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Abstract
Isotonic regression is a nonparametric approach for fittingmonotonic models to data that has been

widely studied from both theoretical and practical perspectives. However, this approach encounters com-
putational and statistical overfitting issues in higher dimensions. To address both concerns we present an
algorithm, which we term Isotonic Recursive Partitioning (IRP), for isotonic regression based on recur-
sively partitioning the covariate space through solution of progressively smaller “best cut” subproblems.
This creates a regularized sequence of isotonic models of increasing model complexity that converges to
the global isotonic regression solution. The models along the sequence are often more accurate than the
unregularized isotonic regression model because of the complexity control they offer. We quantify this
complexity control through estimation of degrees of freedom along the path. Success of the regularized
models in prediction and IRP’s favorable computational properties are demonstrated through a series of
simulated and real data experiments. We discuss application of IRP to the genetic problem of modeling
gene interactions and epistasis, where it appears especially promising.

1 Introduction

In predictive modeling we are given a set ofn data observations(x1, y1), ..., (xn, yn), wherex ∈ X (usually
X = Rd) is a vector of covariates or independent variables,y ∈ R is the response, and we wish to fit a model
f̂ : X → R to describe the dependence ofy on x, i.e.,y ≈ f̂(x). Isotonic regression is a non-parametric
modeling approach which only restricts the fitted model to being monotone in all independent variables
(Barlow & Brunk 1972). DefineG to be the family of isotonic functions, that is,g ∈ G satisfies

x1 � x2 ⇒ g(x1) ≤ g(x2),

where the partial order� here will usually be the standard Euclidean one, i.e.,x1 � x2 if and only if
x1j ≤ x2j coordinate-wise. Given these definitions, isotonic regression solves

min
g∈G

n
∑

i=1

(yi − g(xi))
2. (1)

We denote byf̂ the optimal solution to (1). As many authors have noted,f̂ comprises a partitioning of the
spaceX into regions with no “holes” satisfying isotonicity properties defined below, with a constant fitted
to f̂ in every region.
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In terms of model form, isotonic regression is clearly very attractive in situations where monotonicity
is a reasonable assumption, but other common assumptions like linearity or additivity are not. Indeed, this
formulation has found useful applications in biology (Obozinski et al. 2008), medicine (Schell & Singh
1997), statistics (Barlow & Brunk 1972) and psychology (Kruskal 1964), among others. In recent years,
an exciting new application area has emerged for this approach in genetics: modeling genetic heritability.
Many papers have noted the apparent insufficiency of standard additive modeling approaches in describing
the combined effects of genetic factors (e.g., mutations) on phenotypes or traits like height (Goldstein 2009,
Eichler et al. 2010). In some cases, evidence has pointed to sub-additive interactions (Shao et al. 2008), while
others suggest requiring super-additive assumptions in order to explain heritability (Goldstein 2009). It is
generally accepted, however, that while the effect of one genetic factor on a phenotype can be modulated,
enhanced or even eliminated by other genetic factors, it is not expected to reverse direction (Mani et al.
2007, Roth et al. 2009). In other words, the isotonicity assumption with respect to genetic effects is widely
accepted, but the form of epistasis (genetic interaction) between factors is not clear and may vary between
phenotypes. Other properties of this application domain also favor the use of isotonic regression as we
discuss below.

Two major concerns arise when considering the practical useof isotonic regression inmodernsituations
as the number of observationsn, the data dimensionalityd, and the number of isotonicity constraintsm =
|{(i, j) : xi � xj}| implied by (1) all grow large: statistical overfitting and computational difficulty. The
notationsn, m, andd will refer to these quantities throughout the paper.

The first concern is statistical difficulty and overfitting. Beyond very low dimensions, the isotonicity
constraints on the familyG can become inefficient in controlling model complexity and the isotonic regres-
sion solutions can be severely overfitted (for example, see Bacchetti (1989) and Schell & Singh (1997)). At
the extreme, there may be no isotonicity constraints because no two observations obey the coordinate-wise
requirement for the� ordering. The isotonic solution in this case simply assignsf̂(xi) = yi providing a
perfect interpolation of the training data. As demonstrated in the literature (Schell & Singh 1997) and below,
the overfitting concern is clearly well-founded when considering the optimal isotonic regression model im-
plied by (1), even in non-extreme cases with a large number ofconstraints. In this case, regularization, i.e.
fitting isotonic models that are constrained to a restrictedsubset ofG, could offer an approach that maintains
isotonicity while controlling variance, leading to improved accuracy.

A second concern is computational difficulty. The discussion of isotonic regression originally focused
on the casex ∈ R, where� denoted a complete order (Kruskal 1964). For this case, the well-known pooled
adjacent violators algorithm (PAVA) efficiently solves (1)in computational complexityO(n). Low com-
plexities can also be found when the isotonic constraints take a special structure such as a tree (O(n log n)
in Pardalos & Xue (1999)). Various algorithms have been developed for the partially ordered case, in-
cluding the classical approach of Dykstra & Robertson (1982) for data on a grid, generalizations of PAVA
(Lee 1983, Block et al. 1994) and active set methods (de Leeuwet al. 2009). These approaches offer
no polynomial complexity guarantees and by all accounts areimpractical when data sizes exceed a few
thousand observations (in some cases much less). Interior point methods offer complexity guarantees of
O(max (m,n)3) (Monteiro & Adler 1989), however they are impractical for large data sizes due to exces-
sive memory requirements.

A much more computationally attractive approach can be found in the optimization and operations
research literature. The basic idea of this approach is to repeatedly and “optimally” split the covariate
spaceX into regions of decreasing size by solving a sequence of specially structuredbest cutproblems for
which efficient algorithms exist. At mostn partitions are needed, leading to a computational complexity
bounded byO(n4), and in some cases even less. From a practical performance perspective, this algorithm
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can obtain an exact solution of (1) for datasets with tens of thousands of observations in minutes. The
first appearance of this approach, to our knowledge, is in thework of Maxwell & Muckstadt (1985) (and
similarly Roundy (1986)), who designed it for a problem witha different loss function than in (1) that also
had isotonicity constraints. Applicability of their methods with minimal changes to problem (1) was more
recently noticed by several authors (e.g. Spouge et al. (2003)), who used it to design efficient isotonic
regression algorithms. This approach does not appear to be well-known in the statistics community, and
indeed we have independently developed it before discovering it is already known.

The literature cited above invariably refers to this iterative splitting algorithm merely as an approach
for efficiently arriving at the optimal solution of (1). However, as noted before, this solution can be highly
overfitted, especially as the dimensiond increases. Our main interest lies in analyzing the iterative approach
as a means towards resolving the overfitting problem, as wellas the computational issue. We propose to view
this iterative algorithm as arecursive partitioningapproach that generates isotonic models of increasing
model complexity, ultimately leading to the solution of (1); the algorithm is termed Isotonic Recursive
Partitioning (IRP). We prove that the models generated by the IRP iterations are indeed isotonic (Theorem 4)
and consider them as aregularization pathof increasingly complex isotonic regression models. Models
along the path are less complex, and hence likely to be less overfit and offer better predictive performance
than the overall solution to (1), while still maintaining isotonicity. This is confirmed by our analysis of the
equivalent degrees of freedom along the IRP path, as well as experiments with simulated and real data.

We observe that for very low dimension (typicallyd ≤ 2) the non-regularized solution of (1) performs
well. As the dimension increases, regularization becomes necessary, and intermediate models on the IRP
path perform better than the non-regularized solution. However, eventually overfitting plagues IRP from its
first iteration, and the isotonic models fail to perform better than simple linear regression in out-of-sample
prediction, even when the linear model is inappropriate. Inour simulations this occurs around dimensions
6-8 even for relatively large data sets.

Progress of IRP is illustrated in Figure 1, where we show an example of applying IRP to the well-known
Baseball dataset (He et al. 1998) describing the dependenceof salary on a collection of player properties.
We limit the model to only two covariates to facilitate visualization, and we choose to use the number of
runs batted in and hits since they seemed a-priori most likely to comply with the isotonicity assumptions.
The increasing model complexity can be seen, moving from iteration 1 (a single split) through 10 iterations
of IRP, to the final isotonic model optimally solving (1), comprising a splitting of the covariate space into
29 regions, each of which is fitted with a constant.
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Figure 1: Illustration of IRP on Baseball data. Salary is modeled by number of runs batted in and
hits. Models after iterations 1 and 10 of IRP and the final model are shown.

An obvious analogy of IRP can be made to well-known recursivepartitioning approaches for regression
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such as CART (Breiman et al. 1984), where the iterative splitting of the covariate space generates a sequence
of models (trees) of increasing model complexity, from which the “best” tree is chosen via cross validation
(for example, using the 1-SE rule (Breiman et al. 1984)). As with CART and other similar approaches, IRP
performs a greedy search and finds a “local” optimum in every iteration. However, unlike CART, which
has no guarantees on the overall model it generates, IRP is proven to terminate in the global solution of the
isotonic regression problem (1). Another difference is that IRP splits are not made along one axis at a time,
but rather each split is a non-parametric division of one region inX into two sub-regions.

The remainder of this paper is organized as follows. We first present and analyze the IRP algorithm in
Section 2. We detail the best cut problem solved for splitting at each iteration, and prove that this algorithm
is a no-regret algorithm, in the sense that it only partitions the data and never merges back previously
made partitions and converges to the global solution of (1) (Theorem 2). Furthermore, we prove that the
intermediate partitions generated along the IRP path are also isotonic, in the sense that fitting the average
to each region gives a model that is in the classG of isotonic functions inRd (Theorem 4). Section 3
briefly reviews the theoretical computational guarantees of IRP as reflected in the literature, and develops a
simple and realistic case where the overall computation isO(n3). Section 4 discusses the statistical model
complexity of models generated along the regularization path. Meyer & Woodroofe (2000) have shown
that the number of partitions in the solution of (1) is an unbiased estimator of the (equivalent) degrees of
freedom (as defined by Efron (1986)). Since IRP adds one to thenumber of partitions at each iteration,
the number of iterations may be used as a parametrization of this sequence. However, we argue that the
number of regions is not a good estimate of degrees of freedombecause IRP performs much more fitting in
its initial iterations compared to later stages, and demonstrate this effect empirically through simulation. We
also show that when the covariates are ternary (as is naturalin our motivating genetic example when dealing
with ternary genotype data), the overall number of degrees of freedom and model complexity increase more
slowly with dimension, compared to general continuous covariates, resulting in much less overall fitting
for each dimension. Section 5 examines IRP’s statistical and computational performance on simulated and
real data, specifically pointing out the effect of regularization and increased dimensionality on predictive
performance. We apply IRP to simulations with ternary covariates and sub- and super-additive interactions
motivated by the genetic application and demonstrate its favorable performance. Section 6 concludes with
extensions and connections to previous literature.

We next define terminology to be used throughout the paper.

1.1 Definitions

Let V = {x1, . . . , xn} be the covariate vectors forn training points wherexi ∈ Rd and denoteyi ∈ R as
theith observed response. We will refer to a general subset of pointsA ⊆ V with no holes (i.e.x � y � z
andx, z ∈ A ⇒ y ∈ A) as agroup. Throughout the paper, we will use the shorthandx ∈ A = {i : xi ∈ A}.
Denote by|A| the cardinality of groupA. Theweightof groupA is defined asyA = 1

|A|

∑

i∈A yi. For two
groupsA andB, we denoteA � B if ∃x ∈ A, y ∈ B such thatx � y and∄x ∈ A, y ∈ B such thaty ≺ x
(i.e. there is at least one comparable pair of points that satisfy the direction of isotonicity). A set of groups
V is called isotonic ifA � B ⇒ yA ≤ yB,∀A,B ∈ V. The groups within this setV are referred to as
isotonic regions. A subsetL (U ) of A is a lower set(upper set) of A if x ∈ A, y ∈ L, x ≺ y ⇒ x ∈ L
(x ∈ U , y ∈ A, x ≺ y ⇒ y ∈ U ).

A groupB ⊆ A is defined as a block of groupA if yU∩B ≤ yB for each upper setU of A such that
U ∩B 6= {} (or equivalently ifyL∩B ≥ yB for each lower setL of A such thatL∩B 6= {}). A set of blocks
S = {B1, . . . , Bk} is calledblock classof V if Bi ∩ Bj = {} andB1 ∪ . . . ∪ Bk = V . S is an isotonic
block classif ∀Bi, Bj ∈ S, Bi � Bj ⇒ yBi

≤ yBj
. A groupX majorizes(minorizes) another groupY if
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X � Y (X � Y ). A groupX is amajorant(minorant) of X ∪A whereA = ∪k
i=1Ai if X 6≺ Ai (X 6≻ Ai)

∀i = 1 . . . k.
We denote the optimal solution for minimizingf(x) in the variablex by x∗, i.e.x∗ = argmin f(x).

2 IRP and a regularization path for isotonic regression

We describe here the partitioning algorithm used to solve the isotonic regression problem (1). Section 2.1
first reformulates the isotonic regression problem and describes the structure of the optimal solution. Section
2.2 motivates and details the IRP algorithm and, in particular, the main partitioning step. Each group created
by the partitioning scheme is proven to be the union of blocksin the optimal solution, i.e. all partitions
have the no-regret property. An important aspect of the algorithm is the regularization path generated as a
byproduct as each partition creates a new feasible solution. Section 2.3 goes on to prove convergence of IRP
to the global optimal solution of (1), and most importantly,that each solution along the regularization path
is isotonic.

2.1 Structure of the isotonic solution

Isotonic regression seeks a monotonic function that fits a given training dataset{xi, yi}ni=1 and satisfies a
set ofisotonicity constraintswhich we index by the setI = {(i, j) : xi � xj}. We will usually assume that
xi ∈ Rd and that� is the standard partial order inRd based on coordinate-wise inequalities. A reformulation
of (1) is

min {
n
∑

i=1

(ŷi − yi)
2 : ŷi ≤ ŷj ∀(i, j) ∈ I}. (2)

Problem (2) is a quadratic program with linear constraints.Any solution satisfying the constraints given byI
is referred to as an isotonic, or feasible, solution. The structure of the optimal solution to (2) is well-known:
Observations are divided intok groups where the fits in each group take the group mean observation value.
This can be seen through the following Karush-Kuhn-Tucker (KKT), i.e. optimality, conditions (Boyd &
Vandenberghe 2004) to (2):

(a) ŷi = yi −
1

2
(

∑

j:(i,j)∈I

λij −
∑

j:(j,i)∈I

λji)

(b) ŷi ≤ ŷj ∀(i, j) ∈ I

(c) λij ≥ 0 ∀(i, j) ∈ I

(d) λij(ŷi − ŷj) = 0 ∀(i, j) ∈ I,

whereλij is the dual variable corresponding to the isotonicity constraint ŷi ≤ ŷj. This set of conditions
exposes the nature of the optimal solution. Condition (d) implies thatλij > 0 ⇒ ŷi = ŷj meaningλij can
be non-zero only within blocks in the isotonic solution which have the same fitted value. For observations
in different blocks,λij = 0. Furthermore, the fit within each block is trivially seen to be the average of the
observations in the block, as the average minimizes the block’s squared loss. A block is thus also referred to
as anoptimal groupwith respect to an isotonic regression problem. Condition (b) implies isotonicity of the
blocks, and thus, we get the familiar characterization of the isotonic regression problem as one of finding a
division into an isotonic block class.
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2.2 The partitioning algorithm

Suppose a current groupV is optimal (i.e.V is a block) and thus the optimal fits at points inV , denoted̂y∗i ,
satisfyŷ∗i = yV for all i ∈ V , which leads to the condition

∑

i∈V (yi − yV ) = 0. Then finding two groups
A andB within V such that

∑

i∈B (yi − yV ) −
∑

i∈A (yi − yA) > 0 should be infeasible, according to
the KKT conditions. The division in IRP looks for two such groups. Denote byCV = {(A,B) : A,B ⊆
V,A ∪ B = V,A ∩ B = {}, 6 ∃x ∈ A, y ∈ B s.t. y � x} the set of all feasible (i.e. isotonic) partitions
defined by observations inV . We refer to partitioning as making a cut through the variable space (hence our
optimal partition is made by anoptimal cut). The optimal cut is determined by the partition that solvesthe
problem

max
(A,B)∈CV

{
∑

i∈B

(yi − yV )−
∑

i∈A

(yi − yV )} = {−|A|(yA − yV ) + |B|(yB − yV )} (3)

whereA(B) is the group on the lower (upper) side of the edges of cut. A more statistically intuitive rule
might look for the split that maximizes between-group variance. This partitioning problem solves

max
{(A,B)∈CV }

{|A|(yA − yV )
2 + |B|(yB − yV )

2}. (4)

The next proposition makes a connection between the above two maximization problems, and draws a
clear conclusion on the relationship between their optimalsolutions, namely that the optimal partitions to
(3) are always more balanced than the optimal partitions to (4). The next proposition makes a connection
between the two maximization problems, and draws a clear conclusion on the relationship between the
optimal solutions, namely that the split generated by (3) isalways more balanced than the split generated by
(4).

Proposition 1 Denote the optimal solutions of the optimal cut problem (3) and the between-group variance
maximization problem (4) by(A∗, B∗) and(Ã, B̃) and their objective functions byg∗(A,B) and g̃(A,B),
respectively. Then

(A∗, B∗) = argmax
(A,B)∈CV

{|A||B|g̃(A,B)}

and
(|A∗| − |B∗|)2 ≤ (|Ã| − |B̃|)2.

We leave the proof to the appendix.
Thus, we can look at the IRP criterion as a modified form of maximizing between-group variance which

encourages more balanced splitting. However, while solving the partition problem (4) is difficult, the IRP
partition problem (3) is tractable. Indeed, the optimal partition problem (3) can be reduced to solving the
linear program

max {zTx : xi ≤ xj ∀(i, j) ∈ I,−1 ≤ xi ≤ 1 ∀i ∈ V } (5)

wherezi = yi − yV . If the optimal objective value equals zero, then the groupV must be an optimal block.
This group-wise partitioning operation is the basis for ourIRP algorithm which is detailed in Algorithm

1. It starts with all observations as one group and recursively splits each group optimally by solving sub-
problem (5). At each iteration, a listC of potential optimal partitions for each group generated thus far is
maintained, and the partition among them with the highest objective value is performed. The listC is updated
with the optimal partitions generated from both sub-groups. Partitioning ends whenever the solution to (5)
is trivial (i.e., no split is found because the group is a block). We can think of each iterationk of Algorithm
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1 as producing a modelMk by fitting the average to each group in its current partition:For a set of groups
V = {V1, . . . , Vk}, denoteyV = {yV1

, . . . , yVk
}. Then modelMk = (V, yV) contains the partitioningV

as well as a fit to each of the observations, which is the mean observation of the group it belongs to in the
partition.

Algorithm 1 Isotonic Recursive Partitioning
Require: Observationsy1, . . . , yn and partial orderI.
Require: A = {{1, . . . , n}},C = {(0, {1, . . . , n}, {})},B = {}, M0 = (A, yA).

1: while A 6= {} do
2: Let (val, w−, w+) ∈ C be the potential partition with largestval.
3: UpdateA = (A \ (w− ∪ w+)) ∪ {w−, w+}, C = C \ (val, w−, w+).
4: Mk = (A ∪W, yA∪B).
5: for all v ∈ {w−, w+} do
6: Setzi = yi − yv ∀i ∈ v whereyv is the mean of observations indexed byv.
7: Solve LP (5) with inputz and getx∗ = argmin LP(5).
8: if x∗1 = . . . = x∗n (group is optimally divided)then
9: UpdateA = A \ v andB = B ∪ v.

10: else
11: Let v− = {i : x∗i = −1}, v+ = {i : x∗i = +1}.
12: UpdateC = C ∪ {(zTx∗, v−, v+)}
13: end if
14: end for
15: end while
16: return B, indices of observations corresponding to the optimal groups.

Note: Sets here keep track of indices rather than observations for ease of implementation.

2.3 Properties of the partitioning algorithm

Theorem 2 next states the result which implies that the IRP partitions areno-regret. This will lead to our
convergence result.

Theorem 2 Assume groupV is the union of blocks from the optimal solution to problem (2). Then a cut
made by solving (3) (using 5) at a particular iteration does not cut through any block in the global optimal
solution.

The fact that IRP is a no-regret algorithm can be shown using aconnection between the work of Barlow
& Brunk (1972) and Maxwell & Muckstadt (1985) (held to the Discussion in Section 6). We prove Theorem
2 directly, but leave it to the Appendix as the theorem is already known to be true (Spouge et al. 2003).
Remark 7 in the Appendix handles the case for multiple observations. Since Algorithm 1 starts withA =
{1, ..., n} which is the union of all blocks, we can conclude from this theorem that IRP never cuts an
optimal block when generating partitions. The following corollary is then a direct consequence of repeatedly
applying Theorem 2 in Algorithm 1:

Corollary 3 Algorithm 1 converges to the optimal (isotonic block class)solution with no regret.
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Theorem 4 next states our main innovative result that Algorithm 1 provides isotonic solutions at each
iteration. This result implies that the path of solutions generated by IRP can be regarded as a regulariza-
tion path for isotonic regression. Along the path, the modelgrows in complexity until optimality. These
suboptimal isotonic models often result in better predictive performance than the optimal solution, which is
susceptible to overfitting as is discussed in Section 5.

Theorem 4 ModelMk generated after iterationk of Algorithm 1 is in the classG of isotonic models.

Proof.
The proof is by induction. The base case, i.e. first iteration, where all points form one group is trivial.

The first cut is made by solving the linear program (5) which constrains the solution to maintain isotonicity.
Assuming that iterationk (and all previous iterations) provides an isotonic solution, we prove that iter-

ationk + 1 must also maintain isotonicity. Figure 2 helps illustrate the situation described here. LetG be
the group split at iterationk + 1 and denoteA (B) as the group under (over) the cut. LetA = {X : X is a
group at iterationk + 1,∃i ∈ X such that(i, j) ∈ I for somej ∈ A} (i.e. X ∈ A borderA from below).

Consider iterationk + 1. DenoteX = {X ∈ A : yA < yX} (i.e. X ∈ X violates isotonicity withA).
The split inG causes the fit in nodes inA to decrease. We will prove that when the fits inA decrease, there
can be no groups belowA that become violated by the new fits toA, i.e. the decreased fits inA cannot be
such thatX 6= {}.

We first prove thatX = {} by contradiction. AssumeX 6= {}. Denotei < k + 1 as the iteration
at which the last of the groups inX , denotedD, was split fromG and suppose at iterationi, G was part
of a larger groupH andD was part of a larger groupF . It is important to note thatX

⋂

(F
⋃

H) = {}
∀X ∈ X \D at iterationi because by assumption all groups inX \D were separated fromA before iteration
i. Thus, at iterationi, D is the only group borderingA that violates isotonicity.

Let DU denote the union ofD and all groups inF that majorizeD. By construction,DU is a majorant
in F . HenceyDU

< yF∪H by Algorithm 1 andyA < yDU
by definition sinceyDU

> yD > yA. Also by
construction, any setX ∈ H that minorizesA hasyX < yA (each setX that minorizesA besidesD such
thatyX < yA has already been split fromA). Hence we can denoteAL as the union ofA and all groups
in H that minorizeA and we haveyA > yAL

andAL is a minorant inH. SinceAL ⊆ H at iterationi, we
have

yF∪H < yAL
< yA < yDU

< yF∪H

which is a contradiction, and hence the assumptionX 6= {} is false. The first inequality is because the
algorithm leftAL in H whenF was split fromH, and the remaining inequalities are due to the above
discussion. Hence the split at iterationsk + 1 could not have caused a break in isotonicity.

A similar argument can be made to show that the increased fit for nodes inB does not cause any isotonic
violation. The proof is hence completed by induction.

With Theorem 4, the machinery for generating a regularization path is complete. In Section 3, we
describe the computational complexity for generating thispath followed by a discussion of the statistical
complexity of the solutions along the path in Section 4.

3 Complexity

We here show that the partitioning step in IRP can be solved efficiently. The computational bottleneck of
Algorithm 1 is solving linear program (5) that iteratively partitions each group. Linear program (5) has
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Figure 2: Illustration of proof of Theorem 4 showing the defined sets atiterationk+1. G is the set
divided at iterationk + 1 intoA (all blue area) andB (all green area). The group borderingA from
below denoted byX1 (also referred to asD in the proof) is in violation withA. At iterationk0, G
is part of the larger groupH andX1 is part of the larger groupF . At iterationk0, groupsF andH
are separated. The proof shows that whenA andB are split at iterationk + 1, no group such asX1

wherewX1
> wA could have existed. In the picture,X1 must have been separated at an iteration

k0 < k + 1, but the proof, through contradiction, shows that this cannot occur.

a special structure that can be taken advantage of in order tosolve larger problems faster. Indeed, the
dual problem can be written as an optimization problem called a network flow problem that is amenable
to very efficient algorithms, as noted by Spouge et al. (2003)who recognize the network flow problem as
themaximal upper set problem. We note that our partition problem (5) is very similar to thenetwork flow
problem solved in Chandrasekaran et al. (2005) wherezi there represents the classification performance on
nodei.

We denote the complexity of solving linear program (5) byT (m,n) wherem is the number of con-
straints defined byI andn is the number of observations. Various efficient algorithmsfor solving this
problem exist, giving complexities such asT (m,n) = O(mn log n) (Sleator & Tarjan 1983) along with
several algorithms givingT (m,n) = O(n3) (Galil & Naamad 1980). Choosing the more efficient imple-
mentation depends on the number of isotonicity constraintsm (e.g. n3 ≤ mn log n for the worst case
m = O(n2)). A recent result by Stout (2010) shows how to represent an isotonic regression problem by an
equivalent problem where both the number of total observations and constraints are of orderO(n logd−1 n),
which greatly reduces the worst case ofm = O(n2) isotonicity constraints (i.e. by trading off a few addi-
tional shadowobservations for a large reduction in the number of constraints). Since at mostn partitions
are made by IRP, complexity isO(n4) usingT (m,n) = O(n3) or reduced toO(n3 log2d−1 n) using results
of Stout (2010).

In practice, the complexity can be even better by accountingfor the fact that IRP solves a sequence
of partitioning problems that are decreasing in size (i.e. problems with fewer and fewer observations).
Each partition in Algorithm 1 can be divided into different proportions. We generically denote the bigger
proportion in a partition byp ≥ 0.5. Proposition 5 next gives a bound on the complexity of Algorithm 1 for
this general case (assumingT (m,n) = O(n3)), in terms of the maximalp over all partitions.
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Proposition 5 Let pmax ≥ .5 be the greatestp over all iterations of Algorithm 1 such that iterationk
partitions a group of sizenk into two groups of sizepnk and (1 − p)nk. Denote byn the total number of
observations. Then the complexity of Algorithm 1 is boundedby

O(n3)
1

1− p2max

. (6)

The proof, given in the Appendix, is based on the fact that thesequence of IRP’s partition problems
are solved on smaller and smaller groups of observations (i.e. while the first partition problem isO(n3),
the partition problems for the two created partitions areO(p3n3) andO((1 − p)3n3) for somep where
0 < p < 1). Even atpmax = .99, the constant1/(1 − p2max) ≈ 50, which is very small when the number
of observations is large. Thus, under another reasonable assumption thatpmax is bounded, we can conclude
that IRP is of practical complexityO(n3)/(1− p2max). Similar analysis using results of Stout (2010) lead to
a practical complexity ofO(n2 log2d−1 n)/(1− pmax).

4 Degrees of freedom of isotonic regression and IRP

The concept of degrees of freedom is commonly used in statistics to measure the complexity of a model (or
more accurately, a modeling approach). This concept captures the amount of fitting the model performs,
as expressed by the optimism of the in-sample error estimates, compared to out-of-sample predictive per-
formance. Here we briefly review the main ideas of this general approach, and then apply them to isotonic
regression and IRP.

Following Efron (1986) and Hastie et al. (2001), assume the valuesx1, ..., xn ∈ Rd are fixed in advance
(the fixed-xassumption), and that the model gets one vector of observationsy = (y1, ..., yn)

T ∈ Rn for
training, drawn according toP (y|x) at then data points. Denote byynew another independent vector drawn
according to the same distribution.y is used for training a model̂f(x) and generating predictions at then
data pointŝyi = f̂(xi).

We define thein-samplemean squared error:

MRSS=
1

n
‖y − ŷ‖22

and compare it to the expected error the same model incurs on the new, independent copy, denoted in Hastie
et al. (2001) by ERRin:

ERRin =
1

n
Eynew‖ynew − ŷ‖22.

The difference between the two is theoptimismof the in-sample prediction. As Efron (1986) and others
have shown, the expected optimism in MRSS is:

Ey,ynew(ERRin − MRSS) =
2

n

∑

i

cov(yi, ŷi). (7)

For linear regression with homoskedastic errors with varianceσ2, it is easy to show that (7) is equal to
2
ndσ

2, whered is the number of regressors, hence the degrees of freedom. This naturally leads to defining
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theequivalent degrees of freedomof a modeling approach as:

df =
∑

i

cov(yi, ŷi)/σ
2. (8)

In non-parametric models, one usually cannot calculate theactual degrees of freedom of a modeling ap-
proach, but it is often easier to generateunbiased estimateŝdf of df using Stein’s lemma (Stein 1981). Meyer
& Woodroofe (2000) demonstrate the applicability of this theory in shape-restricted non-parametric regres-
sion. Specifically, their Proposition 2, adapted to our notation, implies that if we assume the homoskedastic
casevar(yi) = σ2 for all i, then the unbiased estimatord̂f for degrees of freedom in isotonic regression is
the number of piecesD in the solution̂y to (2), that is:

E(D) =
∑

i

cov(yi, ŷi)/σ
2.

Considering the IRP algorithm, this puts us in the interesting situation where the number of steps the
algorithm takes until it terminates in the global isotonic solution is equal to the degrees of freedom estimator
of this global solution (minus one, since we start with one piece). One might thus be inclined to assume
that each iteration of Algorithm 1 addsaboutone degree of freedom, i.e. performs approximately the same
amount of fitting in every iteration. A similar idea is represented by the degrees of freedom calculation of
Schell & Singh (1997) in their reduced monotonic regressionalgorithm (which starts from the complete
isotonic fit and eliminates pieces).

On more careful consideration, however, it is obvious that this idea is incorrect since the first iteration
of IRP finds an optimal cut in the very large space of all possible multivariate isotonic cuts. For comparison,
a single deep split in a regression tree has been estimated toconsume three or more degrees of freedom
(Ye 1998), and the space of possible splits in initial IRP iterations is much larger than that of a regression
tree since IRP splits are not limited to being axis-oriented. Thus, intuitively, the first iteration is expected
to use much more than one degree of freedom (the equivalent offitting one coefficient to afixed, pre-
determinedregressor). This effect should be exacerbated as the dimension d of x increases since the size
of the search space for isotonic cuts increases with it. It also inevitably implies that the latter iterations of
the IRP algorithm should perform less (ultimately much less) fitting than the equivalent of one degree of
freedom in every iteration, to be consistent with the unbiasedness of̂df = D as an estimator ofdf.

Here we demonstrate empirically that this is indeed the case. We simulate data from a simple additive
model

xij ∼ U [1, 2] i.i.d (9)

yi =
∑

j

x2ij +N (0, 10). (10)

wherexij is dimensionj of the observationi. We can repeatedly generate data using (9) and (10), apply
IRP, and empirically estimatedf as defined by (8) for every iteration of IRP. Figure 3 (left) shows howdf
evolves in this model as the IRP iterations proceed, for increasing dimensions ofx. The covariance in (8)
was estimated by drawing valuesX = (x1, ..., x1000) according to the model (9), fixing them, drawing
1000 independent copies ofy|X according to (10), and applying IRP on each one. This whole process was
repeated 50 times and the results were averaged. As expected, we see that the number of pieces (hence
degrees of freedom) in the final isotonic regression increases with the dimension, as does the rate in which
the number of degrees of freedom increases in the initial steps of IRP.
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Figure 3: Evolution of degrees of freedom for IRP as model complexity increases. Both models
useyi =

∑

j x
2

ij + N (0, 10). Simulation (left) usesxij ∼ U [1, 2] and simulation (right) uses
xij ∈ {0, 1, 2} with probabilities{1/3, 1/3, 1/3}. Each path is the mean over 50 trials with 1000
training samples.

In order to emphasize this dependence of the degrees of freedom in initial iterations on the dimension,
as well as on the number of observations, Figure 4 presents the evolution of the percentage of the total
isotonic regression degrees of freedom along the path (i.e., number of degrees of freedom relative to the
number of partitions of the final model) as a function of both the dimension and the amount of data used.
As expected, increasing the dimension radically increasesthe portion of the fitting in the first steps, while
increasing the amount of data decreases this portion (sincethe overall isotonic fit is generally more complex
in these situations). It should be noted that for many of the situations examined, IRP performs more than
half of the total isotonic fit, as measured by degrees of freedom, in its first iteration! In dimension 7, even
at n = 20, 000 observations, almost60% of the total fitting is associated with the first iteration. Thus,
these simulations clearly demonstrate the nature and limitations of IRP’s regularization behavior: the IRP
path contains models that are regularized isotonic models compared to the global solution, but IRP’s ability
to control model complexity is limited by the concentrationof most of the fitting in the initial iterations,
especially in higher dimension.

As mentioned in the introduction, an area that combines applications where the isotonic assumptions
are reasonable (i.e., low bias) and the overfitting may be of less concern (i.e., variance can be controlled)
is in genetics, specifically in modeling gene-gene interactions in phenotype(y)-genotype(X) relationships
(Cordell 2009). The key observation here is that genotypes are ternary (xij ∈ {0, 1, 2} copies of the “risk”
allele). Thus, each dimension of the predictor spaceX can take only one of three possible observed values
in the data. Intuitively, it is clear that this would significantly reduce the space of possible isotonic splits
in IRP, and hence reduce the amount of fitting. To demonstratethis empirically, Figure 3 (right) displays
an experiment with the same setup, where instead of drawing the x values from a multivariate uniform,
they are drawn independently from{0, 1, 2} with equal probabilities and we use the same model. Figure
3 demonstrates that both the globally optimal isotonic regression and, especially, the first IRP iterations
perform much less overall fitting in the ternary case versus the continuous case, as measured by equivalent
degrees of freedom. For example, in six dimensions, the continuous case requires almost seven times as
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Figure 4: Percentage of degrees of freedom relative to the full path (i.e. number of partitions in
the globally optimal solution) as model complexity increases. Simulations usexij ∼ U [1, 2] with
yi =

∑

j x
2

ij +N (0, 10). Each path is the mean over 200 trials. Only the first 500 partitions of the
paths are displayed in order to make the MSE of the earlier IRPiterations visually clearer.

many degrees of freedom than in the ternary case to fit the model. However, relative to the final model, a
large percentage of the fitting still takes place in the initial iterations.

5 Performance evaluation

We demonstrate here the usefulness of isotonic regression on simulation and real data. For each experiment,
IRP is run on the training data and produces a path of isotonicmodels. Each model is used for prediction on
the test data and the mean squared error (MSE) is recorded. This generates paths of mean squared errors over
the different isotonic models and is illustrated in the figures below. In each table, we record the minimum
MSE along these paths (IRP Min MSE), along with how many partitions were made to generate this mini-
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mum MSE (IRP Min Path), and the number of partitions in the global isotonic solution (IRP Path Length).
IRP, as well as optimal isotonic regression, results are compared to running a least squares regression on
the training data and predicting on the testing data with theresulting linear model (corresponding MSE
is calledLS MSE), and to the performance of the global isotonic regression solution (Isotonic Regression
MSE). Because we are interested in examining the behavior of theentire IRP path as in selecting the optimal
tuning parameter, and to avoid a significant increase in running time, we do not employ cross validation for
selecting the best stopping point (number of iterations), but use test sets for this. In practical application,
cross validation would be the appropriate approach for selecting the best model for prediction.

5.1 Simulations

We first illustrate isotonic regression on simulated data with different distributions. For the first three exper-
iments, theith observation’s regressors are distributed asxij ∼ U [0, 3], xij ∼ U [0, 5], andxij ∼ U [0, 2],
respectively, and in all cases allxij are i.i.d. Responsesyi for the three simulations are generated as

yi = (

d
∏

j=1

xij) +N (0, d2), yi = (
∑

j x
2
ij) +N (0, 4d2), and yi = 2

∑
j xij +N (0, d2)

respectively, whered is the dimension. The last two experiments are ternary. Theith observation’s regressors
are distributed asxij ∈ {0, 1, 2} with probabilities{.7, .2, .1} and{1/3, 1/3, 1/3} for the fourth and fifth
experiments, respectively. The fourth model is subadditive while the fifth model is superadditive; specifically
they are

yi = (
∑

j xij)
1/4 +N (0, d2/10) and yi = (

∏

j xij) +N (0, d2).

For each of 50 simulations, 12000 training and 3000 testing points were randomly generated and statistics
computed (all tests are out-of-sample).

Figure 5 demonstrates testing error for IRP over the regularized path of isotonic solutions for the first
three experiments (with continuous covariates). Each pathis normalized by presenting the ratio of model
MSE relative to the MSE of a baseline (null) model which fits the mean of the training data. The main
observation here is that as the dimension increases, the effect of overfitting of the standard (non-regularized)
isotonic regression becomes more significant and causes theskewed u-shaped pattern across the IRP path,
where the minimum prediction MSE is obtained earlier in the path. This is the effect we alluded to in the
introduction and it stems from the limitations of the isotonicity constraints in controlling model complexity
in high dimension.

Table 1 displays certain statistics on all five simulations as well as a comparison to the results of a
least squares regression. We first discuss the case of continuous covariates (first three models). In lower
dimensions standard isotonic regression performs well, and regularization through IRP offers no gain (this
is seen in dimensiond = 2 in all three examples). Here, isotonic regression controlsbias by accommodating
the non-linearities in the true model model and significantly outperforms least squares regression. As the
number of covariates increases, regularization through IRP becomes necessary to control variance, and
the optimal performance is obtained earlier in the IRP path (dimensiond = 4 in our examples). When
d increases further, however, IRP also becomes inefficient atcontrolling variance, and linear regression
dominates. This effect can be traced back to the large amountof fitting performed by IRP already in its
initial iterations, as demonstrated in the previous section.

With respect to the models with ternary covariates, isotonic regression outperforms the simple linear
regression, however the IRP path does not statistically improve performance. For the subadditive model
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(Model 4), performance is better for dimensions 2 and 4, after which again IRP is unsuccessful at controlling
variance. However, the superadditive model (Model 5) dominates for all dimensions.

Thus, our simulations confirm that isotonic regression performs well in low dimension, but requires a
lot of data in order to learn good nonlinear models in higher dimensions. In intermediate dimension, IRP
can offer a compromise between fitting flexible isotonic models and controlling model complexity, resulting
in useful prediction models.
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Figure 5: Normalized mean squared error for out-of-sample predictions of simulations with differ-
ent dimensionsd. Each path is normalized by the MSE of the initial model whereeach training point
is fit to the mean. The x-axis in each figure corresponds to the number of partitions made by IRP,
i.e. the curves show how the normalized MSE of test data varies as the IRP algorithm progresses.
Model 1 uses the functionyi = (

∏

j xij) +N (0, d2) with xij ∼ U [0, 3]. Model 2 uses the function

yi = (
∑

j x
2

ij)+N (0, 4d2) with xij ∼ U [0, 5]. Model 3 uses the functionyi = 2
∑

j xij +N (0, d2)

with xij ∼ U [0, 2]. Fifty simulations were run with 12000 training and 3000 testing points. Only the
first 750 partitions of the paths are displayed in order to make the MSE of the earlier IRP iterations
visually clearer. Scales also differ in order to make the shapes of the curves clear.

5.2 Modeling MPG of Automobiles

We next illustrate the performance of IRP when predicting the miles-per-gallon of a list of 392 automobiles
manufactured between 1970 and 1982 using seven variables (Frank & Asuncion 2010). Seven regressions
are performed in dimensions one through seven, where the variables chosen are from the following order:
origin (American, European, or Japanese), model year, number of cylinders, acceleration, displacement,
horsepower, and weight. The order of the variables was determined in order of the magnitude of coefficients
from a least squares linear regression on all variables. Origin, surprisingly, had the largest magnitude, and
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Model 1:yi = (
∏

j xij) +N (0, d2) with xij ∼ U [0, 3]

Number of IRP Min Isotonic Regression LS IRP Min IRP Path
Variables MSE MSE MSE Path Length

2 4.06 (± 0.04) 4.06 (± 0.04) 4.54 (± 0.03) 44 437
4 21.83 (± 0.26) 22.37 (± 0.37) 36.88 (± 0.37) 18 3711
6 391.74 (± 9.52) 866.28 (± 56.18) 385.06 (± 11.45) 3 7685
8 5811.56 (± 312.28) 39088.71 (± 6248.82) 4276.90 (± 287.53) 2 10153

Model 2:yi = (
∑

j x
2

ij) +N (0, 4d2) with xij ∼ U [0, 5]

Number of IRP Min Isotonic Regression LS IRP Min IRP Path
Variables MSE MSE MSE Path Length

2 16.50 (± 0.13) 16.50 (± 0.13) 23.03 (± 0.13) 625 999
4 74.68 (± 0.58) 75.13 (± 0.61) 77.94 (± 0.50) 28 4861
6 203.60 (± 1.77) 214.47 (± 2.18) 165.70 (± 1.15) 8 8520
8 596.05 (± 5.42) 655.75 (± 6.15) 285.12 (± 1.81) 4 10604

Model 3:yi = 2
∑

j
xij +N (0, d2) with xij ∼ U [0, 2]

Number of IRP Min Isotonic Regression LS IRP Min IRP Path
Variables MSE MSE MSE Path Length

2 4.10 (± 0.02) 4.10 (± 0.02) 4.73 (± 0.04) 62 628
4 44.47 (± 1.05) 49.90 (± 2.01) 101.99 (± 1.78) 19 7558
6 7847.71 (± 198.92) 16876.51 (± 1055.26) 5008.07 (± 170.40) 4 11787

Model 4:yi = (
∑

j xij)
1/4 +N (0, d2/10) with xij ∈ {0, 1, 2} with probabilities{.7, .2, .1}

Number of IRP Min Isotonic Regression LS IRP Min IRP Path
Variables MSE MSE MSE Path Length

2 0.40 (± 0.00) 0.40 (± 0.00) 0.46 (± 0.00) 8 8
4 1.61 (± 0.01) 1.61 (± 0.01) 1.67 (± 0.01) 9 30
6 3.64 (± 0.03) 3.65 (± 0.03) 3.69 (± 0.03) 4 85
8 6.49 (± 0.04) 6.53 (± 0.04) 6.45 (± 0.05) 5 267

Model 5:yi = (
∏

j xij) +N (0, d2) with xij ∈ {0, 1, 2} with probabilities{1/3, 1/3, 1/3}
Number of IRP Min Isotonic Regression LS IRP Min IRP Path
Variables MSE MSE MSE Path Length

2 3.99 (± 0.03) 3.99 (± 0.03) 4.44 (± 0.03) 4 5
4 15.99 (± 0.12) 16.01 (± 0.12) 20.00 (± 0.16) 6 25
6 36.44 (± 0.29) 36.44 (± 0.29) 52.91 (± 0.79) 87 103
8 68.87 (± 0.70) 68.88 (± 0.71) 118.84 (± 4.59) 67 430

Table 1: Statistics for simulations generated by the three different models as labeled above. A path
of mean squared errors for each model along the regularization path was computed.IRP Min MSE
refers to the minimum MSE along these paths.IRP Min Pathis the number of partitions made to
generate the minimum MSE and IRP Path Length is the number of partitions in the global isotonic
solution.LS MSEis the MSE from using least squares regressions. Bolded MSE values for IRP and
isotonic regression indicate that they are lower than the MSE of the least squares regression with
95% confidence.
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in giving discrete variables 1,2,3 to the respective origins, there actually is a monotonic trend in origin (i.e.,
American cars are least fuel efficient, followed by Europeancars, with the Japanese being most efficient).
While we include origin as a variable here, we note that similar performance for IRP was achieved without
origin in an independent experiment.

Since the data set is rather small, we perform leave-one-outcross-validation (i.e. the data is divided into
training and testing sets of 391 and 1 instances, respectively, so that each instance is used out-of-sample
once). Table 2 displays certain statistics on the IRP, and isotonic regression, performance as well as a
comparison to the results of a least squares regression. Figure 6 displays MSE on out-of-sample data for
IRP over the regularized path of isotonic solutions for a regression with six variables, exemplifying that
overfitting occurs after 15 iterations of IRP (seen by the U-shaped curve with minimum at 15 iterations).

Number of IRP Min Isotonic Regression LS IRP Min IRP Path
Variables MSE MSE MSE Path Length

1 41.79± 5.44 42.20± 5.39 41.77± 6.05 9 17
2 24.13± 3.53 24.51± 3.50 27.41± 3.74 7 26
3 13.88± 2.55 14.12± 2.39 16.17± 2.90 9 37
4 14.65± 2.75 15.30± 2.54 16.32± 2.93 7 62
5 11.01± 2.39 11.26± 2.28 15.35± 2.94 15 109
6 10.77± 2.37 11.34± 2.13 14.23± 2.70 15 114
7 10.84± 2.36 11.28± 2.12 11.37± 2.09 8 128

Table 2: Statistics for auto mpg data. Miles-per-gallon is regressed on a seven potential variables:
origin (American, European, or Japanese), model year, number of cylinders, acceleration, displace-
ment, horsepower, and weight. Rowk uses the firstk variables from this list in the regression. A path
of mean squared errors for each model along the regularization path was computed. Bold demon-
strates statistical significance of either IRP or isotonic regression over a least squares regression with
95% confidence, as determined by a paired t-test using 392 observed squared losses obtained from
leave-one-out cross-validation.

6 Discussion and extensions

The IRP algorithm offers solutions to both the statistical and computational difficulties of isotonic regression.
Algorithmically, IRP solves (2) as a sequence of easier binary partitioning problems that are efficiently
solved using network flow algorithms. From the statistical perspective, IRP generates a path of isotonic
models, each defining a partitioning of the spaceX into isotonic regions. The averages of observations
in these regions comply with the isotonicity constraints (Theorem 4). In this view, IRP provides isotonic
solutions along its path that are regularized versions of the globally optimal isotonic regression solution.

Our discussion so far has focused on using the sum of squares loss function in (2) for fitting “standard”
isotonic regression subject to squared error loss. A well known result of Barlow & Brunk (1972) implies that
the solution of a whole variety of loss functions subject to isotonicity constraints can be obtained by solving
standard isotonic regression, as long as the loss can be written as minimizing

∑n
i=1wi(Ψ(zi) − xizi)

2 in
z ∈ Rn for some convex differentiableΨ and some data-dependent valuesx and weightsw.

We first show how this result facilitates a connection between IRP and the well-known work of Maxwell
& Muckstadt (1985) (and similarly Roundy (1986)), who solved an operations research problem (related to
scheduling reorder intervals for a production system) by reducing it to the optimization of a convex objective
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Figure 6: Mean squared error for auto data with six variables using IRPillustrates that overfitting
occurs after 15 iterations of IRP, i.e. MSE decreases until 15 partitions are made, after which MSE
begins to increase. The figure displays only the first 30 partitions so that the U-shape is clear.

subject to isotonicity constraints. In our notation, theirobjective (i.e. loss function) is
∑n

i=1 (ci/ŷi + biŷi),
whereci, bi are data-dependent nonnegative constants determined by their problem formulation. To apply
the theory of Barlow & Brunk (1972), we reformulate their problem as minimizing

∑n
i=1 ci(zi − (−bi/ci))

2

in z ∈ Rn, i.e. a standard weighted isotonic regression, and recovering ŷ∗i =
√

−z∗i (note that the isotonic
regression fits nonpositive observations−bi/ci). Indeed, the algorithm of Maxwell & Muckstadt (1985) is
completely equivalent to applying IRP on this modified problem! It should be emphasized, however, that
Maxwell & Muckstadt (1985) were interested in this algorithm purely as a means to reach the globally op-
timal solution, and were uninterested in statistical considerations which led us to consider intermediate IRP
solutions as regularized isotonic models of independent interest. Spouge et al. (2003) also used Maxwell &
Muckstadt (1985) to inspire the partitioning algorithm forthe standard isotonic regression problem, how-
ever they do not make the connection using Barlow & Brunk (1972), and also have no statistical interests in
mind.

The results of Barlow & Brunk (1972) also imply that many other loss functions subject to isotonicity
constraints can optimally be solved via a reformulation to aproblem of the form (2). For instance, in the
case of a binary responsey ∈ {0, 1}, it may be desirable to fit isotonic models by minimizing the in-sample
logistic log likelihood rather than the sum of squares (Bacchetti 1989, Auh & Sampson 2006):

min {
n
∑

i=1

yi log (p̂i) + (1− yi) log (1− p̂i) : p̂i ≤ p̂j ∀(i, j) ∈ I, 0 ≤ p̂i ≤ 1 ∀i}. (11)

Applying the transformation of Barlow & Brunk (1972), the solution to (11) turns out to be identical to
solving the squared loss problem (2) with the valuesyi ∈ {0, 1}. Naturally, any problem that can be
reformulated as (2) can be solved using the IRP algorithm, and we plan to investigate the applicability of
the resulting regularization algorithms in future work.

As our analysis and experiments have demonstrated, computation is not a significant concern with IRP,
at least for moderate to large data sizes. However, overfitting is still a major concern as dimensionality
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grows. As demonstrated in Sections 4 and 5, while IRP offers partial protection from overfitting through
its regularization behavior, even the first step in the IRP path could already suffer from high variance in
dimension as low as six. A key question pertains to identifying factors affecting this overfitting behavior,
specifically characterizing situations in which the initial IRP iterations are less prone to overfitting.

7 Appendix

Proposition 1:
Proof. We first rewrite both the IRP partition problem (3) and the maximal between-group variance partition
problem (4). AssumeV = A ∪ B andA ∩ B = {}. Then it is easy to show|V |yV = |A|yA + |B|yB
which gives(yA − yV ) = −|B|(yB − yV )/|A|. The objective function to (3) can be written|B|(yB −
yV )− |A|(yA− yV ) and using the previous relationship can again be rewritten2|B|(yB − yV ). An obvious
property of the optimal IRP cut is thatyB ≥ yV . If we add this as a redundant constraint to the IRP
partition (3), then we can find the same optimal partition by maximizing the square of the objective, i.e.
maximize4|B|2(yB − yV )

2 subject to the appropriate constraints. The objective of the between-group
variance partition (4) can be rewritten using the above relationship as(|B| + |B|2/|A|)(yB − yV )

2. Then
denoting the IRP and maximal between-group variance objectives byg∗(A,B) and g̃(A,B) respectively,
we haveg∗(A,B) = 4|A||B|g̃(A,B)/n since|A| + |B| = n is constant. Eliminating the constant4/n
gives the first result.

In order to prove the second statement, notice that optimality of (3) and (4) gives|A∗||B∗|g̃(A∗, B∗) ≥
|A∗||B∗|g̃(Ã, B̃) andg̃(Ã, B̃) ≥ g̃(A∗, B∗) which implies|A∗||B∗| ≥ |Ã||B̃|. This along with the relation

(|A∗|+ |B∗|)2 = |A∗|2 + 2|A∗||B∗|+ |B∗|2 = |Ã|2 + 2|Ã||B̃|+ |B̃|2 = (|Ã|+ |B̃|)2

gives|A∗|2 + |B∗|2 ≤ |Ã|2 + |B̃|2. We use this to get the relation

(|A∗| − |B∗|)2 = |A∗|2 − 2|A∗||B∗|+ |B∗|2

≤ |Ã|2 − 2|A∗||B∗|+ |B̃|2 ≤ |Ã|2 − 2|Ã||B̃|+ |B̃|2 = (|Ã| − |B̃|)2

which gives the second result of the proposition.

Theorem 2:
Proof. Divide the blocks inV into three subsets:

1. L: union of all blocks inV that are “below” the algorithm cut.

2. U : union of all blocks inV that are “above” the algorithm cut.

3. M: union ofK blocks inV that get broken by the cut (note that blocks inM may be separated by
blocks inL or U ).

DefineM1 (MK ) to be the minorant (majorant) block inM. For eachMk defineML
k (MU

k ) as the
groups inMk below (above) the algorithm cut. DefineAL

K ⊆ L (AU
1 ⊆ U ) as the union of blocks along

the algorithm cut such thatAL
K ≻ ML

K (AU
1 ≺ MU

1 ). Refer to Figure 7 for an example of these definitions
whereAU

1 = AL
1 = AU

K = AL
K = {} for simplicity.

We use the above definitions and assumptions to state the following two consequences that cause a
contradiction:
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I yM1
< yMK

by optimality (i.e. according to KKT conditions) and isotonicity.

II yM1
> yV andyMK

< yV . This is proven below.

(II) implies yM1
> yMK

which contradicts (I) and we are left to prove (II). Optimality of blocksM1 and
MK gives

(a) yML
1

> yMU
1

(b) yML
K
> yMU

K
.

The proof foryM1
> yV is as follows with two cases:

1. AU
1 = {}: yMU

1

> yV because using the algorithm cut in (5), we have

∑

i∈MU
1

(yi − yV ) > 0 ⇒
∑

i∈MU
1

yi > |MU
1 |yV ⇒ yMU

1

> yV .

The first inequality is true about the cut because there existno block belowMU
1 to affect isotonicity.

Then using (a), we get
yML

1

> yMU
1

> yV ⇒ yM1
> yV

2. AU
1 6= {}: yM1

> yAU
1

> yV . The first inequality is due to optimality and the second is again because
the algorithm cut in (5) gives

∑

i∈AU
1

(yi − yV ) > 0 ⇒
∑

i∈AU
1

yi > |AU
1 |yV ⇒ yAU

1

> yV ,

which again is possible because no block exists belowAU
1 to affect isotonicity.

The proof foryMK
< yV is a similar argument and hence gives (II). The caseK = 1 is also trivially covered

by the above arguments. We conclude that the algorithm cannot cut any block.

The following remark is necessary for completeness of the proof of Theorem 2.

Remark 6 The case of two connected optimal groups having equal means need not be discussed in Theorem
2. In this event, the optimal solution to isotonic regression in not unique. It is trivial thatM1 would not
have been split by Algorithm 1 ifyML

1

= yMU
1

6= yV . Otherwise, consider the caseyML
1

= yMU
1

= yV and

assumeM1 is a block broken by the cut inV . ML
1 andMU

1 are also possible blocks wherebyML
1 ∈ L and

MU
1 ∈ U , and henceM1 = ML

1 ∪MU
1 6∈ M. The same remarks apply toMK . Thus, the proof still holds if

there are multiple isotonic solutions.

Remark 7 The case of multiple observations at the same coordinates can be disregarded. To see this, letJ
be a set of nodes with the same coordinates. From the constraints,yi = yj,∀i, j ∈ J and thus the number
of observations can be reduced and all observations inJ fit to the same valuêy. Then

∑

j∈J

(ŷ − yj)
2 = |J | | (ŷ − yJ)

2 +
∑

j∈J

y2j − y2J
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Figure 7: Illustration of proof of Theorem 2. Black lines separate blocks. The diagonal red line
through the center demonstrates a cut of Algorithm 1.L is the union of blue blocks below the cut
andU is the union of green blocks above the cut. White blocks are blocks that are potentially split
by Algorithm 1. These blocks are split intoML

1
, . . . ,ML

5
below the cut andMU

1
, . . . ,MU

5
above

the cut. In the proof,Mi = ML
i ∪ MU

i ∀i = 1 . . . 5. The proof shows, for example, that if the
algorithm splitsM1 into ML

1 andMU
1 according to the defined cut in (5), then there must be no

isotonicity violation when creating blocks fromML
1

andMU
1

. However, sinceM1 is assumed to be
a block, there must exist an isotonicity violation betweenML

1
andMU

1
, providing a contradiction.

so that the sum of squared differences overJ can be reduced to be a single weighted squared difference.
Problem (2) becomes the weighted isotonic regression problem

min {
n
∑

i=1

wi(ŷi − yi)
2 : ŷi ≤ ŷj ∀(i, j) ∈ I}, (12)

for which the KKT conditions imply that observations are again divided into k groups where the fits in
each group take the weighted group meanywV =

∑

i∈V (wiyi)/
∑

i∈V wi rather than the group mean. The
optimal cut problem (5) changes to havezi = wi(yi − ywV ) and the above results on IRP generalize easily
noting that now the weighted algorithm cut impliesywA > ywV for a groupA on the upper side of the cut such
that no group exists belowA that could affect isotonicity.

Proposition 5:
Proof. Any final partition can be represented by a simple tree. Consider levelk of the tree. Letpk ≥ .5
be the greatestp over levels1, . . . , k − 1 such that a partition of group sizenk into two groups of sizepnk

and(1− p)nk wherenk is the corresponding size of the partitioned group. Denote by Lk the largest group
partitioned at iterationk whose size can be bounded by|Lk| ≤ npkk. We next note that the complexity of
solving a problem withn observations is higher than solving 2 problems withpn and(1−p)n observations.
Indeed,n3 = pn3 + (1 − p)n3 > p2n3 + (1 − p)2n3. Thus, we assume that at iterationk, we solve only
problems of the largest possible size (rather than several problems of small size). The number of groups at
iterationk can also be bounded byn/|Lk|. Denote byTpk(k) the complexity of partitioning all groups at
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levelk. Then
Tpk(k) ≤ O(

n

|L|
|L|3) = O(n|L|2) ≤ O(n(npkk)

2) = O(n3)p2kk .

Then denote byK the total number of levels in the partition tree. We have

K
∑

k=1

Tpk(k) ≤
K
∑

k=1

O(n3)p2kmax ≤
∞
∑

k=1

O(n3)p2kmax = O(n3)
1

1− p2max

.
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