deeper discourse.

The term “pseudodifferential” arises from the fact that differential operators have very
simple symbols. For example, the Laplacian has the symbol a(x, ξ) = −4π2‖ξ‖2. A more
elaborate example is

Au(x) = u(x)−∇ · α(x) grad u(x) for some α(x) ∈ C1(Rd).
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Its symbol is

a(x, ξ) = 1 + α(x)(4π2‖ξ‖2)−
d∑

k=1

(2πiξk)∂xk
α(x). (3.2)

Clearly, if the media α(x) is smooth, so is the symbol a(x, ξ) smooth in both x and ξ, an
important property which will be used in Section 3.3.

For practical reasons, we make the following assumptions about u : Rd → R on which
symbols are applied.

1. u is periodic with period 1, so only ξ ∈ Z
d will be considered in the Fourier domain.

2. u is bandlimited, say û is supported on Ξ := [−ξ0, ξ0]d ⊆ Z
d. Any summation over the

Fourier domain is by default over Ξ.4

3. a(x, ξ) and u(x) are only evaluated at x ∈ X ⊂ [0, 1]d which are points uniformly
spaced apart. Any summation over x is by default over X.

Subsequently, Equation (3.1) reduces to a discrete and finite form:

Au(x) =
∑

ξ∈Ξ

e2πiξ·xa(x, ξ)û(ξ). (3.3)

We like to call a(x, ξ) a “discrete symbol.” Some tools are already available for manipulating
such symbols [7].

3.2. User Friendly Representations of Symbols. Given a linear operator A, it is useful
to relate its symbol a(x, ξ) to its matrix representation in the Fourier basis. This helps us
understand the symbol as a matrix and also exposes easy ways of computing the symbols of
A−1, A∗ and AB using standard linear algebra software.

By a matrix representation (Aηξ) in Fourier basis, we mean of course that Âu(η) =∑
ξ Aηξ û(ξ) for any η. We also introduce a more compact form of the symbol: â(j, ξ) =∫

x a(x, ξ)e
−2πij·xdx. The next few results are pedagogical and listed for future reference.

Proposition 3.2. Let A be a linear operator with symbol a(x, ξ). Let (Aηξ) and â(j, ξ) be as
defined above. Then

Aηξ =

∫

x
a(x, ξ)e−2πi(η−ξ)xdx; a(x, ξ) = e−2πiξx

∑

η

e2πiηxAηξ ;

Aηξ = â(η − ξ, ξ); â(j, ξ) = Aj+ξ,ξ.

Proof. Let η = ξ + j and apply the definitions.

Proposition 3.3 (Trace). Let A be a linear operator with symbol a(x, ξ). Then

Tr(A) =
∑

ξ

â(0, ξ) =
∑

ξ

∫

x
a(x, ξ)dx.

4To have an even number of points per dimension, one can use Ξ = [−ξ0, ξ0 − 1]d for example. We leave
this generalization to the reader and continue to assume ξ ∈ [−ξ0, ξ0]

d.
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Proposition 3.4 (Adjoint). Let A and C = A∗ be linear operators with symbols a(x, ξ), c(x, ξ).
Then

ĉ(j, ξ) = â(−j, j + ξ); c(x, ξ) =
∑

η

∫

y
a(y, η)e2πi(η−ξ)(x−y)dy.

Proposition 3.5 (Composition). Let A,B and C = AB be linear operators with symbols
a(x, ξ), b(x, ξ), c(x, ξ). Then

ĉ(j, ξ) =
∑

ζ

â(j + ξ − ζ, ζ)b̂(ζ − ξ, ξ);

c(x, ξ) =
∑

ζ

∫

y
e2πi(ζ−ξ)(x−y)a(x, ζ)b(y, ξ)dy.

We leave it to the reader to verify the above results.

3.3. Symbol Expansions. The idea is that when a linear operator A has a smooth symbol
a(x, ξ), only a few basis functions are needed to approximate a, and correspondingly only a
small B is needed to represent A. This is not new, see for example [7]. In this paper, we
consider the separable expansion

a(x, ξ) =
∑

jk

cjkej(x)gk(ξ).

This is the same as expanding A as
∑

jk cjkBjk where the symbol for Bjk is ej(x)gk(ξ).
With an abuse of notation, let Bjk also denote its matrix representation in Fourier basis.
Given our assumption that ξ ∈ [−ξ0, ξ0]d, we have Bjk ∈ C

n×n where n = (2ξ0 + 1)d. As its
symbol is separable, Bjk can be factorized as

Bjk = F diag(ej(x))F−1 diag(gk(ξ)) (3.4)

where F is the unitary Fourier matrix. An alternative way of viewing Bjk is that it takes
its input û(ξ), multiply by gk(ξ) and convolve it with êj(η), the Fourier transform of ej(x).
There is also an obvious algorithm to apply Bjk to u(x) in Õ(n) time as outlined below. As
mentioned in Section 1.4, this speeds up the recovery of the coefficients c and makes matrix
probing a cheap operation.

Algorithm 2.Given vector u(x), apply the symbol ej(x)gk(ξ).
1. Perform FFT on u to obtain û(ξ).
2. Multiply û(ξ) by gk(ξ) elementwise.
3. Perform IFFT on the previous result, obtaining

∑
ξ e

2πiξ·xgk(ξ)û(ξ).
4. Multiply the previous result by ej(x) elementwise.
Recall that for L to be well-conditioned with high probability, we need to check whether N ,

as defined in Equation (1.3), is well-conditioned, or in a rough sense whether 〈Bj , Bk〉 ≃ δjk.
For separable symbols, this inner product is easy to compute.

Proposition 3.6. Let Bjk, Bj′k′ ∈ C
n×n be matrix representations (in Fourier basis) of linear

operators with symbols ej(x)gk(ξ) and ej′(x)gk′(ξ). Then
〈
Bjk, Bj′k′

〉
=
〈
ej , ej′

〉
〈gk, gk′〉
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where
〈
ej , ej′

〉
= 1

n

∑n
i=1 ej(xi)ej′(xi) and x1, . . . , xn are points in [0, 1]d uniformly spaced,

and 〈gk, gk′〉 =
∑

ξ gk(ξ)gk(ξ).
Proof. Apply Propositions 3.3, 3.4 and 3.5 with the symbols in the â(η, ξ) form.
To compute λ(B) as in Definition 1.2, we examine the spectrum of Bjk for every j, k. A

simple and relevant result is as follows.
Proposition 3.7. Assume the same set-up as in Proposition 3.6. Then

σmin(Bjk) ≥ min
x

|ej(x)|min
ξ

|gk(ξ)|; σmax(Bjk) ≤ max
x

|ej(x)|max
ξ

|gk(ξ)|.

Proof. In Equation (3.4), F diag(ej(x))F−1 has singular values |ej(x)| as x varies over X,
defined at the end of Section 3.1. The result follows from the min-max theorem.

As an example, suppose a(x, ξ) is smooth and periodic in both x and ξ. It is well-known
that a Fourier series is good expansion scheme because the smoother a(x, ξ) is as a periodic
function in x, the faster its Fourier coefficients decay, and less is lost when we truncate the
Fourier series. Hence, we pick5

ej(x) = e2πij·x; gk(ξ) = e2πik·ϕ(ξ), (3.5)

where ϕ(ξ) = (ξ + ξ0)/(2ξ0 + 1) maps ξ into [0, 1]d.
Due to Proposition 3.6, N = EM is a multiple of the identity matrix and κ(B) = 1 where

B = {Bjk}. It is also immediate from Proposition 3.7 that λ(Bjk) = 1 for every j, k, and
λ(B) = 1. The optimal condition numbers of this B make it suitable for matrix probing.

3.4. Chebyshev Expansion of Symbols. The symbols of differential operators are poly-
nomials in ξ and nonperiodic. When probing these operators, a Chebyshev expansion in ξ
is in principle favored over a Fourier expansion, which may suffer from Gibbs phenomenon.
However, as we shall see, κ(B) grows with p and can lead to ill-conditioning.

For simplicity, assume that the symbol is periodic in x and that ej(x) = e2πij·x. Applying
Proposition 3.2, we see that Bjk is a matrix with a displaced diagonal and its singular values
are (gk(ξ))ξ∈Ξ. (Recall that we denote the matrix representation (in Fourier basis) of Bjk as
Bjk as well.)

Let Tk be the k-th Chebyshev polynomial. In 1D, we can pick

gk(ξ) = Tk(ξ/ξ0) for k = 1, . . . ,K. (3.6)

Define ‖Tk‖2 = (
∫ 1
z=−1 Tk(z)

2dz)1/2. Notice that there is no (1 − z2)−1/2 weight factor.

By approximating sums with integrals, λ(Bjk) ≃
√
2‖Tk‖−1

2 =
(
4k2−1
2k2−1

)1/2
. In practice, this

approximation becomes very accurate with larger n and we see no need to be rigorous here.
As k increases, the above approaches

√
2. More importantly, λ(Bjk) ≤ λ(Bj1) for any j, k, so

λ(B) =
√
3.

Applying the same technique to approximate the sum 〈gk, gk′〉, we find that 〈gk, gk′〉 ∝
(1− (k+k′)2)−1+(1− (k−k′)2)−1 when k+k′ is even, and zero otherwise. We then compute

5Actually, exp(2πikξ0/(2ξ0 + 1)) does not vary with ξ, and we can use ϕ(ξ) = ξ/(2ξ0 + 1).
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Figure 3.1. Let K be the number of Chebyshev polynomials used in the expansion of the symbol, see
Equation (3.6) and (3.7). Observe that in 1D, κ(B) = O(K) while in 2D, κ(B) = O(K3). These condition
numbers mean that we cannot expect to retrieve p = Õ(n) parameters unless K is fixed and independent of p, n.

N = EM for various K and plot κ(B) versus K, the number of Chebyshev polynomials. As
shown in Figure 3.1(a),

κ(B) ≃ 1.3K.

This means that if we expect to recover p = Õ(n) coefficients, we must keep K fixed.
Otherwise, if p = K2, only p = Õ(n1/2) are guaranteed to be recovered by Theorem 1.3.

In 2D, a plausible expansion is

gk(ξ) = eik1 arg ξTk2(ϕ(‖ξ‖)) for 1 ≤ k2 ≤ K (3.7)

where k = (k1, k2) and ϕ(r) = (
√
2r/ξ0)−1 maps ‖ξ‖ into [−1, 1]. We call this the “Chebyshev

on a disk” expansion.

The quantity λ(Bjk) is approximately 2
(∫ 1

x=−1

∫ 1
y=−1 Tk(ψ(x, y))

2dx dy
)−1/2

where ψ(x, y) =

(2x2 + 2y2)1/2 − 1. The integral is evaluated numerically and appears to converge6 to
√
2 for

large k2. Also, k2 = 1 again produces the worst λ(Bjk) and

λ(B) ≤ 2.43.7

As for κ(B), observe that when k1 6= k′1,
〈
gk1k2 , gk′1k′2

〉
= ±1 due to symmetry8, whereas

when k1 = k′1, the inner product is proportional to n and is much larger. As a result, the gk’s

6This is because when we truncate the disk of radius ξ0
√
2 to a square of length 2ξ0, most is lost along the

vertical axis and away from the diagonals. However, for large k, Tk oscillates very much and the truncation
does not matter. If we pretend that the square is a disk, then we are back in the 1D case where the answer
approaches

√
2 for large k.

7The exact value is 2(4− 8

3

√
2 sinh−1(1))−1/2.

8The ξ and −ξ terms cancel each other. Only ξ = 0 contributes to the sum.
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with different k1’s hardly interact and in studying κ(B), one may assume that k1 = k′1 = 0.
To improve κ(B), we can normalize gk such that the diagonal entries of N are all ones, that
is g′k(ξ) = gk(ξ)/‖gk(ξ)‖.

This yields another set of basis matrices B′. Figure 3.1(b) reveals that

κ(B) = O(K3) and κ(B′) ≃ κ(B).

The latter can be explained as follows: we saw earlier that 〈Bjk, Bjk〉 converges as k2
increases, so the diagonal entries of N are about the same and the normalization is only a
minor correction.

If a(x, ξ) is expanded using the same number of basis functions in each direction of x
and ξ, i.e., K = p1/4, then Theorem 1.3 suggests that only p = Õ(n2/5) coefficients can be
recovered.

To recap, for both 1D and 2D, λ(B) is a small number but κ(B) increases with K. For-
tunately, if we know that the operator being probed is a second order derivative for example,
we can fix K = 2.

Numerically, we have observed that the Chebyshev expansion can produce dramatically
better results than the Fourier expansion of the symbol. More details can be found in Section
4.3.

3.5. Order of an Operator. In standard texts, A is said to be a pseudodifferential operator
of order w if its symbol a(x, ξ) is in C∞(Rd ×R

d) and for any multi-indices α, β, there exists
a constant Cαβ such that

|∂αξ ∂βxa(x, ξ)| ≤ Cαβ 〈ξ〉w−|α| for all ξ, where 〈ξ〉 = 1 + ‖ξ‖.

Letting α = β = 0, we see that such operators have symbols that grow or decay as
(1 + ‖ξ‖)w. As an example, the Laplacian is of order 2. The factor 1 prevents 〈ξ〉 from
blowing up when ξ = 0. There is nothing special about it and if we take extra care when
evaluating the symbol at ξ = 0, we can use

〈ξ〉 = ‖ξ‖.

For forward matrix probing, if it is known a priori that a(x, ξ) behaves like 〈ξ〉w, it makes
sense to expand a(x, ξ) 〈ξ〉−w instead. Another way of viewing this is that the symbol of the
operator Bjk is modified from ej(x)gk(ξ) to ej(x)gk(ξ) 〈ξ〉w to suit A better.

For backward matrix probing, if A is of order z, then A−1 is of order −z and we should
replace the symbol of Bjk with ej(x)gk(ξ) 〈ξ〉−w. We believe that this small correction has an
impact on the accuracy of matrix probing, as well as the condition numbers κ(BA) and λ(BA).

Recall that an element of BA is BjkA. If A is of order w and Bjk is of order 0, then BjkA
is of order w and λ(BjkA) will grow with nw, which will adversely affect the conditioning of
matrix probing. However, by multiplying the symbol of Bjk by 〈ξ〉−w, we can expect BjkA
to be order 0 and that λ(BjkA) is independent of the size of the problem n. The argument is
heuristical but we will support it with some numerical evidence in Section 4.3.
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Figure 4.1. Consider the Fourier expansion of the symbol. J is the number of basis functions in x and ξ, so
p = J2. Let n = logc p. Figure (a) shows that the estimated E‖M −N‖/‖N‖ decays for c ≥ 1.1 which suggests
that Theorem 1.4 is not tight. In Figure (b), we estimate P (‖M −N‖/‖N‖ > t) by sampling ‖M − N‖/‖N‖
105 times. The tail probability appears to be subgaussian for small t but exponential for larger t.

4. Numerical Examples. We carry out four different experiments. The first experiment
suggests that Theorem 1.4 is not tight. The second experiment presents the output of back-
ward probing in a visual way. In the third experiment, we explore the limitations of backward
probing and also tests the Chebyshev expansion of symbols. The last experiment involves the
forward probing of the foveation operator, which is related to human vision.

4.1. 1D Statistical Study. We are interested in whether the probability bound in Theo-
rem 1.3 is tight with respect to p and n, but as the tail probabilities are small and hard to
estimate, we opt to study its first moment instead. In particular, if Theorem 1.4 captures
exactly the dependence of E‖M −N‖/‖N‖ on p and n, then we would need n to grow faster
than p log2 p for E‖M −N‖/‖N‖ to vanish, assuming λ(B) is fixed.

For simplicity, we use the Fourier expansion of the symbol in 1D so that λ(B) = κ(B) = 1.
Let J be the number of basis functions in both x and ξ and p = J2. Figure 4.1(a) suggests
that E‖M −N‖/‖N‖ decays to zero when n = p logc p and c > 1. It follows from the previous
paragraph that Theorem 1.4 cannot be tight.

Nevertheless, Theorem 1.4 is optimal in the following sense. Imagine a more general bound

E
‖M −N‖

‖N‖ ≤ logα p
( p
n

)β
for some α, β > 0. (4.1)

In Figure 4.2(a), we see that for various values of p/n, α = 1 since the graphs are linear.
On the other hand, if we fix p and vary n, the log-log graph of Figure 4.2(b) shows that
β = 1/2. Therefore, any bound in the form of Equation (4.1) is no better than Theorem 1.4.

Next, we fix p = 25, n = 51 and sample ‖M − N‖/‖N‖ many times to estimate the
tail probabilities. In Figure 4.1(b), we see that the tail probability of P (‖M −N‖/‖N‖ > t)
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Figure 4.2. Consider bounding E‖M − N‖/‖N‖ by (logα p)(p/n)β. In Figure (a), the estimated E‖M −
N‖/‖N‖ depends linearly on log p, so α ≥ 1. In Figure (b), we fix p and find that for large n, β = 1/2. The
conclusion is that the bound in Theorem 1.4 has the best α, β.

decays as exp(−c1t) when t is big, and as exp(−c2t2) when t is small, for some positive numbers
c1, c2. This behavior may be explained by Rauhut and Tropp’s yet published result.

4.2. Elliptic Equation in 1D. We find it instructive to consider a 1D example of matrix
probing because it is easy to visualize the symbol a(x, ξ). Consider the operator

Au(x) = − d

dx
α(x)

du(x)

dx
where α(x) = 1 + 0.4 cos(4πx) + 0.2 cos(6πx). (4.2)

Note that we use periodic boundaries and A is positive semidefinite with a one dimensional
nullspace consisting of constant functions.

We probe for A+ using Algorithm 1 and the Fourier expansion of its symbol or Equation
(3.5). Since A is of order 2, we premultiply gk(ξ) by 〈ξ〉−2 as explained in Section 3.5.

In the experiment, n = 201 and there are two other parameters J,K which are the number
of ej’s and gk’s used in Equation (3.5). To be clear, −J−1

2 ≤ j ≤ J−1
2 and −K−1

2 ≤ k ≤ K−1
2 .

Let C be the output of matrix probing. In Figure 4.3(b), we see that J = K = 5 is not
enough to represent A+ properly. This is expected because our media α(x) has a bandwidth
of 7. We expect J = K = 13 to do better, but the much larger p leads to overfitting and a
poor result, as is evident from the wobbles in the symbol of C in Figure 4.3(c). Probing with
four random vectors, we obtain a much better result as shown in Figure 4.3(d).

4.3. Elliptic Equation in 2D. In this section, we extend the previous set-up to 2D and
address a different set of questions. Consider the operator A defined as

Au(x) = −∇ · α(x)∇u(x) where α(x) = 1

T
+ cos2(πγx1) sin

2(πγx2). (4.3)
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Figure 4.3. Let A be the 1D elliptic operator in Equation (4.2) and A+ be its pseudoinverse. Let C be the
output of backward matrix probing with the following parameters: q is the number of random vectors applied
to A+; J,K are the number of ej’s and gk’s used to expand the symbol of A+ in Equation (3.5). Figure (a)
is the symbol of A+. Figure (b) is the symbol of C with J = K = 5. It lacks the sharp features of Figure (a)
because B is too small to represent A+ well. With J = K = 13, probing with only one random vector leads
to ill-conditioning and an inaccurate result in Figure (b). In Figure (c), four random vectors are used and a
much better result is obtained. Note that the symbols are multipled by 〈ξ〉3 for better visual contrast.

The positive value T is called the contrast while the positive integer γ is the roughness
of the media, since the bandwidth of α(x) is 2γ + 1. Again, we assume periodic boundary
conditions such that A’s nullspace is exactly the set of constant functions.

Let C be the output of the backward probing of A. As we shall see, the quality of C drops
as we increase the contrast T or the roughness γ.

Fix n = 1012 and expand the symbol using Equation (3.5). Let J = K be the number of
basis functions used to expand the symbol in each of its four dimensions, that is p = J4.

In Figure 4.4(b), we see that between J = 2γ − 1 and J = 2γ + 1, the bandwidth of
the media, there is a marked improvement in the preconditioner, as measured by the ratio
cond(CA)/cond(A).9

9Since A has one zero singular value, cond(A) actually refers to the ratio between its largest singular value
and its second smallest singular value. The same applies to CA.
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Figure 4.4. Let A be the operator defined in Equation (4.3) and C be the output of backward probing. In
Figure (b), we fix T = 104 and find that as J goes from 2γ−1 to 2γ+1, the bandwidth of the media, the quality
of the preconditioner C improves by a factor between 100.5 and 10. In Figure (a), we fix γ = 2 and find that
increasing the contrast worsens cond(CA)/cond(A). Nevertheless, the improvement between J = 3 and J = 5
becomes more distinct. The error bars correspond to σ̂ where σ̂2 is the estimated variance. They indicate that
C is not just good on average, but good with high probability.

On the other hand, Figure 4.4(a) shows that as the contrast increases, the preconditioner
C degrades in performance, but the improvement between J = 2γ − 1 and 2γ + 1 becomes
more pronounced.

The error bars in Figure 4.4 are not error margins but σ̂ where σ̂2 is the unbiased estimator
of the variance. They indicate that cond(CA)/cond(A) is tightly concentrated around its
mean, provided J is not too much larger than is necessary. For instance, for γ = 1, J = 3
already works well but pushing to J = 9 leads to greater uncertainty.

Next, we consider forward probing of A using the “Chebyshev on a disk” expansion or
Equation (3.7). Let m be the order correction, that is we multiply gk(ξ) by 〈ξ〉m = ‖ξ‖m. Let
C be the output of the probing and K be the number of Chebyshev polynomials used.

Fix n = 552, T = 10, γ = 2 and J = 5. For m = 0 and K = 3, i.e., no order correction
and using up to quadratic polynomials in ξ, we obtain a relative error ‖C − A‖/‖A‖ that is
less than 10−14. On the other hand, using Fourier expansion, with K = 5 in the sense that
−K−1

2 ≤ k1, k2 ≤ K−1
2 , the relative error is on the order of 10−1. The point is that in this

case, A has an exact “Chebyshev on a disk” representation and probing using the correct B
enables us to retrieve the coefficients with negligible errors.

Finally, we consider backward probing with the Chebyshev expansion. We use J = 5,
γ = 2 and T = 10. Figure 4.5 shows that when m = −2, the condition numbers λ(BA) and
κ(BA) are minimized and hardly increases with n. This emphasizes the importance of knowing
the order of the operator being probed.

4.4. Foveation. In this section, we forward-probe for the foveation operator, a space-
variant imaging operator [4], which is particularly interesting as a model for human vision.
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Figure 4.5. Consider the backward probing of A in Equation (4.3), a pseudodifferential oeprator of order 2.
Perform order correction by multiplying gk(ξ) by 〈ξ〉q in the expansion of the symbol. See Section 3.5. Observe
that at q = −2, the condition numbers λ(BA) and κ(BA) are minimized and hardly grow with n.

Formally, we may treat the foveation operator A as a Gaussian blur with a width or standard
deviation that varies over space, that is

Au(x) =

∫

R2

K(x, y)u(y)dy where K(x, y) =
1

w(x)
√
2π

exp

(−‖x− y‖2
2w2(x)

)
, (4.4)

where w(x) is the width function which returns only positive real numbers.

The resolution of the output image is highest at the point where w(x) is minimal. Call
this point x0. It is the point of fixation, corresponding to the center of the fovea. For our
experiment, the width function takes the form of w(x) = (α‖x−x0‖2+β)1/2. Our images are
201× 201 and treated as functions on the unit square. We choose x0 = (0.5, 0.5) and α, β > 0
such that w(x0) = 0.003 and w(1, 1) = 0.012.

The symbol of A is a(x, ξ) = exp(−2π2w(x)2‖ξ‖2), and we choose to use a Fourier series or
Equation (3.5) for expanding it. Let C be the output of matrix probing and z be a standard
test image. Figure 4.6(c) shows that the relative ℓ2 error ‖Cz − Az‖ℓ2/‖Az‖ℓ2 decreases
exponentially as p increases. In general, forward probing yields great results like this because
we know its symbol well and can choose an appropriate B.

4.5. Inverting the wave equation Hessian. In seismology, it is common to recover the
model parameters m, which describe the subsurface, by minimizing the least squares misfit
between the observed data and F (m) where F , the forward model, predicts data from m.

Methods to solve this problem can be broadly categorized into two classes: steepest descent
or Newton’s method. The former takes more iterations to converge but each iteration is
computationally cheaper. The latter requires the inversion of the Hessian of the objective
function, but achieves quadratic convergence near the optimal point.
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Figure 4.6. Let A be the foveation operator in Equation (4.4) and C be the output of the forward probing
of A. Figure (a) is the test image z. Figure (b) is Cz and it shows that C behaves like the foveation operator
as expected. Figure (c) shows that the relative ℓ2 error (see text) decreases exponentially with the number of
parameters p = J4.

In another paper, we use matrix probing to precondition the inversion of the Hessian.
Removing the nullspace component from the noise vector is more tricky (see Algorithm 1)
and involves checking whether “a curvelet is visible to any receiver” via raytracing. For
details on this more elaborate application, please refer to [6].

5. Conclusion. When a matrix A with n columns belongs to a specified p-dimensional
subspace, say A =

∑p
i=1 ciBi, we can probe it with a few random vectors to recover the

coefficient vector c.

Let q be the number of random vectors used, κ be the condition number of the Gram
matrix of B1, . . . , Bp and λ be the “weak condition number” of each Bi (cf. Definition 1.2)
which is related to the numerical rank. From Theorem 1.3 and Section 1.3, we learn that when
nq ∝ p(κλ log p)2, then the linear system that has to be solved to recover c (cf. Equation (1.1))
will be well-conditioned with high probability.

The same technique can be used to compute an approximate A−1, or a preconditioner for
inverting A. In [6], we used it to invert the wave equation Hessian — here we demonstrate
that it can also be used to invert elliptic operators in smooth media (cf. Sections 4.2 and 4.3).

Some possible future work include the following.
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1. Consider operators that have a sparse representation in a much larger B and try to
recover the coefficients by compressed sensing. This is similar in spirit to “exact matrix
completion” by Candès and Recht [3]. Hopefully, fewer random vectors will be needed.

2. Build a framework for probing f(A) interpreted as a Cauchy integral

f(A) =
1

2πi

∮

Γ
f(z)(zI −A)−1dz,

where Γ is a closed curve enclosing the eigenvalues of A. For more on approximating
matrix functions, see [10, 12].

3. Consider expansion schemes for symbols that highly oscillate or have singularities that
are well-understood.

Appendix A. Linear Algebra.

Recall the definitions of κ(B) and λ(B) at the beginning of the paper. The following
concerns probing with multiple vectors (cf. Section 1.3).

Proposition A.1. Let Iq ∈ C
q×q be the identity. Let B = {B1, . . . , Bp}. Let B′

j = Iq ⊗ Bj

and B′ = {B′
1, . . . , B

′
p}. Then κ(B) = κ(B′) and λ(B) = λ(B′).

Proof. Define N ∈ C
p×p such that Njk = 〈Bj, Bk〉. Define N ′ ∈ C

p×p such that N ′
jk =〈

B′
j , B

′
k

〉
. Clearly, N ′ = qN , so their condition numbers are the same and κ(B) = κ(B′).

For any A = Bj ∈ C
m×n and A′ = B′

j , we have ‖A′‖(nq)1/2

‖A′‖F
= ‖A‖(nq)1/2

‖A‖F q1/2
= ‖A‖n1/2

‖A‖F
. Hence,

λ(B) = λ(B′).

Appendix B. Probabilistic Tools. In this section, we present some probabilistic results
used in our proofs. The first theorem is used to decouple homogeneous Rademacher chaos of
order 2 and can be found in [5, 18] for example.

Theorem B.1. Let (ui) and (ũi) be two independent sequences of real-valued random vari-
ables and Aij be in a Banach space where 1 ≤ i, j ≤ n. There exists universal constants
C1, C2 > 0 such that for any s ≥ 1,


E

∥∥∥∥∥∥
∑

1≤i 6=j≤n

uiujAij

∥∥∥∥∥∥

s


1/s

≤ C1C
1/s
2


E

∥∥∥∥∥∥
∑

1≤i 6=j≤n

uiũjAij

∥∥∥∥∥∥

s


1/s

. (B.1)

A homogeneous Gaussian chaos is one that involves only products of Hermite polynomials
with the same total degree. For instance, a homogeneous Gaussian chaos of order 2 takes the
form

∑
1≤i 6=j≤n gigjAij+

∑n
i=1(g

2
i −1)Aii. It can be decoupled according to Arcones and Giné

[2].
Theorem B.2. Let (ui) and (ũi) be two independent Gaussian sequences and Aij be in a

Banach space where 1 ≤ i, j ≤ n. There exists universal constants C1, C2 > 0 such that for
any s ≥ 1,


E

∥∥∥∥∥∥
∑

1≤i 6=j≤n

uiujAij +

n∑

i=1

(u2i − 1)Aii

∥∥∥∥∥∥

s


1/s

≤ C1C
1/s
2


E

∥∥∥∥∥∥
∑

1≤i,j≤s

uiũjAij

∥∥∥∥∥∥

s


1/s

.
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Remark B.1. For Rademacher chaos, C1 = 4 and C2 = 1. For Gaussian chaos, it is clear
from [2] that we can pick C1 = 21/2 and C2 = 214. Better constants may be available.

We now proceed to the Khintchine inequalties. Let ‖ · ‖ and ‖ · ‖Cs denote the s-Schatten
norm. Recall that ‖A‖Cs = (

∑
i |σi|s)1/s where σi is a singular value of A. The following is

due to Lust-Piquard and Pisier [15, 16].
Theorem B.3. Let s ≥ 2 and (ui) be a Rademacher or Gaussian sequence. Then for any

set of matrices {Ai}1≤i≤n,


E

∥∥∥∥∥
n∑

i=1

uiAi

∥∥∥∥∥

s

Cs




1/s

≤ s1/2 max



∥∥∥∥∥(

n∑

i=1

A∗
iAi)

1/2

∥∥∥∥∥
Cs

,

∥∥∥∥∥(
n∑

i=1

AiA
∗
i )

1/2

∥∥∥∥∥
Cs


 .

In [18], Theorem B.3 is applied twice in a clever way to obtain a Khintchine inequality for
a decoupled chaos of order 2.

Theorem B.4. Let s ≥ 2 and (ui) and (ũi) be two independent Rademacher or Gaussian
sequences. For any set of matrices {Aij}1≤i,j≤n,


E

∥∥∥∥∥∥
∑

1≤i,j≤n

uiũjAij

∥∥∥∥∥∥

s

Cs




1/s

≤ 21/ssmax(‖Q1/2‖Cs , ‖R1/2‖Cs , ‖F‖Cs)

where Q =
∑

1≤i,j≤nA
∗
ijAij and R =

∑
1≤i,j≤nAijA

∗
ij and F is the block matrix (Aij)1≤i,j≤n.

For Rademacher and Gaussian chaos, higher moments are controlled by lower moments,
a property known as “hypercontractivity” [2, 5]. This leads to exponential tail bounds by
Markov’s inequality as we illustrate below.

Proposition B.5. Let X be a nonnegative random variable. Let σ, c, α > 0. Suppose

(EXs)1/s ≤ σc1/ss1/α for all s0 ≤ s <∞. Then for any k > 0 and u ≥ s
1/α
0 ,

P

(
X ≥ ekσu

)
≤ c exp(−kuα).

Proof. By Markov’s inequality, for any s > 0,

P

(
X ≥ ekσu

)
≤ EXs

(ekσu)s
≤ c

(
σs1/α

ekσu

)s

.

Pick s = uα ≥ s0 to complete the proof.
Proposition B.6. Let (ui) be a Rademacher or Gaussian sequence and C1, C2 be constants

obtained from Theorem B.1 or B.2. Let {Aij}1≤i,j≤n be a set of p by p matrices, and assume
that the diagonal entries Aii are positive semidefinite. Define M =

∑
i uiujAij and σ =

C1max(‖Q‖1/2, ‖R‖1/2, ‖F‖) where Q,R,F are as defined in Theorem B.4. Then

P (‖M − EM‖ ≥ eσu) ≤ (2C2np) exp(−u).
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Proof. We will prove the Gaussian case first. Recall that the s-Schatten and spectral
norms are equivalent: for any A ∈ C

r×r, ‖A‖ ≤ ‖A‖Cs ≤ r1/s‖A‖. Apply the decoupling
inequality, that is Theorem B.2, and deduce that for any s ≥ 2,

(E ‖M −N‖s)1/s ≤ C1C
1/s
2


E

∥∥∥∥∥∥
∑

1≤i,j≤n

uiũjAij

∥∥∥∥∥∥

s

Cs




1/s

.

Invoke Khintchine’s inequality, that is Theorem B.4, and obtain

(E ‖M −N‖s)1/s ≤ C1(2C2)
1/ssmax(‖Q1/2‖Cs , ‖R1/2‖Cs , ‖F‖Cs)

≤ C1(2C2np)
1/ssmax(‖Q‖1/2, ‖R‖1/2, ‖F‖)

≤ σ(2C2np)
1/ss.

Apply Proposition B.5 with c = 2C2np and k = α = 1 to complete the proof for the
Gaussian case. For the Rademacher case, we take similar steps. First, decouple (E‖M −
N‖s)1/s using Theorem B.1. This leaves us a sum that excludes the Aii’s. Apply Khintchine’s
inequality with the Aii’s zeroed. Of course, Q,R,F in Proposition B.4 will not contain any
Aii’s, but this does not matter because A∗

iiAii and AiiA
∗
ii and Aii are all positive semidefinite

for any 1 ≤ i ≤ n and we can add them back. For example, ‖(Aij)1≤i 6=j≤n‖ ≤ ‖(Aij)1≤i,j≤n‖
as block matrices.
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