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Abstract

We prove that q-ary sparse codes with small bias are self-correctable and locally testable. We gen-
eralize a result of Kaufman and Sudan [3] that proves the local testability and correctability of binary
sparse codes with small bias. We use properties of q-ary Krawtchouk polynomials and the McWilliams
identity -that relates the weight distribution of a code to the weight distribution of its dual- to derive
bounds on the error probability of the randomized tester andself-corrector we are analyzing.

1 Introduction

We consider the problem of error correction and detection for codes over large alphabets. LetC ⊆ Fn
q

be a linear code. The minimum distance ofC, denotedδ(C), is defined asδ = minx 6=y∈C δ(x, y), where
δ(x, y) is the fractional Hamming distance betweenx andy. Let w be a word inFn

q and letδ(w,C) =
minx∈C δ(w, x) denote the distance ofw to C. C is said to bef(n)−sparse fort > 0 if |C| ≤ f(n). C is
said to beǫ-biased if, for allx 6= y ∈ C, 1− 1

q − ǫ ≤ δ(x, y) ≤ 1− 1
q + ǫ.

We prove that sparsity and small bias are sufficient conditions to test membership ofw in C or to find the
closest codeword inC to w, while querying only a constant number of symbols fromw. Such codes are
calledlocally testableandself-correctablecodes. The following definitions are adapted to q-ary codes from
[3].

DEFINITION 1.1. LetC ⊆ Fn
q be a linear code.C is said to be stronglyk-locally testable if there exists a

constantǫ > 0 and a probabilistic algorithmT called the tester, that given oracle access to a vectorv ∈ Fn
q ,

queries the oracle at mostk times and accepts everyv ∈ C with probability 1 and rejects everyv 6∈ C with
probability at leastǫ . δ(v,C).

DEFINITION 1.2. LetC ⊆ Fn
q be a linear code.C is said to bek-self correctable if there exist constants

τ > 0 and0 < ǫ < 1
2 and a probabilistic algorithmSC called the self corrector, that given oracle access

to a vectorv ∈ Fn
q that isτ− close to a codewordc ∈ C and an indexi ∈ [n], queries the oracle at mostk

times and computesci with probability at least1− ǫ.

Note that self-correctable codes include locally-decodable codes since self-correctability is independent
of the encoder used and only uses the codewords themselves, while local decodability requires knowledge
of the encoder and the messages.
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1.1 Prior work and motivation

Dual-BCH codes are an important family of sparse unbiased codes and have a major role in Coding Theory.
Proving local testability and self-correctability for these codes will add to their powerful properties, thus
opening the door to new techniques in error detection and correction.
Moreover, local testability and self-correctability havemany applications in Complexity Theory. Although
codes satisfying these properties are not efficient (the rate tends to 0 as the block length tends to infinity),
the local nature of the underlying algorithms proves to be very useful in constructing Probabilistically
Checkable Proofs where one should accept correct proofs while only checking few locations in the proof.

Hadamard codes were the first codes shown to be locally testable and self-correctable in [1]. Recently,
Kaufman and Litsyn proved in [2] that almost-orthogonal codes are locally testable and self-correctable.
Such codes include dual-BCH codes. Kaufman and Sudan generalized these previous results and proved in
[3] that sparse random binary linear codes are locally testable and decodable.
In [4], Kopparty and Saraf proved that random sparse binary linear codes are locally testable and locallist-
decodable. They strengthen the results of Kaufman and Sudanby correcting in the high-error regime, while
using simpler proofs. They reduce the problem of testing/decoding codewords to that of testing/decoding
linear functions underdistributions. In [5], they prove that sparse low-bias codes over any abelian group
are locally testable. Although their results subsume the results of [3] (except for removing the small bias
property in the local testability case), we got our results independently and before their work was published.

1.2 Summary of results

We generalize the techniques in [3] to prove that q-ary sparse codes with small bias are locally testable
and self-correctable. We follow the proof strategy of Kaufman and Sudan. We use properties of q-ary
Krawtchouk polynomials and the McWilliams identity to bound the weight distributions of duals of sparse
codes with small bias. These properties of q-ary Krawtchoukpolynomials are non-obvious and were only
obtained after the very recent work on zeros of discrete orthogonal polynomials in [6]. Thus, extending the
results of [3] to q-ary codes requires a more detailed analysis of the underlying Krawtchouk polynomials
and their properties.

Using the derived weight distribution bounds, we get the local testability result:

Theorem 1. LetFq be the finite field of sizeq and letC ⊂ Fq be a linear code. For everyt ≤ ∞ andγ > 0,
there exists a constantk = kq,t,γ ≤ ∞ s.t. ifC is nt-sparse andn−γ biased, thenC is stronglyk−locally
testable.

To get the self-correctability result, we apply the weight distribution bounds on punctured codes, where
we removed one or two symbols from the codewords of the original codes. Namely, we prove:

Theorem 2. For everyt ≤ ∞ and γ > 0, there exists a constantk = kτ,γ such that ifC ⊆ Fn
q is a

nt-sparse andn−γ-biased, thenC is k-self-correctable.

1.3 Organization of the paper

In section 2, we derive properties of q-ary Krawtchouk polynomials and the McWilliams identity to bound
the weight distributions of the dual code. In Section 3 and 4,we prove Theorems 1 and 2 respectively.
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2 Weight distribution of duals of sparse codes

We use the McWilliams identity to relate the weight distribution of a code to that of its dual.

2.1 Q-ary Krawtchouk Polynomials and MacWilliams Identity

Let q, k andn be positive integers (k, q ≤ n). Q-ary Krawtchouk polynomialsPk(i, q, n) are orthogonal
polynomials oni = 0, . . . , n, with respect to the measure

(

n
i

)

(q − 1)i. They are defined as follows:

Pk(i, q, n) =

k
∑

l=0

(

i

l

)(

n− i

k − l

)

(−1)l(q − 1)k−l

From now on, we will drop theq andn from the definition ofPk, when it’s obvious.

2.1.1 Properties

1. Pk(0) =
(

n
k

)

(q − 1)k.

2. For everyi, Pk(i, q, n) = Pk(n− i, q
q−1 , n)(1− q)k.

3. Pk(i) hask real roots lying between(1 − 1
q )n − k(1 − 2

q ) −
2
q

√

(q − 1)k(n − k) and(1 − 1
q )n −

k(1− 2
q ) +

2
q

√

(q − 1)k(n − k).

4. Let µ1 = (1 − 1
q )n − k(1 − 2

q ) − 2
q

√

(q − 1)k(n − k) and µ2 = (1 − 1
q )n − k(1 − 2

q ) +
2
q

√

(q − 1)k(n − k).

a. Pk(i) ≤
qk

k! [(1 −
1
q )n− i]k, for all i ∈ [n].

b. |Pk(i)| ≤
qk

k! [k + 2
q (
√

(q − 1)k(n − k)− k)]k, for µ1 ≤ i ≤ µ2.

c. Pk(i) ≤ 0, for µ2 ≤ i ≤ n and oddk.

Proof. 1 and 2 follow from the definition ofPk. 3 is from Theorem 6 of [6]. 4 follows from 3 and basic
manipulations ofPk.

Let C be a linear code of lengthn overFq. For everyi ∈ [n], letBC
i be the number of codewords inC

of weighti. The weight distribution ofC is given by the vector< BC
0 = 1, . . . , BC

n >. LetC⊥ denote the
dual code ofC.

Theorem 3 (MacWilliams Identity). For a linear code overFq of lengthn,BC⊥

k = 1
|C|

∑n
i=0B

C
i Pk(i, q, n),

wherePj(i, q, n) is the generalized Krawtchouk polynomial of degreek.

The following proposition lists some properties of a linearcodeC.

Proposition 4. [3] Let C be annt−sparse linear code code overFq with δ(C) ≥ 1 − 1
q − n−γ , for some

t, γ > 0. Then:

• BC
0 = 1.
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• BC
i = 0 for all i ∈ {1, . . . , (1− 1

q )n− n1−γ}.

•
∑C

i=0 B
C
i ≤ nt.

• If C is n−γ biased, thenBC
i = 0 for all i ∈ {n(1− 1

q )− n1−γ , . . . , n}.

The following is the equivalent of Claim 3.4 in [3] forq−ary linear codes.

Claim 5. For everyγ > 0, c, t < ∞, if k ≥ (t+ c+ 1)/γ, then for anynt−sparse setS ⊆ Fn
q , then:

∣

∣

∣

∣

∣

∣

(1−1/q)n+n1−γ

∑

i=(1−1/q)n−n1−γ

BS
i Pk(i)

∣

∣

∣

∣

∣

∣

= o(n−c)Pk(0).

Furthermore, ifk is odd, we have
∑n

i=(1−1/q)n−n1−γ BS
i Pk(i) = o(n−c)Pk(0).

Proof.
∣

∣

∣

∣

∣

∣

(1−1/q)n+n1−γ

∑

i=(1−1/q)n−n1−γ

BS
i Pk(i)

∣

∣

∣

∣

∣

∣

≤

(1−1/q)n+n1−γ

∑

i=(1−1/q)n−n1−γ

BS
i |Pk(i)|

≤ maxi|Pk(i)|
∑

i

BS
i

≤ n(1−γ)k q
k

k!
|S|

= o(n−c)nk q
k

k!
= o(n−c)Pk(0)

The third inequality follows from applying property 4.a of Krawtchouk polynomials for(1−1/q)n−n1−γ ≤
i ≤ (1− 1/q)n + n1−γ . The first equality follows from the facts thatk ≥ (t+ c+ 1)/γ and|S| ≤ nt.
The second part of the claim follows from the fact thatPk(i) < 0 for everyi ∈ {(1− 1

q )n+n1−γ . . . n}.

We will use the above claim to bound the weight enumerators ofC⊥. The following lemma is the
equivalent of lemma 3.5 in [3].

Lemma 6. LetC be annt-sparse code inFn
q with δ(C) ≥ 1− 1

q − n−γ . Then, for everyc, t, γ > 0, there

exists ak0 s.t. for every oddk ≥ k0, BC⊥

k ≤ Pk(0)
|C| (1 + o(n−c)). If C is n−γ-biased, then for every (odd

and even)k ≥ k0, BC⊥

k = Pk(0)
|C| (1 + θ(n−c)).

Note As mentioned in [3], the notationf(n) = g(n) + θ(n) means that, for everyǫ > 0 and for large
enoughn, g(n)− ǫh(n) ≤ f(n) ≤ g(n) + ǫh(n).
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Proof. By MacWilliams Identity we get:

BC⊥

k =
1

|C|

n
∑

i=0

BC
i Pk(i)

=
Pk(0)

|C|
+

1

|C|

n
∑

i=1

BC
i Pk(i)

=
Pk(0)

|C|
+

1

|C|

n
∑

i=(1− 1
q
)n−n1−γ

BC
i Pk(i),

=
Pk(0)

|C|
+

1

|C|
(o(n−c)Pk(0)), using claim 1

=
Pk(0)

|C|

(

1 + o(n−c)
)

.

where the third equality follows fromδ(C) ≥ 1 − 1
q − n−γ . The second part of the lemma, whenC is

n−γ-biased:

BC⊥

k =
Pk(0)

|C|
+

1

|C|

n
∑

i=1

BC
i Pk(i)

=
Pk(0)

|C|
+

1

|C|

(1− 1
q
)n+n1−γ

∑

i=(1− 1
q
)n−n1−γ

BC
i Pk(i),

=
Pk(0)

|C|
+

1

|C|
(θ(n−c)Pk(0)), using claim 1

=
Pk(0)

|C|

(

1 + θ(n−c)
)

.

where the second equality follows sinceC is n−γ-biased.

3 Local Testing

We will use a canonical tester that uses codewords in the dualof a code to test membership of words in the
code. The following tester is proposed in [3] for binary codes:

T v
k :

• Choosey ∈U [C⊥]k, where[C⊥]k is the set of codewords inC⊥ of weightk

• Accept if and only if〈y, v〉 = 0

If v ∈ C, T v
k accepts with probability 1. We want to estimate the probability that T v

k acceptsv when
v 6∈ C. Following the same approach as in [3], we look at a new code that is the linear span ofC andv,
C||v =

⋃q
µ=0(C + µv).
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Proposition 7. for v 6∈ C, T v
k rejectsv with probabilityRejk(v) = 1−

B
(C||v)⊥

k

BC⊥
k

.

Proof. If T v
k acceptsv, then〈y, v〉 = 0, theny ∈ B

(C||v)⊥

k , since∀x ∈ C andµ ∈ Fq, 〈y, x〉 = 0 and

〈y, x+ µv〉 = 〈y, x〉+ µ〈y, v〉 = 0. If y ∈ B
(C||v)⊥

k , then〈y, x+ µv〉 = 0, ∀x ∈ C, a ∈ Fq.

We now show thatRejk(v) = Ω(δ(v,C)).

We will need the following two lemmas.

Lemma 8. [3] For everyk, for sufficiently largen and for everyτ < 1
2 , Pk(τn) ≤ (1− τ)kPk(0).

Proof. The proof is the same as in [3], where we use the fact thatPk(0) =
(n
k

)

(q − 1)k and property4.a of
q-ary Krawtchouk polynomials.

The following lemma is the equivalent of Lemma 5.4 in [3].

Lemma 9. Letk, t, γ be constants. Letγ′ ≤ γ/2. For sufficiently largen, letD be annt-sparse code inFn
q

of distance at least1− 1
q−n−γ. Letδ ≤ 1

2 and leta = max{(1− 1
q )n−n1−γ′

−δn, δn} andb = (1− 1
q )n−

n1−γ′
.Then

∑b
i=a Pk(i)B

D
i ≤ 2(q2 + q)Pk(0).min

{

(1− q
q−1δ)

k−2,
(

2q
(q−1)δ

)k−2
+

(

2q
(q−1)n

−γ
)k−2

}

.

Proof. For a code with minimum distancen(1 − 1
q ) − n1−γ , the Johnson bound states that, for

i ≤ n(1− 1
q )− n1−γ/2, the number of codewords in a ball of radiusi is at most qn2

(n− q
q−1

i)2
.

Letmi =
qn2

(n− q
q−1

i)2
. Then, by the Johnson bound,

∑i
j=0B

D
i ≤ mi, for all i ≤ b. We get:

b
∑

i=a

Pk(i)B
D
i ≤

(q − 1)k

k!

b
∑

i=a

(

n−
q

q − 1
i

)k

BD
i

≤
(q − 1)k

k!

(

n−
q

q − 1
i

)k

ma +
(q − 1)k

k!

b
∑

i=a+1

(

n−
q

q − 1
i

)k

(mi −mi−1)

Replacingma by its value in the first term, we get

(q − 1)k

k!

(

n−
q

q − 1
a

)k

ma ≤
(q − 1)k

k!

(

n−
q

q − 1
a

)k

×
qn2

(

n− q
q−1a

)2 ≤
q(q − 1)k

k!
n2

(

n−
q

q − 1
a

)k−2

For the second term, note thatmi −mi−1 ≤
2q2n2

(

n− q
q−1

i
)3 . Hence, we get:
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(q − 1)k

k!

b
∑

i=a+1

(

n−
q

q − 1
i

)k

(mi −mi−1) ≤
(q − 1)k

k!

b
∑

i=a+1

(

n−
q

q − 1
i

)k 2q2n2

(

n− q
q−1 i

)3

≤
2q2n2(q − 1)k

k!

b
∑

i=a+1

(

n−
q

q − 1
i

)k−3

≤
2q2n2(q − 1)k

k!
(b− a)

(

n−
q

q − 1
a

)k−3

≤
q2n2(q − 1)k

k!

(

n−
q

q − 1
a

)k−2

Combining the above, we get

b
∑

i=a

Pk(i)B
D
i ≤

(q2 + q)n2(q − 1)k

k!

(

n−
q

q − 1
a

)k−2

.

Substituting for the value ofa and using the bound(q−1)knk

k! ≤ 2Pk(0), we get:

∑b
i=a Pk(i)B

D
i ≤ 2(q2 + q)Pk(0).min

{

(

1− q
q−1δ

)k−2
,
(

2q
(q−1)(δ + n−γ)

)k−2
}

.

Using the convexity of the functionf(x) = xk−2, we get:

∑b
i=a Pk(i)B

D
i ≤ 2(q2 + q)Pk(0).min

{

(1− q
q−1δ)

k−2,
(

2q
(q−1)δ

)k−2
+

(

2q
(q−1)n

−γ
)k−2

}

.

The lemma follows since forx, y, z > 0, min{x, y + z} ≤ min{x, y}+ z.

Back to the weight enumerator of the dual code, we use the above two lemmas to prove the following
lemma:

Lemma 10. For everyc, t < ∞ andγ > 0, there exists ak0 such that ifC is annt-sparse code of distance
δ(C) ≥ 1− 1

q − n−γ andv ∈ Fn
q is δ-far fromC, then, for oddk ≥ k0,

B
(C||v)⊥

k ≤ (1−
δ

2
+ o(n−c))Pk(0)

Proof. Let γ′ = γ/2. We will prove the lemma fork0 = max{k1, k2, 16(q
2 + q)}, wherek1 is chosen to

be big enough so that Claim 5 applies andk2 is the constant given by Lemma 6 as a function oft, c andγ.
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By the MacWilliams Identity, we have

B
(C||v)⊥

k =
1

q|C|

n
∑

i=0

B
(C||v)
i Pk(i)

=
1

q|C|

n
∑

i=0

BC
i Pk(i) +

1

q|C|

n
∑

i=0

B
(C||v)
i Pk(i)

=
1

q
BC⊥

k +
1

q|C|

n
∑

i=0

B
(C||v)
i Pk(i)

By Lemma 6, we haveBC⊥

k ≤ Pk(0)
|C| (1 + o(n−c)). Hence, it’s enough to prove

1

q|C|

n
∑

i=0

B
(C||v)
i Pk(i) ≤ (1− δ + o(n−c))

Pk(0)

|C|
.

Applying Claim 5 to(C + µv), we get
∑n

i=n(1− 1
q
)−n1−γ′ B

(C||v)
i Pk(i) = o(n−c).Pk(0). Now, it suffices to

prove
n(1− 1

q
)−n1−γ′

∑

i=0

B
(C||v)
i Pk(i) = (1− δ + o(n−c))Pk(0).

Sinceδ(C) ≥ 1− 1
q −n−γ , BC+µv

i = 0 for everyi = {0, . . . , n(1− 1
q )−n1−γ′

− δn}, except possibly for

i = δn (v ∈ C + v andδ(v,C) ≤ δ). If δn ≤ n(1− 1
q )− n1−γ′

, BC+av
δn = 1. Thus, we have

n(1− 1
q
)−n1−γ′

∑

i=0

BC+µv
i Pk(i) ≤ Pk(δn) +

b
∑

i=a

BC+µv
i Pk(i),

wherea = max{n(1 − 1
q ) − n1−γ′

− δn, δn} andb = n(1 − 1
q ) − n1−γ′

. Using the bound in 9 for these
values ofa andb, we get:

∑n(1− 1
q
)−n1−γ′

i=0 BC+µv
i Pk(i) ≤ Pk(0)

(

(1 − δ)k + 2(q2 + q)min

{

(1− q2

(q−1)2 δ)
k−2,

(

2q
q−1δ

)k−2
}

+

O
(

n−γ′(k−2)
))

.

Now, we want to prove that(1 − δ)k + 2(q2 + q)min

{

(1− q
q−1δ)

k−2,
(

2q
(q−1)δ

)k−2
}

≤ (1 − δ), for

0 ≤ δ < 1/2.

• For δ ≤ q−1
8q2(q+1)

andk ≥ 2 + 2q
q−1 , we have

(1− δ)k + 2(q2 + q)
(

2q
(q−1)δ

)k−2
≤ (1− δ)k + 2(q2 + q)

(

2q
(q−1)δ

)2
≤ 1− k

2δ +
q

q−1δ ≤ 1− δ.

• For q−1
8q2(q+1)

≤ δ ≤ 1/2 andk ≥ 16(q2 + q), we have

(1−δ)k ≤ 1
4 and2(q2+q)(1− q

q−1δ)
k−2 ≤ 1

4 . Hence(1−δ)k+2(q2+q)(1− q
q−1δ)

k−2 ≤ 1
2 ≤ 1−δ.
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The lemma follows sincek ≥ t+c+1
γ as in Claim 5.

Finally, we prove the main theorem for local testability forsmall-bias codes over large alphabets.

Proof of Theorem 1 Givent andγ, let k be an odd integer greater thank0 as given by Lemma 10. The
rest of the proof is the same as the proof of Theorem 5.5 in [3].

4 Self-correctability

Below is the canonical self corrector for the codeC that uses the dual codeC⊥. This algorithm is used in
[3] for binary codes.

SCv
k(i) :

• Choosey ∈U [C⊥]k,i, where[C⊥]k,i is the set of codewords inC⊥ of weightk that have a non-zero
value at indexi.

• Compute(−yi)
−1

∑

{j∈[n]−{i}s.t.yj 6=0} vj.

SCv
k(i) have oracle access tov such thatδ(v, c) < 1

2k , for everyc ∈ C. It makesk − 1 queries tov. We
want to estimate the probability thatSCv

k (i) doesn’t computeci.

We’ll start by estimating the probability thaty ∈U [C⊥]k has non-zero entries at indicesi andj. As in
[3], let Ci = {π−i(c), c ∈ C}, whereπ−i(c1, . . . , ci−1, ci, ci+1, . . . , cn) = (c1, . . . , ci−1, ci+1, . . . , cn).

Proposition 11. [3] Let π−1
−i (c1, . . . , ci−1, ci+1, . . . , cn) = (c1, . . . , ci−1, 0, ci+1, . . . , cn) and π−1

−i (S) =

{π−1
−i (y)|y ∈ S}. Then[C⊥]k,i = [C⊥]k − π−1

−i

(

[(C−i)⊥]k
)

and hence,|[C⊥]k,i| = |[C⊥]k| − |[(C−i)⊥]k|.

Proof. If y ∈ C⊥ with yi = 0, thenπ−i(y) ∈ (C−i)⊥ and hence{π−i(y)|y ∈ C⊥| yi = 0} ⊆ (C−i)⊥.
We’ll show that(C−i)⊥ = {π−i(y)|y ∈ C⊥| yi = 0}.

(C−i)⊥ is the dual ofC−i, hence|(C−i)⊥| = qn−1

|C−i|
= qn−1

|C| sinceδ(C) ≥ 2
n . Thus,|(C−i)⊥| = 1

q |C
⊥|.

On the other hand,|{π−i(y)|y ∈ C⊥| yi = 0}| ≥ 1
q |C

⊥|. Therefore[C⊥]k,i = [C⊥]k − π−1
−i ([(C

−i)⊥]k).

Extending the puncturing to two indicesi 6= j, letC−{i,j} be the projection ofC on [n]− {i, j} and let
π−{i,j} be that projection. Thus, we get:

Proposition 12. [3] For every i 6= j, [C⊥]k,{i,j} = [C⊥]k − π−1
−i ([(C

−i)⊥]k) − π−1
−j ([(C

−j)⊥]k) +

π−1
−{i,j}([(C

−{i,j})⊥]k). Hence,|[C⊥]k,{i,j}| = |[C⊥]k| − |[(C−i)⊥]k| − |[(C−j)⊥]k|+ |[(C−{i,j})⊥]k|.

Proof. Same as in [3].

Using what we know about weight distributions of the above dual codes, we derive the probability that
yj 6= 0 wheny is chosen at random from[C⊥]k,i.
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Lemma 13. For everyγ > 0 andc, t < ∞, there existsk such that for sufficiently large n, ifC ⊆ Fn
q is an

nt-sparse,n−γ-biased linear code, then for everyi 6= j ∈ [n], the probability thatyj 6= 0, wheny is chosen
at random from[C⊥]k,i is k−1

n−1 + θ(n−c).

Proof. Pry∈U [C⊥]k,i
[yj 6= 0] =

|[C⊥]k,{i,j}|

|[C⊥]k,i|
. Using the above two propositions, we can calculate those two

quantities. C, C−i, C−j andC−{i,j} arent-sparse,n−γ-biased codes, with respective block lengthsn,
n− 1, n− 1 andn− 2. Note also that they all have the same size. Pickingk large enough to apply Lemma
1 to these codes , we get:

|[C⊥]k| =
(q − 1)k

|C|

((

n

k

)

+ θ(nk−c)

)

|[(C−i)⊥]k| =
(q − 1)k

|C|

((

n− 1

k

)

+ θ(nk−c)

)

|[(C−j)⊥]k| =
(q − 1)k

|C|

((

n− 1

k

)

+ θ(nk−c)

)

|[(C−{i,j})⊥]k| =
(q − 1)k

|C|

((

n− 2

k

)

+ θ(nk−c)

)

Now we use Proposition 12 to obtain:

|[C⊥]k,i| =
(q − 1)k

|C|

((

n− 1

k − 1

)

+ θ(nk−c)

)

and

|[C⊥]k,{i,j}| =
(q − 1)k

|C|

((

n− 2

k − 1

)

k − 1

n− k
+ θ(nk−c)

)

.

Finally,
|[C⊥]k,{i,j}|

|[C⊥]k,i|
=

k − 1

n− 1
+ θ(n−c).

Now, we prove the main lemma that bounds the error probability of SCv
k (i).

Lemma 14. [3] For every t < ∞, γ > 0, there exists ak = kt,γ < ∞ such that: ifC is annt-sparse,
n−γ-biased linear code inFn

q and v ∈ Fn
q is τ -close toC, then for everyi ∈ [n], Pr[SCv

k(i) 6= ci] ≤
kτ + θ(1/n).

Proof. Pick k large enough to apply Lemma 13 withc = 2. Hence, fory ∈U [C⊥]k,i andi 6= j, Pr[yj 6=
0] = k−1

n−1 + θ(n−2).
Let E be the set of errors inv, i.e. E = {j ∈ [n]|vj 6= cj}. Sincev is τ -close toC, then|E| ≤ τn. Let
Sy be the set of non-zero symbols iny, i.e. Sy = {j ∈ [n]|yj 6= 0}. SCv

k (i) will err only if the errors on
v line up with the non-zero symbols ofy, and hence only ifE ∩ Sy 6= φ. Therefore,Pr[SCv

k(i) 6= ci] =
Pr[E ∩ Sy 6= φ] ≤ |E|maxj∈E Pry[yj 6= 0] ≤ kτ + θ(n−1).

Since all the stringsv we are considering are at distance less than1
2k , we get the result of Theorem 2 for

the self-correctibilty of sparse small-biased linear codes inFn
q .
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5 Conclusion and future work

We proved that sparse codes with small bias over large alphabets are locally testable and self-correctable.
We used properties of the generalized Krawtchouk polynomials and some basic results from coding theory
like the McWilliams identity and the Johnson bound. The nextstep is to relax the small bias condition, while
maintaining a good minimum distance. Kaufman and Sudan wereable to remove the small bias condition
for local testability in the case sparse binary codes with large distance in [3]. Even in the binary case,
removing the small bias condition for self-correctabilityof sparse codes with large distance is still an open
problem. Moreover, the techniques used in [4] might be extended to getlist-decodability of sparse q-ary
codes.
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