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Abstract

Isotonic regression is a nonparametric approach for fittimmgrotonic models to data that has been
widely studied from both theoretical and practical persipes. However, this approach encounters com-
putational and statistical overfitting issues in higherelisions. To address both concerns we present an
algorithm, which we term Isotonic Recursive PartitionitigR), for isotonic regression based on recur-
sively partitioning the covariate space through solutibprogressively smaller “best cut” subproblems.
This creates a regularized sequence of isotonic modelsdasing model complexity that converges to
the global isotonic regression solution. The models albegequence are often more accurate than the
unregularized isotonic regression model because of thelxity control they offer. We quantify this
complexity control through estimation of degrees of freeddong the path. Success of the regularized
models in prediction and IRP’s favorable computationapgrties are demonstrated through a series of
simulated and real data experiments. We discuss applicatitRP to the genetic problem of modeling
gene interactions and epistasis, where it appears edygmiaimising.

1 Introduction

In predictive modeling we are given a setoflata observation&ey, y1 ), ..., (n, yn), Wherex € X (usually

X = RY) is a vector of covariates or independent variabjes,R is the response, and we wish to fit a model
f : X — R to describe the dependenceywbn z, i.e.,y ~ f(ac). Isotonic regression is a non-parametric
modeling approach which only restricts the fitted model tmdpenonotone in all independent variables
(Barlow & Brunk 1972). Defing; to be the family of isotonic functions, that ig,c G satisfies

11 2wy = g(x1) < g(22),

where the partial order here will usually be the standard Euclidean one, wg.,=< x if and only if
x1j < w9, coordinate-wise. Given these definitions, isotonic regjogssolves

n

: 2
i —g(xi))”. 1
min i:1(y 9(;)) 1)
We denote byf the optimal solution ta{1). As many authors have notedpmprises a partitioning of the
spaceX’ into regions with no “holes” satisfying isotonicity propies defined below, with a constant fitted

to f in every region.
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In terms of model form, isotonic regression is clearly veftyaative in situations where monotonicity
is a reasonable assumption, but other common assumpti@nbniearity or additivity are not. Indeed, this
formulation has found useful applications in biology (Oinski et al. 2008), medicine (Schell & Singh
1997), statistics (Barlow & Brunk 1972) and psychology (8kal 1964), among others. In recent years,
an exciting new application area has emerged for this approagenetics: modeling genetic heritability.
Many papers have noted the apparent insufficiency of stdratiditive modeling approaches in describing
the combined effects of genetic factors (e.g., mutationg)leenotypes or traits like height (Goldstein 2009,
Eichler etal. 2010). In some cases, evidence has pointedhtadditive interactions (Shao et al. 2008), while
others suggest requiring super-additive assumptionsdardo explain heritability (Goldstein 2009). It is
generally accepted, however, that while the effect of omeetie factor on a phenotype can be modulated,
enhanced or even eliminated by other genetic factors, ibissrpected to reverse direction (Mani et al.
2007, Roth et al. 2009). In other words, the isotonicity agstion with respect to genetic effects is widely
accepted, but the form of epistasis (genetic interacti@téen factors is not clear and may vary between
phenotypes. Other properties of this application domasio &vor the use of isotonic regression as we
discuss below.

Two major concerns arise when considering the practicabtis®tonic regression imodernsituations
as the number of observations the data dimensionality, and the number of isotonicity constraints =
{(i,7) : =i < x;}| implied by ) all grow large: statistical overfitting andnsputational difficulty. The
notationsn, m, andd will refer to these quantities throughout the paper.

The first concern is statistical difficulty and overfitting.eynd very low dimensions, the isotonicity
constraints on the familg can become inefficient in controlling model complexity ahd isotonic regres-
sion solutions can be severely overfitted (for example, seeletti (1989) and Schell & Singh (1997)). At
the extreme, there may be no isotonicity constraints becaaswo observations obey the coordinate-wise
requirement for the< ordering. The isotonic solution in this case simply assigf('@) = y; providing a
perfect interpolation of the training data. As demonsttatethe literature (Schell & Singh 1997) and below,
the overfitting concern is clearly well-founded when cogsiag the optimal isotonic regression model im-
plied by [1), even in non-extreme cases with a large numbeo$traints. In this case, regularization, i.e.
fitting isotonic models that are constrained to a restristgaset of;, could offer an approach that maintains
isotonicity while controlling variance, leading to impexyaccuracy.

A second concern is computational difficulty. The discussibisotonic regression originally focused
on the case € R, where= denoted a complete order (Kruskal 1964). For this case, #liekevown pooled
adjacent violators algorithm (PAVA) efficiently solvdg (ih)computational complexity)(n). Low com-
plexities can also be found when the isotonic constrairks gaspecial structure such as a tréglogn)
in Pardalos & Xue (1999)). Various algorithms have been ldpesl for the partially ordered case, in-
cluding the classical approach of Dykstra & Robertson (1982data on a grid, generalizations of PAVA
(Lee 1983, Block et al. 1994) and active set methods (de Lestual. 2009). These approaches offer
no polynomial complexity guarantees and by all accountsirapgactical when data sizes exceed a few
thousand observations (in some cases much less). Intayior imethods offer complexity guarantees of
O(max (m, n)3) (Monteiro & Adler 1989), however they are impractical forda data sizes due to exces-
sive memory requirements.

A much more computationally attractive approach can be dounthe optimization and operations
research literature. The basic idea of this approach ispeatedly and “optimally” split the covariate
spaceX’ into regions of decreasing size by solving a sequence ofapestructuredbest cutproblems for
which efficient algorithms exist. At most partitions are needed, leading to a computational comnylexi
bounded byO(n?), and in some cases even less. From a practical performanggeptve, this algorithm



can obtain an exact solution df] (1) for datasets with tenshofisands of observations in minutes. The
first appearance of this approach, to our knowledge, is imibi of Maxwell & Muckstadt (1985) (and
similarly Roundy (1986)), who designed it for a problem wathlifferent loss function than ifJ(1) that also
had isotonicity constraints. Applicability of their mett®with minimal changes to problefn (1) was more
recently noticed by several authors (e.g. Spouge et al.3)20&ho used it to design efficient isotonic
regression algorithms. This approach does not appear toebhekmown in the statistics community, and
indeed we have independently developed it before disauydtris already known.

The literature cited above invariably refers to this iteeatsplitting algorithm merely as an approach
for efficiently arriving at the optimal solution dfl(1). Hower, as noted before, this solution can be highly
overfitted, especially as the dimensi@increases. Our main interest lies in analyzing the iteeaipproach
as a means towards resolving the overfitting problem, asaselie computational issue. We propose to view
this iterative algorithm as eecursive partitioningapproach that generates isotonic models of increasing
model complexity, ultimately leading to the solution &f ;(1pe algorithm is termed Isotonic Recursive
Partitioning (IRP). We prove that the models generated byR#® iterations are indeed isotonic (Theofém 4)
and consider them asragularization pathof increasingly complex isotonic regression models. Msdel
along the path are less complex, and hence likely to be lessitoand offer better predictive performance
than the overall solution t¢{1), while still maintainingtsnicity. This is confirmed by our analysis of the
equivalent degrees of freedom along the IRP path, as wek@erienents with simulated and real data.

We observe that for very low dimension (typically< 2) the non-regularized solution dfl(1) performs
well. As the dimension increases, regularization beconeegssary, and intermediate models on the IRP
path perform better than the non-regularized solution. &l@r, eventually overfitting plagues IRP from its
first iteration, and the isotonic models fail to perform bethan simple linear regression in out-of-sample
prediction, even when the linear model is inappropriateounsimulations this occurs around dimensions
6-8 even for relatively large data sets.

Progress of IRP is illustrated in Figurke 1, where we show amgpte of applying IRP to the well-known
Baseball dataset (He et al. 1998) describing the depend#readary on a collection of player properties.
We limit the model to only two covariates to facilitate vifimation, and we choose to use the number of
runs batted in and hits since they seemed a-priori mostylifetomply with the isotonicity assumptions.
The increasing model complexity can be seen, moving froratiten 1 (a single split) through 10 iterations
of IRP, to the final isotonic model optimally solvingl (1), cprising a splitting of the covariate space into
29 regions, each of which is fitted with a constant.

1 Iteration 10 Iterations 28 lterations

Figure 1: lllustration of IRP on Baseball data. Salary is modeled bsnhar of runs batted in and
hits. Models after iterations 1 and 10 of IRP and the final nhadeshown.

An obvious analogy of IRP can be made to well-known recurgasitioning approaches for regression
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such as CART (Breiman et al. 1984), where the iterativetsgliof the covariate space generates a sequence
of models (trees) of increasing model complexity, from vahice “best” tree is chosen via cross validation
(for example, using the 1-SE rule (Breiman et al. 1984)). Ak WART and other similar approaches, IRP
performs a greedy search and finds a “local” optimum in evemaiion. However, unlike CART, which
has no guarantees on the overall model it generates, IRBusmpio terminate in the global solution of the
isotonic regression problerl (1). Another difference ig tRd splits are not made along one axis at a time,
but rather each split is a non-parametric division of onéoregn X into two sub-regions.

The remainder of this paper is organized as follows. We firssgnt and analyze the IRP algorithm in
Sectior 2. We detail the best cut problem solved for spjtaheach iteration, and prove that this algorithm
is a no-regretalgorithm, in the sense that it only partitions the data aeden merges back previously
made partitions and converges to the global solutiorlof The6reni2). Furthermore, we prove that the
intermediate partitions generated along the IRP path aisbtonic, in the sense that fitting the average
to each region gives a model that is in the clgssf isotonic functions inR? (Theorem%). Sectiohl 3
briefly reviews the theoretical computational guarantddRB as reflected in the literature, and develops a
simple and realistic case where the overall computatiai(is®). Sectiorl# discusses the statistical model
complexity of models generated along the regularizatiaiih.p&eyer & Woodroofe (2000) have shown
that the number of partitions in the solution bf (1) is an @askid estimator of the (equivalent) degrees of
freedom (as defined by Efron (1986)). Since IRP adds one todh&ber of partitions at each iteration,
the number of iterations may be used as a parametrizationiobequence. However, we argue that the
number of regions is not a good estimate of degrees of fredsimause IRP performs much more fitting in
its initial iterations compared to later stages, and demnatesthis effect empirically through simulation. We
also show that when the covariates are ternary (as is n@tuwal motivating genetic example when dealing
with ternary genotype data), the overall number of degréé®edom and model complexity increase more
slowly with dimension, compared to general continuous dates, resulting in much less overall fitting
for each dimension. Sectigh 5 examines IRP’s statisticdlcamputational performance on simulated and
real data, specifically pointing out the effect of regulatian and increased dimensionality on predictive
performance. We apply IRP to simulations with ternary catas and sub- and super-additive interactions
motivated by the genetic application and demonstrate vtsrédble performance. Sectibh 6 concludes with
extensions and connections to previous literature.

We next define terminology to be used throughout the paper.

1.1 Definitions

LetV = {z1,...,z,} be the covariate vectors fartraining points where:; € R? and denote); € R as
thei'” observed response. We will refer to a general subset ofpdirtt V' with no holes (i.ex <y < z
andz,z € A = y € A) as agroup. Throughout the paper, we will use the shorthand A = {i : z; € A}.
Denote by A| the cardinality of groupd. Theweightof group A is defined ag 4, = ‘7}| > ica Yi- FOrtwo
groupsA and B, we denoted < B if 3z € A,y € B such thatr < y andfz € A,y € B such thaty < «
(i.e. there is at least one comparable pair of points thafgahe direction of isotonicity). A set of groups
V is called isotonic ifA < B = 34 < 7yp,VA, B € V. The groups within this sé¢ are referred to as
isotonic regions. A subsef (/) of A is alower set(upper setof Aif x € A,y € Lz <y =x € L
(relU,ye A,z <y=yecl).

A group B C A is defined as a block of group if 5,,~5 < 7 for each upper sei of A such that
UNB # {} (orequivalently ify .z > 7 for each lower sef of A such thatCN B # {}). A set of blocks
S = {B,..., By} is calledblock classof V' if B; N B; = {} andB; U ... U By, = V. S is anisotonic
block classf VB;, B; € S, B; X Bj =Yg, < Yp;- Agroup X majorizes(minorize$ another grougy” if
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X =Y (X <Y). AgroupX is amajorant(minoran) of X U A whereA = UleAl- if X £ A (X #A)
Vi=1...k.
We denote the optimal solution for minimizinx) in the variabler by z*, i.e. * = argmin f(x).

2 IRP and a regularization path for isotonic regression

We describe here the partitioning algorithm used to soleeigbtonic regression problefl (1). Section 2.1
first reformulates the isotonic regression problem andri@ssthe structure of the optimal solution. Section
[2.2 motivates and details the IRP algorithm and, in paricihe main partitioning step. Each group created
by the partitioning scheme is proven to be the union of bldokthe optimal solution, i.e. all partitions
have the no-regret property. An important aspect of therdlgo is the regularization path generated as a
byproduct as each partition creates a new feasible solufieatiori 2.8 goes on to prove convergence of IRP
to the global optimal solution of1), and most importanthat each solution along the regularization path
is isotonic.

2.1 Structure of the isotonic solution

Isotonic regression seeks a monotonic function that fits/angiraining datasefz;, v; }*_; and satisfies a
set ofisotonicity constraintsvhich we index by the sef = {(, j) : «; < x;}. We will usually assume that
z; € R%and that< is the standard partial order R’ based on coordinate-wise inequalities. A reformulation

of (@) is
min {> (i —vi)® 1 5 < 9; V(i j) € I} 2)
=1

Problem[(2) is a quadratic program with linear constraiAtsy solution satisfying the constraints givenby
is referred to as an isotonic, or feasible, solution. Thecstire of the optimal solution t&](2) is well-known:
Observations are divided infogroups where the fits in each group take the group mean oliservalue.
This can be seen through the following Karush-Kuhn-Tuckd£T), i.e. optimality, conditions (Boyd &
Vandenberghe 2004) thl(2):

(a)gi:yi_%( ST YD )

J:(i.4)ET J:(GAET
(b) 9; <9; V(i,j) €T
(€) \ij >0V(i,j) e
(d) Aij(9: —95) =0V(,5) €T,

where \;; is the dual variable corresponding to the isotonicity ca@ist §; < 7;. This set of conditions
exposes the nature of the optimal solution. Condition (q)lies that\;; > 0 = 7; = 7; meaning)\;; can

be non-zero only within blocks in the isotonic solution whitave the same fitted value. For observations
in different blocks \;; = 0. Furthermore, the fit within each block is trivially seen ®the average of the
observations in the block, as the average minimizes thé&klequared loss. A block is thus also referred to
as anoptimal groupwith respect to an isotonic regression problem. Conditmrirplies isotonicity of the
blocks, and thus, we get the familiar characterization efiiotonic regression problem as one of finding a
division into an isotonic block class.



2.2 The partitioning algorithm

Suppose a current grodp is optimal (i.e.V" is a block) and thus the optimal fits at pointsiin denoted;;,
satisfyy; = 7y for all i € V, which leads to the conditioh_;y- (; — 7-) = 0. Then finding two groups
A and B within V such that) ", (yi — 7v) — >_;c4 (i —74) > 0 should be infeasible, according to
the KKT conditions. The division in IRP looks for two such gps. Denote byy = {(A,B) : A,B C
VAUB=V,ANB={}, Ar € A,y € B s.t. y =<z} the set of all feasible (i.e. isotonic) partitions
defined by observations . We refer to partitioning as making a cut through the vagaigace (hence our
optimal partition is made by aoptimal cu). The optimal cut is determined by the partition that solires
problem

max {Z )= > (i =)} = {~|Al@4 — Tv) + |Bl@s — 5v)} (3

(A,B)
Cv €A

where A(B) is the group on the lower (upper) side of the edges of cut. Aenstatistically intuitive rule
might look for the split that maximizes between-group vac@ This partitioning problem solves

— — \2 — — \2
(e {lA[@a —7v)” + Bl@s —7v)"}- (4)
The next proposition makes a connection between the abavenaximization problems, and draws a
clear conclusion on the relationship between their optisodlitions, namely that the optimal partitions to
(3) are always more balanced than the optimal partitionElto The next proposition makes a connection
between the two maximization problems, and draws a cleaclgsion on the relationship between the
optimal solutions, namely that the split generated by (3)wsys more balanced than the split generated by

@.

Proposition 1 Denote the optimal solutions of the optimal cut problEin (8) the between-group variance
maximization probleni{4) byA*, B*) and (A, B) and their objective functions hy (A, B) andg(A, B),
respectively. Then
(A, B") = argmax {|A||B|g(4, B)}
(A,B)eCy
and
(J4*| - |B*))> < (IA| - |B|)™.

We leave the proof to the appendix.

Thus, we can look at the IRP criterion as a modified form of mézing between-group variance which
encourages more balanced splitting. However, while sgltfie partition probleni{4) is difficult, the IRP
partition problem|[(B) is tractable. Indeed, the optimatigan problem [3) can be reduced to solving the
linear program

max {zTw:2; <x; V(G,j) €L, -1<2;<1 VieV} (5)

wherez; = y; — 7y, If the optimal objective value equals zero, then the grumust be an optimal block.

This group-wise partitioning operation is the basis for IiRIP algorithm which is detailed in Algorithm
. It starts with all observations as one group and recuysis@its each group optimally by solving sub-
problem [). At each iteration, a ligt of potential optimal partitions for each group generatagstfar is
maintained, and the partition among them with the highejgiobive value is performed. The ligtis updated
with the optimal partitions generated from both sub-groupartitioning ends whenever the solution[tb (5)
is trivial (i.e., no split is found because the group is a kjo®\e can think of each iteratioh of Algorithm
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[ as producing a modél/;, by fitting the average to each group in its current partitibar a set of groups
V= {W,...,Vi}, denoteyy, = {Jy,,...,Ty, }.- Then modelM;, = (V,7,,) contains the partitioning
as well as a fit to each of the observations, which is the meaarehtion of the group it belongs to in the
partition.

Algorithm 1 Isotonic Recursive Partitioning

Require: Observationg, ... ,y, and partial ordef.

Require: A= {{1,...,n}},C ={(0,{1,....n}, {}H}.B={}, My = (A,7,4).
1: while A # {} do
2:  Let(val,w™,w") € C be the potential partition with largest!.

3 Updated = (A\ (v~ Uwh))U{w ,wt},C=C\ (val,w™,w™).
4: Mk:(AUW,yAUB).
5. forall v e {w ,w"}do
6: Setz; = y; — Y, Vi € v wherey,, is the mean of observations indexed:dy
7: Solve LP [5) with input: and getz* = argmin LP(H).
8: if 27 = ... = (group is optimally dividedjhen
o: UpdateA = A\ vandB = BUwv.
10: else
11: Letv™ ={i:azf =—1},0" = {i:af = +1}.
12: UpdateC = C U {(zTz*, v, v")}
13: end if
14:  end for
15: end while

16: return B, indices of observations corresponding to the optimal gsou
Note: Sets here keep track of indices rather than obsengtay ease of implementation.

2.3 Properties of the partitioning algorithm

Theoren P next states the result which implies that the IRBtipas areno-regret This will lead to our
convergence result.

Theorem 2 Assume groupy is the union of blocks from the optimal solution to problédn (Bhen a cut
made by solvind{3) (usirig 5) at a particular iteration does aut through any block in the global optimal
solution.

The fact that IRP is a no-regret algorithm can be shown ustapaection between the work of Barlow
& Brunk (1972) and Maxwell & Muckstadt (1985) (held to the Bission in Sectionl6). We prove Theorem
[2 directly, but leave it to the Appendix as the theorem isaalyeknown to be true (Spouge et al. 2003).
RemarkKY in the Appendix handles the case for multiple olagienvs. Since Algorithrill starts witd =
{1, ...,n} which is the union of all blocks, we can conclude from thisotteen that IRP never cuts an
optimal block when generating partitions. The followingaltary is then a direct consequence of repeatedly
applying Theorerfil2 in Algorithria] 1:

Corollary 3 Algorithm[1 converges to the optimal (isotonic block classjtion with no regret.



TheorenT# next states our main innovative result that Algor{d provides isotonic solutions at each
iteration. This result implies that the path of solutionsi@@ted by IRP can be regarded as a regulariza-
tion path for isotonic regression. Along the path, the magelvs in complexity until optimality. These
suboptimal isotonic models often result in better prediecperformance than the optimal solution, which is
susceptible to overfitting as is discussed in Sedtlon 5.

Theorem 4 Model M, generated after iteratiok of Algorithm[1 is in the clas§ of isotonic models.

Proof.

The proof is by induction. The base case, i.e. first iteratvaimere all points form one group is trivial.
The first cut is made by solving the linear prograr (5) whichstmins the solution to maintain isotonicity.

Assuming that iteratiot (and all previous iterations) provides an isotonic solutie prove that iter-
ationk + 1 must also maintain isotonicity. Figulé 2 helps illustrdte situation described here. L@&tbe
the group split at iteratio& + 1 and denoted (B) as the group under (over) the cut. Lét= {X : X isa
group at iteratiork + 1,3i € X such that(z, j) € Z for somej € A} (i.e. X € A borderA from below).

Consider iteratiork 4 1. DenoteX’ = {X € A: 7, < yy} (i.e. X € X violates isotonicity withA4).
The split inG causes the fit in nodes i to decrease. We will prove that when the fitsArdecrease, there
can be no groups below that become violated by the new fits #g i.e. the decreased fits it cannot be
such thatt # {}.

We first prove thatt = {} by contradiction. Assum& # {}. Denotei < k + 1 as the iteration
at which the last of the groups i, denotedD, was split fromG and suppose at iteratian G was part
of a larger groupH and D was part of a larger group'. It is important to note thaX "\(F |JH) = {}
VX € X\ D atiteration: because by assumption all groupstin D were separated from before iteration
1. Thus, at iterationi, D is the only group borderingl that violates isotonicity.

Let Dy denote the union oD and all groups i’ that majorizeD. By construction,Dy; is a majorant
in F. Henceyjp,, < ¥pupg by Algorithm[d andy, < 7p,, by definition sincejp,, > 7p > 74. Also by
construction, any seX’ € H that minorizesA hasyy < 74 (each setX that minorizesA besidesD such
thatyy < 74 has already been split from). Hence we can denoté;, as the union ofA and all groups
in H that minorizeA and we havej, > Ua, and Ay, is a minorant inH. SinceA; C H at iteration:, we
have

Yrua <Ya, <Ya <Yp, <Yrum

which is a contradiction, and hence the assump#toé {} is false. The first inequality is because the
algorithm left Ay, in H when F' was split fromH, and the remaining inequalities are due to the above
discussion. Hence the split at iteratiohng- 1 could not have caused a break in isotonicity.

A similar argument can be made to show that the increased fiofdes inB does not cause any isotonic
violation. The proof is hence completed by inductiom.

With Theorem#, the machinery for generating a reguladrapath is complete. In Sectidn 3, we
describe the computational complexity for generating fath followed by a discussion of the statistical
complexity of the solutions along the path in Secfidn 4.

3 Complexity

We here show that the partitioning step in IRP can be solviciarftly. The computational bottleneck of
Algorithm [ is solving linear progranii(5) that iterativelangitions each group. Linear prografd (5) has



Figure 2: lllustration of proof of Theorerl4 showing the defined sefisemaitionk + 1. G is the set
divided at iteratiorkt + 1 into A (all blue area) and (all green area). The group borderidgrom
below denoted by, (also referred to a® in the proof) is in violation withA. At iterationk,, G

is part of the larger groupl and X is part of the larger group’. At iterationk,, groupst’ and H

are separated. The proof shows that wheand B are split at iteratiork + 1, no group such aX;
wherewx, > w4 could have existed. In the pictur&; must have been separated at an iteration
ko < k + 1, but the proof, through contradiction, shows that this camacur.

a special structure that can be taken advantage of in ordsolte larger problems faster. Indeed, the
dual problem can be written as an optimization problem dalienetwork flow problem that is amenable
to very efficient algorithms, as noted by Spouge et al. (200%) recognize the network flow problem as
the maximal upper set problem\Ve note that our partition problerl (5) is very similar to tretwork flow
problem solved in Chandrasekaran et al. (2005) whgtleere represents the classification performance on
nodei.

We denote the complexity of solving linear progrdm (5)Bfmn,n) wherem is the number of con-
straints defined by andn is the number of observations. Various efficient algorithiorssolving this
problem exist, giving complexities such @§m,n) = O(mnlogn) (Sleator & Tarjan 1983) along with
several algorithms giving’(m,n) = O(n?) (Galil & Naamad 1980). Choosing the more efficient imple-
mentation depends on the number of isotonicity constraint&.g. n® < mnlogn for the worst case
m = O(n?)). A recent result by Stout (2010) shows how to represent@orisc regression problem by an
equivalent problem where both the number of total obsesmatand constraints are of orde(n log®! n),
which greatly reduces the worst casenef= O(n?) isotonicity constraints (i.e. by trading off a few addi-
tional shadowobservations for a large reduction in the number of congai Since at most partitions
are made by IRP, complexity @&(n*) usingT'(m,n) = O(n®) or reduced ta(n? log??~! n) using results
of Stout (2010).

In practice, the complexity can be even better by accourftinghe fact that IRP solves a sequence
of partitioning problems that are decreasing in size (i.eobjgms with fewer and fewer observations).
Each partition in Algorithni 1l can be divided into differeroportions. We generically denote the bigger
proportion in a partition by > 0.5. Propositiol b next gives a bound on the complexity of Altyon[1 for
this general case (assumifigm, n) = O(n?)), in terms of the maximap over all partitions.



Proposition 5 Let p,.x > .5 be the greatesp over all iterations of Algorithni]l such that iteratioh

partitions a group of sizey, into two groups of sizen; and (1 — p)ny. Denote byn the total number of
observations. Then the complexity of Algorifiim 1 is bourimed

1

(6)
The proof, given in the Appendix, is based on the fact thatséguence of IRP’s partition problems

are solved on smaller and smaller groups of observatioes \{ihile the first partition problem i®(n?),

the partition problems for the two created partitions @@3n?) and O((1 — p)3n?3) for somep where

0 < p < 1). Even atpya, = .99, the constant /(1 — p2 ) ~ 50, which is very small when the number

of observations is large. Thus, under another reasonablgrgwion thap,,., is bounded, we can conclude

that IRP is of practical complexit®(n?)/(1 — p2 ... Similar analysis using results of Stout (2010) lead to

a practical complexity 00 (n210g?* ' n) /(1 — puax)-

4 Degrees of freedom of isotonic regression and IRP

The concept of degrees of freedom is commonly used in $tatist measure the complexity of a model (or
more accurately, a modeling approach). This concept ceptilne amount of fitting the model performs,
as expressed by the optimism of the in-sample error estimatenpared to out-of-sample predictive per-
formance. Here we briefly review the main ideas of this gdregproach, and then apply them to isotonic
regression and IRP.

Following Efron (1986) and Hastie et al. (2001), assume #ieesz, ..., z,, € R are fixed in advance
(the fixed-xassumption), and that the model gets one vector of obsengi = (y1,...,yn)" € R" for
training, drawn according t&(y|z) at then data points. Denote by"™" another independent vector drawn
according to the same distributiog.is used for training a modg‘i(x) and generating predictions at the
data pointsj; = f(x;).

We define thén-samplemean squared error:

1 .
MRSS= —ly — 13

and compare it to the expected error the same model incutseametv, independent copy, denoted in Hastie
etal. (2001) by ERR:

1 new 2
ERRy = ~ Eyren|y™ — 713,

The difference between the two is thptimismof the in-sample prediction. As Efron (1986) and others
have shown, the expected optimism in MRSS is:

2 "
Ey,y”eW(ERRn — MRSS) = E ZCOV(yuyi)- (7)

For linear regression with homoskedastic errors with veméar?, it is easy to show thaf]7) is equal to
%da2, whered is the number of regressors, hence the degrees of freedoisinaturally leads to defining
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theequivalent degrees of freedarha modeling approach as:
df = " cov(ys, i) /o>, (8)

In non-parametric models, one usually cannot calculatathgal degrees of freedom of a modeling ap-
proach, but it is often easier to generatiased estimategf of df using Stein’s lemma (Stein 1981). Meyer
& Woodroofe (2000) demonstrate the applicability of thiedhy in shape-restricted non-parametric regres-
sion. Specifically, their Proposition 2, adapted to our tiota implies that if we assume the homoskedastic
casevar(y;) = o2 for all 4, then the unbiased estimatdifor degrees of freedom in isotonic regression is
the number of piece® in the solutiony to (2), that is:

E(D) = Z cov(y;, i) /o

Considering the IRP algorithm, this puts us in the intengssituation where the number of steps the
algorithm takes until it terminates in the global isotoratusion is equal to the degrees of freedom estimator
of this global solution (minus one, since we start with onecp). One might thus be inclined to assume
that each iteration of Algorithin] 1 adddoutone degree of freedom, i.e. performs approximately the same
amount of fitting in every iteration. A similar idea is repeesed by the degrees of freedom calculation of
Schell & Singh (1997) in their reduced monotonic regressitgorithm (which starts from the complete
isotonic fit and eliminates pieces).

On more careful consideration, however, it is obvious that idea is incorrect since the first iteration
of IRP finds an optimal cut in the very large space of all pdegitwltivariate isotonic cuts. For comparison,
a single deep split in a regression tree has been estimatsazhtmme three or more degrees of freedom
(Ye 1998), and the space of possible splits in initial IRPaitiens is much larger than that of a regression
tree since IRP splits are not limited to being axis-orient€tus, intuitively, the first iteration is expected
to use much more than one degree of freedom (the equivalefittiofy one coefficient to dixed, pre-
determinedregressor). This effect should be exacerbated as the diometh®f = increases since the size
of the search space for isotonic cuts increases with it.sti alevitably implies that the latter iterations of
the IRP algorithm should perform less (ultimately much )dégsng than the equivalent of one degree of
freedom in every iteration, to be consistent with the urdiilagss ofif = D as an estimator aff.

Here we demonstrate empirically that this is indeed the.c@fesimulate data from a simple additive
model

yi = Y x5 +N(0,10). (10)
J

wherez;; is dimension;j of the observatiori. We can repeatedly generate data usidg (9) (10), apply
IRP, and empirically estimatdf as defined by (8) for every iteration of IRP. Figlile 3 (leftpwis howdf
evolves in this model as the IRP iterations proceed, foreiaging dimensions of. The covariance if{8)
was estimated by drawing valué§ = (1, ...,z1000) according to the model9), fixing them, drawing
1000 independent copies ¢f| X according to[(10), and applying IRP on each one. This whalegss was
repeated 50 times and the results were averaged. As expeaeske that the number of pieces (hence
degrees of freedom) in the final isotonic regression ineeagth the dimension, as does the rate in which
the number of degrees of freedom increases in the initipssté IRP.
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Figure 3: Evolution of degrees of freedom for IRP as model complexigréases. Both models
usey; = >, xfj + N(0,10). Simulation (left) uses:;; ~ U[1,2] and simulation (right) uses
x;; € {0, 1,2} with probabilities{1/3,1/3,1/3}. Each path is the mean over 50 trials with 1000
training samples.

In order to emphasize this dependence of the degrees obfreadinitial iterations on the dimension,
as well as on the number of observations, Fidgure 4 preseatswublution of the percentage of the total
isotonic regression degrees of freedom along the path ivenber of degrees of freedom relative to the
number of partitions of the final model) as a function of bdth timension and the amount of data used.
As expected, increasing the dimension radically incretisegortion of the fitting in the first steps, while
increasing the amount of data decreases this portion (8ieceverall isotonic fit is generally more complex
in these situations). It should be noted that for many of theaons examined, IRP performs more than
half of the total isotonic fit, as measured by degrees of fsegdn its first iteration! In dimension 7, even
atn = 20,000 observations, almogt0% of the total fitting is associated with the first iteration. uh
these simulations clearly demonstrate the nature andaliimits of IRP’s regularization behavior: the IRP
path contains models that are regularized isotonic moaefgpared to the global solution, but IRP’s ability
to control model complexity is limited by the concentratiohmost of the fitting in the initial iterations,
especially in higher dimension.

As mentioned in the introduction, an area that combinesiegifns where the isotonic assumptions
are reasonable (i.e., low bias) and the overfitting may besd toncern (i.e., variance can be controlled)
is in genetics, specifically in modeling gene-gene intépastin phenotype(y)-genotype(X) relationships
(Cordell 2009). The key observation here is that genotypeseanary ¢;; € {0, 1,2} copies of the “risk”
allele). Thus, each dimension of the predictor sp&cean take only one of three possible observed values
in the data. Intuitively, it is clear that this would sign#iatly reduce the space of possible isotonic splits
in IRP, and hence reduce the amount of fitting. To demonsthagesmpirically, Figuré 13 (right) displays
an experiment with the same setup, where instead of draviieg talues from a multivariate uniform,
they are drawn independently frof, 1,2} with equal probabilities and we use the same model. Figure
[3 demonstrates that both the globally optimal isotonic esgjion and, especially, the first IRP iterations
perform much less overall fitting in the ternary case vereescbntinuous case, as measured by equivalent
degrees of freedom. For example, in six dimensions, theraomis case requires almost seven times as
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Figure 4: Percentage of degrees of freedom relative to the full pa¢h iumber of partitions in
the globally optimal solution) as model complexity incresisSimulations use;; ~ U1, 2] with
Yi =) 7; +N(0,10). Each path is the mean over 200 trials. Only the first 500§zt of the
paths are displayed in order to make the MSE of the earlient€Btions visually clearer.

many degrees of freedom than in the ternary case to fit the Imbldsvever, relative to the final model, a
large percentage of the fitting still takes place in the dhiterations.

5 Performance evaluation

We demonstrate here the usefulness of isotonic regressisimulation and real data. For each experiment,
IRP is run on the training data and produces a path of isotooidels. Each model is used for prediction on
the test data and the mean squared error (MSE) is recordélgdiinerates paths of mean squared errors over
the different isotonic models and is illustrated in the fagibelow. In each table, we record the minimum
MSE along these path$RP Min MSH, along with how many partitions were made to generate tlig-m
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mum MSE (RP Min Path), and the number of partitions in the global isotonic solut{RP Path Length

IRP, as well as optimal isotonic regression, results arepewed to running a least squares regression on
the training data and predicting on the testing data withrésellting linear model (corresponding MSE
is calledLS MSH, and to the performance of the global isotonic regressaduation (Isotonic Regression
MSE). Because we are interested in examining the behavior d@ritiee IRP path as in selecting the optimal
tuning parameter, and to avoid a significant increase iningrime, we do not employ cross validation for
selecting the best stopping point (number of iterationa},use test sets for this. In practical application,
cross validation would be the appropriate approach forcagthe best model for prediction.

5.1 Simulations

We first illustrate isotonic regression on simulated dath different distributions. For the first three exper-
iments, thei’ observation’s regressors are distributedcgs~ U[0, 3], z;; ~ U[0,5], andz;; ~ U[0,2],
respectively, and in all cases all; are i.i.d. Responseg for the three simulations are generated as

d
Yi = (Hxlj) +N(Ovd2)> Yi = (E] '1'22]) +N(074d2)7 and Yi = 2Zj g +N(07d2)

J=1

respectively, wheré is the dimension. The last two experiments are ternary.ifr@bservation’s regressors
are distributed as;; € {0, 1,2} with probabilities{.7,.2,.1} and{1/3,1/3,1/3} for the fourth and fifth
experiments, respectively. The fourth model is subadslititiile the fifth model is superadditive; specifically
they are

yi = (X @)+ N(0,d%/10) and y; = ([]; i) + N(0,d%).

For each of 50 simulations, 12000 training and 3000 testaigte were randomly generated and statistics
computed (all tests are out-of-sample).

Figure[3 demonstrates testing error for IRP over the regeldrpath of isotonic solutions for the first
three experiments (with continuous covariates). Each jgatlormalized by presenting the ratio of model
MSE relative to the MSE of a baseline (null) model which fite thean of the training data. The main
observation here is that as the dimension increases, e effoverfitting of the standard (non-regularized)
isotonic regression becomes more significant and causeskéineed u-shaped pattern across the IRP path,
where the minimum prediction MSE is obtained earlier in théhp This is the effect we alluded to in the
introduction and it stems from the limitations of the isadtity constraints in controlling model complexity
in high dimension.

Table[1 displays certain statistics on all five simulatiossneell as a comparison to the results of a
least squares regression. We first discuss the case of wonsircovariates (first three models). In lower
dimensions standard isotonic regression performs well,ragularization through IRP offers no gain (this
is seen in dimensiod = 2 in all three examples). Here, isotonic regression conbials by accommodating
the non-linearities in the true model model and signifigantitperforms least squares regression. As the
number of covariates increases, regularization through bBcomes necessary to control variance, and
the optimal performance is obtained earlier in the IRP pdiiménsiond = 4 in our examples). When
d increases further, however, IRP also becomes inefficieabatrolling variance, and linear regression
dominates. This effect can be traced back to the large anaiuitting performed by IRP already in its
initial iterations, as demonstrated in the previous sactio

With respect to the models with ternary covariates, isat@agression outperforms the simple linear
regression, however the IRP path does not statisticallyorgperformance. For the subadditive model

14



(Model 4), performance is better for dimensions 2 and 4y aftech again IRP is unsuccessful at controlling
variance. However, the superadditive model (Model 5) dateis for all dimensions.

Thus, our simulations confirm that isotonic regressiongrens well in low dimension, but requires a
lot of data in order to learn good nonlinear models in higherathsions. In intermediate dimension, IRP
can offer a compromise between fitting flexible isotonic medad controlling model complexity, resulting
in useful prediction models.
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Figure 5: Normalized mean squared error for out-of-sample predistf simulations with differ-
entdimensiond. Each path is normalized by the MSE of the initial model wheseh training point
is fit to the mean. The x-axis in each figure corresponds to tineber of partitions made by IRP,
i.e. the curves show how the normalized MSE of test data vasethe IRP algorithm progresses.
Model 1 uses the functiog; = ([, z;) + N (0, d*) with z;; ~ U[0, 3]. Model 2 uses the function

yi = (32, 23;) +N(0,4d?) with z;; ~ U0, 5]. Model 3 uses the functiog = 2225 % 4 N(0, d?)
with z;; ~ U[0, 2]. Fifty simulations were run with 12000 training and 300Qitespoints. Only the

first 750 partitions of the paths are displayed in order toerthke MSE of the earlier IRP iterations
visually clearer. Scales also differ in order to make thepssaf the curves clear.

5.2 Modeling MPG of Automobiles

We next illustrate the performance of IRP when predictirgriiles-per-gallon of a list of 392 automobiles
manufactured between 1970 and 1982 using seven varialimsk(B Asuncion 2010). Seven regressions
are performed in dimensions one through seven, where tlables chosen are from the following order:
origin (American, European, or Japanese), model year, rurbcylinders, acceleration, displacement,
horsepower, and weight. The order of the variables wasrm@ted in order of the magnitude of coefficients
from a least squares linear regression on all variablegyit@Qrsurprisingly, had the largest magnitude, and
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Model 1: Yi = (H7 Iij) +N(O, d2) with Tij ~ L{[O, 3]

Number of IRP Min Isotonic Regression LS IRP Min | IRP Path
Variables MSE MSE MSE Path Length

2 4.06  0.04) 4.06  0.04) 4.54  0.03) 44 437

4 21.83 (¢ 0.26) 22.37 & 0.37) 36.88 + 0.37) 18 3711

6 391.74 (+ 9.52) 866.28 (+ 56.18) 385.06 (+ 11.45) 3 7685

8 5811.56 - 312.28) | 39088.71 # 6248.82)| 4276.90 {- 287.53) 2 10153

Model 2: Yi = (Zj $Z27) +N(O, 4d2) with Tij ~ U[O7 5]

Number of IRP Min Isotonic Regression LS IRP Min | IRP Path
Variables MSE MSE MSE Path Length

2 16.50 ¢- 0.13) 16.50 ¢ 0.13) 23.03 ¢- 0.13) 625 999

4 74.68 & 0.58) 75.13 ¢ 0.61) 77.94 & 0.50) 28 4861

6 203.60 (£ 1.77) 214.47 ¢ 2.18) 165.70 @ 1.15) 8 8520

8 596.05 (+ 5.42) 655.75 (+ 6.15) 285.12 (£ 1.81) 4 10604

Model 3:y; = 2223 ™ 4+ N(0, d2) with z;; ~ U[0, 2]

Number of IRP Min Isotonic Regression LS IRP Min | IRP Path
Variables MSE MSE MSE Path Length

2 4.10  0.02) 4.10  0.02) 4.73 ( 0.04) 62 628

4 44.47 ¢ 1.05) 49.90 ¢ 2.01) 101.99 - 1.78) 19 7558

6 7847.71 { 198.92) | 16876.51 - 1055.26)| 5008.07 £ 170.40) 4 11787

Model 4:y; = (32, 2i;)*/* + N(0,d?/10) with z;; € {0, 1,2} with probabilities{.7, .2, .1}

Number of IRP Min Isotonic Regression LS IRP Min | IRP Path
Variables MSE MSE MSE Path Length

2 0.40 @& 0.00) 0.40 @& 0.00) 0.46 @ 0.00) 8 8

4 1.61 + 0.01) 1.61 + 0.01) 1.67 + 0.01) 9 30

6 3.64 & 0.03) 3.65 @ 0.03) 3.69 @ 0.03) 4 85

8 6.49 @ 0.04) 6.53 @ 0.04) 6.45 (@ 0.05) 5 267

Model 5:y; = (I[, =) + N(0,d) with z;; € {0, 1,2} with probabilities{1/3,1/3,1/3}

Number of IRP Min Isotonic Regression LS IRP Min | IRP Path
Variables MSE MSE MSE Path Length
2 3.99 (= 0.03) 3.99 (= 0.03) 4.44 (+ 0.03) 4 5
4 15.99 (- 0.12) 16.01 - 0.12) 20.00 (- 0.16) 6 25
6 36.44 (- 0.29) 36.44 (- 0.29) 52.91 (- 0.79) 87 103
8 68.87 (- 0.70) 68.88 (- 0.71) 118.84 (+ 4.59) 67 430

Table 1: Statistics for simulations generated by the three diffenemdels as labeled above. A path
of mean squared errors for each model along the regularizptith was computedRP Min MSE
refers to the minimum MSE along these pathRP Min Pathis the number of partitions made to
generate the minimum MSE and IRP Path Length is the numbeartitipns in the global isotonic
solution.LS MSHs the MSE from using least squares regressions. Bolded M&fEes for IRP and
isotonic regression indicate that they are lower than th&EMSthe least squares regression with
95% confidence.
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in giving discrete variables 1,2,3 to the respective oggthere actually is a monotonic trend in origin (i.e.,
American cars are least fuel efficient, followed by Europears, with the Japanese being most efficient).
While we include origin as a variable here, we note that sinplerformance for IRP was achieved without
origin in an independent experiment.

Since the data set is rather small, we perform leave-onerogs-validation (i.e. the data is divided into
training and testing sets of 391 and 1 instances, respbcta@ that each instance is used out-of-sample
once). TabléR displays certain statistics on the IRP, aotbmic regression, performance as well as a
comparison to the results of a least squares regressionrdfgdisplays MSE on out-of-sample data for
IRP over the regularized path of isotonic solutions for a@sgion with six variables, exemplifying that
overfitting occurs after 15 iterations of IRP (seen by thehdged curve with minimum at 15 iterations).

Number of IRP Min Isotonic Regressior LS IRP Min | IRP Path
Variables MSE MSE MSE Path Length

1 41.79+5.44 42.20+ 5.39 41.77+ 6.05 9 17

2 24,13+ 3.53 24514+ 3.50 27.41+3.74 7 26

3 13.884+ 2.55 14.124 2.39 16.174+2.90 9 37

4 14.654+ 2.75 15.30+ 2.54 16.324+ 2.93 7 62

5 11.01+ 2.39 11.264 2.28 15.35+ 2.94 15 109

6 10.774+ 2.37 11.344+2.13 14.23+2.70 15 114

7 10.844 2.36 11.2842.12 11.374+2.09 8 128

Table 2: Statistics for auto mpg data. Miles-per-gallon is regrdssea seven potential variables:
origin (American, European, or Japanese), model year, puoficylinders, acceleration, displace-
ment, horsepower, and weight. Réwses the firsk variables from this list in the regression. A path
of mean squared errors for each model along the regulaizptith was computed. Bold demon-
strates statistical significance of either IRP or isotoa@gression over a least squares regression with
95% confidence, as determined by a paired t-test using 3%ha@absquared losses obtained from
leave-one-out cross-validation.

6 Discussion and extensions

The IRP algorithm offers solutions to both the statisticad aomputational difficulties of isotonic regression.
Algorithmically, IRP solves[(2) as a sequence of easierrigipartitioning problems that are efficiently
solved using network flow algorithms. From the statisticatgpective, IRP generates a path of isotonic
models, each defining a partitioning of the spa¢ento isotonic regions. The averages of observations
in these regions comply with the isotonicity constrainteddreni ). In this view, IRP provides isotonic
solutions along its path that are regularized versions@fgtbbally optimal isotonic regression solution.
Our discussion so far has focused on using the sum of squeE®function in[(R) for fitting “standard”
isotonic regression subject to squared error loss. A welkmnresult of Barlow & Brunk (1972) implies that
the solution of a whole variety of loss functions subjectstmtonicity constraints can be obtained by solving
standard isotonic regression, as long as the loss can bemwas minimizingd ", w; (¥(z;) — x;2;)% in
z € R™ for some convex differentiabl& and some data-dependent valuesnd weightso.
We first show how this result facilitates a connection betw& and the well-known work of Maxwell
& Muckstadt (1985) (and similarly Roundy (1986)), who sahan operations research problem (related to
scheduling reorder intervals for a production system) biyiceng it to the optimization of a convex objective
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6 Variables with Auto MPG Data
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Figure 6: Mean squared error for auto data with six variables usingilRBtrates that overfitting
occurs after 15 iterations of IRP, i.e. MSE decreases ubtpdrtitions are made, after which MSE
begins to increase. The figure displays only the first 30 i@t so that the U-shape is clear.

subject to isotonicity constraints. In our notation, tt@jective (i.e. loss function) i$°:" | (¢i/9; + bigi),
wherec;, b; are data-dependent nonnegative constants determinectibytbblem formulation. To apply
the theory of Barlow & Brunk (1972), we reformulate their plem as minimizing>_!__; ¢;(z; — (—b;/c;))?

in z € R", i.e. a standard weighted isotonic regression, and recavéf = /—=z; (note that the isotonic
regression fits nonpositive observations;/c;). Indeed, the algorithm of Maxwell & Muckstadt (1985) is
completely equivalent to applying IRP on this modified pesb! It should be emphasized, however, that
Maxwell & Muckstadt (1985) were interested in this algomitipurely as a means to reach the globally op-
timal solution, and were uninterested in statistical codasitions which led us to consider intermediate IRP
solutions as regularized isotonic models of independdatast. Spouge et al. (2003) also used Maxwell &
Muckstadt (1985) to inspire the partitioning algorithm tbe standard isotonic regression problem, how-
ever they do not make the connection using Barlow & Brunk 209@nd also have no statistical interests in
mind.

The results of Barlow & Brunk (1972) also imply that many athess functions subject to isotonicity
constraints can optimally be solved via a reformulation fw@blem of the form[{2). For instance, in the
case of a binary respongec {0, 1}, it may be desirable to fit isotonic models by minimizing thesample
logistic log likelihood rather than the sum of squares (Be&ttt 1989, Auh & Sampson 2006):

min {Z yilog (pi) + (1 —yi)log (1 —pi) 1 pi <p; VY(i,j) €Z,0<p; <1 Vi}. (11)
i=1

Applying the transformation of Barlow & Brunk (1972), thelstion to (I1) turns out to be identical to
solving the squared loss problem (2) with the valyese {0,1}. Naturally, any problem that can be
reformulated ad{2) can be solved using the IRP algorithrd,ve@ plan to investigate the applicability of
the resulting regularization algorithms in future work.

As our analysis and experiments have demonstrated, cotigouisinot a significant concern with IRP,
at least for moderate to large data sizes. However, ovediis still a major concern as dimensionality
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grows. As demonstrated in Sectidds 4 &hd 5, while IRP offartigh protection from overfitting through
its regularization behavior, even the first step in the IRB gauld already suffer from high variance in
dimension as low as six. A key question pertains to idemtgyfactors affecting this overfitting behavior,
specifically characterizing situations in which the iditRP iterations are less prone to overfitting.

7 Appendix

Proposition[1I:
Proof. We first rewrite both the IRP partition problefd (3) and the imaat between-group variance partition
problem [(4). Assum& = AU B andA N B = {}. Then itis easy to shoW |y, = |A[g4 + |B[yp
which gives(y4 — 7y) = —|B|(Us — ¥y)/|A|. The objective function td{3) can be writtéB|(y; —
v ) — |A|(¥4 — ¥y ) and using the previous relationship can again be rewtt&n(y z — vy, ). An obvious
property of the optimal IRP cut is that; > 7,. If we add this as a redundant constraint to the IRP
partition [3), then we can find the same optimal partition bgximizing the square of the objective, i.e.
maximize4|B|*(75 — 7y )? subject to the appropriate constraints. The objective efttetween-group
variance partition[{4) can be rewritten using the abovetiorlahip as(|B| + |B|?/|A|)(Tz — 7y)?. Then
denoting the IRP and maximal between-group variance abgscby g* (A, B) and g( A, B) respectively,
we haveg* (A, B) = 4|A||B|g(A, B)/n since|A| + |B| = n is constant. Eliminating the constaftn
gives the first result.

In order to prove the second statement, notice that optiynafli(3) and [#) givesA*||B*|g(A*, B*) >
|A*||B*|§(A, B) andj(A, B) > §(A*, B*) which implies|A*||B*| > |A||B|. This along with the relation

(A% + |B*))* = [A*]* + 2| 4[| B*| + |B*]* = |A]” + 2| A||B| + | B|> = (|A] + | B|)?
gives|A*|? + |B*|> < |A|]> 4+ | B|>. We use this to get the relation

(|4 = [B*])? = [A*]? — 2]A%||B*| + [B*[> o
<A = 21A%||B*| + |B? < |AP? — 2|1A]|B| + | B = (|A| - |B|)?

which gives the second result of the proposition.

Theorem[2:
Proof. Divide the blocks inV into three subsets:

1. £: union of all blocks inV that are “below” the algorithm cut.
2. U: union of all blocks inV that are “above” the algorithm cut.

3. M: union of K blocks inV that get broken by the cut (note that blockshii may be separated by
blocks inL or ).

Define M; (Mk) to be the minorant (majorant) block itl. For eachM define M} (M) as the
groups inMj, below (above) the algorithm cut. Defin%( C £ (AY C U) as the union of blocks along
the algorithm cut such thatl = ME (AY < MVY). Refer to Figurél7 for an example of these definitions
whereAY = AL = AU = AL = {} for simplicity.

We use the above definitions and assumptions to state ttwvinf two consequences that cause a
contradiction:
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| Yar, <Y, DY Optimality (i.e. according to KKT conditions) and isotaity.
Il Yar, > Yy andy,,,. < 7y . Thisis proven below.
(I) implies 75, > ¥, Which contradicts (1) and we are left to prove (Il). Optintlof blocks M, and
My gives
(@ Ymr > Ymy
(0) Tnrz > Uy
The proof fory,,, > 7y is as follows with two cases:

1. AV ={}: Uuv > Yy because using the algorithm cutfin (5), we have

Yo wi=m)>0= Y ui> Mgy = Typ > Ty
ieMY ieMVY

The first inequality is true about the cut because there arigtlock below/{ to affect isotonicity.
Then using (a), we get

Yur > Yuv > Yv = Ym, > Yy

2. AU £ 1} Un, > Yav > Yy - The firstinequality is due to optimality and the second @iagpecause
the algorithm cut inf[B) gives

Yo wi—m) > 0= ui> A5y = Gav > Ty,
icAY icAY

which again is possible because no block exists beléwto affect isotonicity.

The proof fory,,, < 7y is a similar argument and hence gives (ll). The case 1 is also trivially covered
by the above arguments. We conclude that the algorithm ¢annany block. m

The following remark is necessary for completeness of thefpof Theoreni 2.

Remark 6 The case of two connected optimal groups having equal mesatsmot be discussed in Theorem
[2. In this event, the optimal solution to isotonic regressio not unique. It is trivial thatd/; would not
have been split by Algorithid 1yifM1L =Yy # 7y,. Otherwise, consider the cage;. = Yyv = v and
assumel/; is a block broken by the cut ii. M and MV are also possible blocks whereby) € £ and
MY €U, and henceVl; = M¥ UMY ¢ M. The same remarks apply id. Thus, the proof still holds if
there are multiple isotonic solutions.

Remark 7 The case of multiple observations at the same coordinatebealisregarded. To see this, &t
be a set of nodes with the same coordinates. From the contstrgj = y;, Vi, 5 € J and thus the number
of observations can be reduced and all observations$ fit to the same valug. Then

D-v)? =190 +> v 75

jedJ jedJ
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Figure 7: lllustration of proof of Theorerh]2. Black lines separatedid® The diagonal red line
through the center demonstrates a cut of Algorifint1s the union of blue blocks below the cut
andl/ is the union of green blocks above the cut. White blocks awels that are potentially split
by Algorithm[d. These blocks are split infa{, . .., MI below the cut and/, ..., M} above

the cut. In the proofM; = M} U MY Vi = 1...5. The proof shows, for example, that if the
algorithm splitsM; into M{ and MY according to the defined cut il (5), then there must be no
isotonicity violation when creating blocks froM and M. However, sincél/; is assumed to be

a block, there must exist an isotonicity violation betwééf and MY, providing a contradiction.

so that the sum of squared differences o¥eran be reduced to be a single weighted squared difference.
Problem [2) becomes the weighted isotonic regression enobl

min {d wi(@i —v:)*: 6 <§; Vi, 4) € T}, (12)
=1

for which the KKT conditions imply that observations are iagdivided into k groups where the fits in
each group take the weighted group megh= > ., (wiy:)/ >,y w; rather than the group mean. The
optimal cut problem[(5) changes to have= w;(y; — 7j>) and the above results on IRP generalize easily
noting that now the weighted algorithm cut implig$ > 3’ for a group A on the upper side of the cut such
that no group exists below that could affect isotonicity.

Proposition[B:
Proof. Any final partition can be represented by a simple tree. @endevelk of the tree. Lefp, > .5
be the greatest over levelsl, ..., k — 1 such that a partition of group size. into two groups of sizen,,

and(1 — p)n; whereny is the corresponding size of the partitioned group. Denypté bthe largest group
partitioned at iteratiork whose size can be bounded Hy;| < npﬁ. We next note that the complexity of
solving a problem wit: observations is higher than solving 2 problems withand(1 — p)n observations.
Indeed,n? = pn® + (1 — p)n® > p?n3 + (1 — p)®n?. Thus, we assume that at iteratibnwe solve only
problems of the largest possible size (rather than sevesalgms of small size). The number of groups at
iteration & can also be bounded hy/|L;|. Denote byT,, (k) the complexity of partitioning all groups at
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level k. Then

Ty (k) < O(WILI ) = O(n|L[*) < O(n(np)*) = O(n®)pi".

Then denote bys the total number of levels in the partition tree. We have
1

K
ZTpk pmax < ZO pmax = O(n3) 1_

k=1 — pmax

|MN
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