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() Abstract

(O The analysis of the linearizatioffect in multifractal analysis, and hence of the estimatiomofments for multifractal processes, is

<1 'revisited borrowing concepts from the statistical physicdisordered systems, notably from the analysis of theadieadt Random
Energy Model. Considering a standard multifractal pro¢essipound Poisson motion), chosen as a simple represengaimple,

Ewe show: i) the existence of a critical ordgr beyond which moments, though finite, cannot be estimatezligir empirical

¢) averages, irrespective of the sample size of the observatjahat multifractal exponents necessarily behavedihein g, for

@ q > g*. Tayloring the analysis conducted for the Random Energy éfléal that of Compound Poisson motion, we provide
explicative and quantitative predictions for the valuesjofind for the slope controlling the linear behavior of the rifmalttal

| ‘exponents. These quantities are shown to be related onhetdéfinition of the multifractal process and not to dependhen
E sample size of the observation. Monte-Carlo simulationsidacted over a large number of large sample size realizatd
compound Poisson motion, comfort and extend these analyses

St

+ Keywords: Multifractal analysis, linearizationfiect, compound Poisson motion, Random Energy Model, tredaabments,
(O ‘moment dominant contributions.
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O ‘1. Introduction take advantage of a formal analogy between the linearizatio
effect in multifractal processes and the glass transition én th

Multifractal_ analysis is_ now consider(_ed as a ca.non.k_:al t00Rkandom Energy Model (REM)|[9] to interpret the linearizatio
() to study scaling properties and regularity fluctuationsinmet  ogact as a phase (or glass) transition.

series (or n-dimensional fields) |23,114,/31].  Practically, The REM consists in a simple model classically used in sta-

it essentially amounts to computing time or space averag&gsica| physics as an illustration of a mean-field scenéwio
of (the g-th power of) time and scale-dependent quantities[he glass transition in spin-glassé:

5 [9] or supercooledids
T(a,t), leading to the so-called structure functio8g(a, ) = (9] b =l

19N q h " uti " [15,[7]. In this model, all microscopic configurations hase+
00 7 Zk1[T(@ W% The multiresolution quantitieS (a.t) are dom independent energi€s, drawn from the same distribu-

O ‘computed (ljirectlly from the (rd]ata, a?d .deperlmd both Ion the img, These energies are quenched, i.e., they do not evaiae w
or)_ (cl)r sp?ce) hocatloq .""%d on the z?]na_yss Sea gyplca e>§?m- time. The interest of the REM stems from the fact that it dis-
ples of such quantiti€(a, t) are the increments(t + a) - X(t) plays a glass transition at finite temperature, and thatrduisi-

of ajigna[\IX [11,12], the wavcilit cdﬁtl:ientls [3] or theﬂ:vav;let tion can easily be studied analytically [9]. The physicsenhd
Leaders|[31]. In practice, multiiractal analysis assurhasthe ing the glass transition in the REM is rather simple. Abowe th

— structu.re f“”"“f’”s behave as power I"’_‘WS with respect to th&lass transition temperature, thermal activationfiicient and

> analysis scal@, in a rangeam < a < aw, with av/am > 1, a large number of microscopic configurations are exploteel: t
'>2 Sn(a, q) ~ So(q) @, (1) system is in a 'liquid’ state. Below the glass transition pem
| -
M

ature, thermal activation no longer plays a significant,ratel

and to estimating the corresponding scaling exporgéqgy, The  the system is frozen in the few lowest energy configurations.
exponent/(q) is a concave function of the statistical order As a result, its entropy per degree of freedom vanishes. The

It has been observed and argued that the expdiig@meces-  definition and main properties of the REM are briefly recalled
sarily behaves as a linear functiongpbeyond some value (see in[Appendix A.
[25,124] for the original reports of the phenomenan,| [26] for The rationale underlying the comparison between multifrac
its analysis in the case of Mandelbrot multiplicative caless  tal analysis and REM lies in two key facts: Both the REM
and [16/ 1] for more recent signal processing oriented damtr  and multifractal analysis involve the evaluation of sumsaof-
tions, in framework of the multifractal analysis of samptths  dom variables raised to a given power (constituting the con-
of stochastic processes). Following|[16], this is refet@ds trol parameter of the problem); In both cases, these random
the linearization gfect in multifractal analysis, and its study variables have heavy-tailed distributions though all ttmed-
constitutes the core of this contribution, where it is itedto  ments are finite, a typical example being the lognormal dis-
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tribution. In multifractal analysis, the structure furmts are  are taken into account. The pointsK;) are drawn from a Pois-
defined as functions of the statistical ordgrin the limit of  son process with intensity measutenr,t) on the rectangle

a large number of terms. In the REM, the partition function,l; .. The parameteB,(t) is a normalizing constant such that
Z = Yy exp(BEy), is defined as a function of the inverse tem- (Q;(t)) = 1, where(...) denotes the ensemble average (or ex-
peratures, assuming that the number of microstates is largepectation) of the process.

Hence the quantitiefl (a, t)] and expfEyx) formally play a It has been shown that CPC satisfy the following key relation
similar role, and the partition functianis the formal analog of
the structure functioS,(a, q). Quite importantly, heavy-tailed (Qr(H)% = exp[—¢(q) M(Cr(1)], q> -1 (5)

distributions have the property that the dominant termdén t

sum become very large (especially for large valuegof gin ~ Wherem(C:(9)) = [ , dm(r’,t") corresponds to the measure of

the present context), which turns the use of the Central tLimithe coneC: (t), and wherep(q) is defined as

Theorem and of the Law of Large Numbers into a delicate mat-

ter (see, e.g., [4] in the context of the REM). e(@) = (1 - (W) - gL - W)). (6)
The present contribution aims at exploring the extent to N )

which the statistical physics arguments involved into tiuely For the sake O_f simplicity, we only consider the case O_f simoot

of the REM to explain the zero-entropy phase transition enoncave functiong(q), a typical example of which being the

able to understand the linearizatioffieet in multifractal analy-  |°9normal case(q) = cq(1 - ), with a constant > 0. The

sis. This contribution thus further complements and emsch CPM’X(t)’,'S obtamed by integrating the CPQ;(t), over time,

the connections between multifractal analysis and sizdist and by taking the limit — O:

physics([12| 27,13, 11]. More precisely, given the obseovati t

of a finite numben of samples, taken from a single realization X(t) = lim f Qi (9)ds (7

of a multifractal process, the goal of this paper is to amglyz =0Jo

using statistical physics techniques, the critical siasorder  Thjs definition yields a well-defined process on conditioat th

g up to_ which the empirical averad® (a, g) allows for a cor- @(17) = -1 [€].

rect estimate of the ensemble avergdéa, t)|9). The very ex-

ample of multifractal processes consists in the celebstizat

delbrot multiplicative cascades (see, e.g.;) [20,/11, 28]rée

views). However, in the present work, use will be made of The increment3 (a,t) of the CPMX(t), defined as

Compound Poisson Cascades, recently introduced in [6] (see

also [8]), because they benefit of statistical properties dne T(@ 1) = X(t+a) - X(), (8)

easier to handle practically and theoretically: their @ments

are stationary and characterized by a continuous scalei-inva

ance property, i.e., Eq[](1) above holds for a continuougean

of scalesa € [am, am].

2.2. Scaling and multifractal properties

with a > 0, are positive, due to the positivity @, (t) (cf.

Eq. (). If the intensity measure of the Poisson process has
the factorized formdm(r,t) = g(r)drdt, the incrementd (a, t)
correspond to a stationary random process [8], meaningithat
the statistical properties df(a, t) do not depend on time In-

2. Compound Poisson cascades terestingly, it has also been shown that the moméha, t)7)

2.1. Definition of the processes are finite only for-1 < g < g, whereq is given by [5]:

Compound Poisson cascade (CPC) and compound Poisson Qe =suplg>1:q+¢(@—-1>0). (9)
motion (CPM) were recently introduced by Barral and Mandel-
brot [6] and are now considered as reference multifractad pr One then expects that the probabilRyT(a,t) > x) behaves
cesses. The CPQ(t) corresponds to a product of positive, asymptotically a(T(a,t) > X) ~ x % whenx — +oco, and
independent and identically distributed random variabiés  hence that the variablgga, t) are heavy-tailed.
referred to as multipliers, and associated to randomlytéata  |n addition, wherg(r)dr = c(dr/r2 + &;1(dr)) (as proposed

points ¢, ri) on a rectangle in [5]), wheresy,(dr) denotes a point mass at= 1, the infi-
1 1 nite divisibility underlying the construction of(t) implies the
Il = {(t’, ry:r<r <1, 5 <t <L+ 5}. (2) following scaling properties
More precisely, the CPC is defined fios 0 through (T(ath = Cqa'®, (10)
Qi (1) = B (t) 1_[ W, (8) for-1<q<qc with () = g+ ¢(g) [S,€]. Note that[(ID) is
(ti.ri) €Ci(t) valid for allain the interval O< a < L.

The multifractal spectrur(h) consists of the Hausdibrdi-
mension of the set of pointson the real-line that possess the
same singularity (or Holder) exponemt

where only multipliers associated with points belonginghe
cone

-

Cr(t)z{(t’,r’):rsr’sl,t——st’st+r—} 4)

2 2 Tt ~cd® a—0. (11)



The functionD(h) hence provides global description of the We wish to show thap,(h) obeys a large deviation form in

local fluctuations of a sample path &{(t). For a thorough in- the limita — 0, namely

troduction to multifractal analysis, the reader is refdnee.g., _

) g ’ pa(h) ~ 140, (19)
From the results obtained in [6], it can be inferred that theA common way to derive a large deviation form is the Gartner-

multifractal spectrunD(h) of the CPM can be derived from the Ellis theorem|[29] 13, 10], which also allows the explicit ex

concave Legendre transform afg), pression ofy(h) to be determined. We first define
1
*(hY — i _ — i alInalha(t)
A*(h) = inflah— A} (12) @) = lim = In (@ ). (20)
and can be expressed as: The functionu(qg) can be computed from E.{|10), yielding
Lo (). 14 (> 0 u(@) = -A(=q), -G <q<Ll (21)
* >
D(h) = { +_Oo( ) Iothe+rwis(e) -7 (13)  From the properties od(q), it can be inferred that(q) is a

smooth convex function. Assuming the existence of the large

Also, it is interesting to quantify the dependence strienfr ~ deviation function(h) introduced in Eq.[(]g_ﬂ the Gartner-
T(a.t). The two-time correlation function of (a,t) has been Ellis theorem leads to the following expression
shown to take the following form [30]: w(h) = Sgﬂqh—#(Q)}- (22)

(T@HT(at+9) = o? (|S+ al'® +|s—a'® - 2|541(2)), (14)  The existence of the limit momenqt implies that the previous
equation is valid foh > h. such that

he = 1/ (=0c) = () (23)
(15) Using Eg. [22) and the propertf(g.) = 1 resulting from
Eq. (9),h. can be characterized by

Thi_s two-time correlation function can be recast into the fo w(he) = 1 - gehe, (24)
lowing form

whereo? is the constant

0'2 = 71
T Q0@

a property that we mention for later use.
T T — 2@ ¢ ( §) 1 Note thaty(h) is the convex Legendre transform pfq),
(TanT@t+s)=a a (16) which is more common than the concave Legendre transform
appearing in Eq[(12). Using Eq.(21), the two Legendre trans

with () = o? (|u IETCIRTCN 2|u|*(2)). (17) forms can be related in the following way:

: y(h) = supgh+ A(-0)} (25)
Eg. (I16) shows that the variabl@ga, t) are correlated over a q
typical time scalea. This result will prove useful in SeE.3.4. = sufd—q'h + A(q)} (26)
Let us however emphasize that the correlation tna@pearing o
in the two-time correlation function df(a, t) is induced by the = —supg’h-A(q)}, (27)
“measurement” process itself, that is, the fact thé, t) cor- a

responds to the increment of the sigiXgt) on a scalea. The  wjth o = —q, leading tog(h) = —1*(h), or equivalentlyy(h) =
original signalX(t) is scale invariant, and thus has no character _ p(n), as long adD(h) > 0. Finally, we note that the large
istic time scale. deviation behaviour ofa(h) for a — 0 can be rewritten as

pa(h) ~ &', (28)

d which closely matches the so-called thermodynamical multi
fractal formalism used for practical multifractal anafsand
relying on the heuristic assumptiqa(h) ~ a-°™ [12,|3, 11].
We can also observe that for< he, A* develops a linear

2.3. Large deviation properties

The statistics of the incremenitga, t) has been characterize
by the momentsgT (a, t)%), given in Eq.[[ID). It is also interest-
ing to characterize this statistics through the probakilénsity
of T(a,t). For reasons that will appear clearer later, it is conve-

: ; : : branch
nient to consider the random varialigt) defined as
Bt A*(h)y =hg. - 1. (29)
ha(t) = InT(a,t) (18) This expression may fler from the rate functiony, but at
4 Ina least provides the convex hull gf, which is consistent with

the infinite nature of the moments ®ffor g > q.: Indeed, if

Note that, from EqL{J1) abovb,(t) corresponds, in the limit of pa(h) ~ a1, thenP(T(a.1) > X) ~ X",

fine scalea — 0, to the Holder exponethi(t). The probability
densny function Oiha(o’ fora givent, Is.deno.ted aSpa(h)' It Lf u(q) was finite for all realy, the Gartner-Ellis theorem would imply the
does not depend on timedue to the stationarity of the process eyistence ofy. In the present case, wheuss finite only for—qc < q < 1, we
T(a, t). can strictly speaking only conjecture thaexists.




3. Critical order for empirical moment estimation where r > 0 is an arbitrary constant. The notation
) ) P(ha(ty), .. ., ha(tn) > hl) denotes the probability that all the
We now assume that a single observation of the procesgndom variableba(ty), . . ., ha(tn) are larger than the valug.

X(t) is available, via a finite number of sampled times with | the random variablegha(t)} were independent, Eq_(37)
a sampling periodt. From this observationn coeficients  \youd, for largen, simplify to:

{T(a,t),k = 1,...,n} are computed, withy = (k — 1)6t (to

simplify the presentation, we assume thé independent cd, P(ha < hi) ~ r (38)
though this would not be strictly true in practice). The stuse n
function can be rewritten as: For the CPC, the variabléba(t)} are strongly dependent. We

1 13 can however postulate that there existggectivenumbem, <
Sn(a,q) = HZ T(a t)d = HZ g ainaha(t) (30) nof independgnt samples. We can then deffinby analogy to
k=1 k=1 Eq. (38), leading to
-

In this section, we introduce a critical ordegt, up to which P(ha < hi) ~ — (39)
the time averag&,(a, ) estimates correctly the ensemble av- Na

erage(T(a, )%, and we study hovg* behaves as — +oo. or equivalently

The reasoning relies on combining an estimate of the number '

of independent cdicients, with two arguments inspired from In (@) — _InP(ha < hi). (40)
the analysis of the REM (se€ [2] A), namely the

identification of a dominant contribution from a saddlefgoi
estimation of theg-th moment, and a truncatiorffect due to
finite sample size observations.

Let us now determiné&; more explicitly as a function ofi,.
Using the large deviation form Eq._{[19) in EQ.140), ones gets

hi
3.1. Dominant moment contribution In (%) =—1In [f e"'”a”‘”(h)dh). (41)
The expression Eq(1L0) of the momentsTqh, t) can be ’ -
easily recovered from the large deviation form Eql (19): Becausey is a decreasing function di on this interval, a

oo saddle-point argument amounts to evaluating the integréde
(T(a, )% = a3y ~ f glhalauMl gy (31)  integrand boundary value:

—00

Na\ _ :
In the limit a — 0, a saddle-point evaluation shows that the ln(?) = [Inaly(hy). (42)
dominant contribution to this integral is locatechat hy, given
by The threshold} is thus determined from the implicit equation
¥ () = —0, (32) 1,
so that the momenR(T (a, t)9) reads wha) = [Inal In (7) (43)
(T(a, )% ~ g lnalanythm] (33)  Note that the arbitrary choice ofis fading away in the limit

a— 0.
Forh > he, y(h) = —A*(h) andhy, satisfies:
3.3. Truncated moments and structure function
(%) (hm) = @. (34) Having introduced the threshohy, truncated moments can

From the properties of the Legendre transform, it also iegpli be defined as:

N _ +00 qh

qhm + 4 (hm) = 2(0) (35) M(a, q) fh : a¥"p,(h) dh. (44)

and Let us emphasize that the truncated moment in principle de-
hm = (@), (36)  pends on the specific choice made for the thresh@ldThis

slight dependence however has no consequence on the conclu-
sions drawn from the truncated momeMs¢a, g), as seen be-
low.

These truncated moments provide us with a relevant evalu-
ation of (the log of) the expectation of the random variables
constituted by the structure functions. More preciselyywé
analyse scale by scale the sigiX#t) by considering a sequence
of scalea, = 27KL with n, = 2K then

which implicitly defineshy, as a function ofj.

3.2. Finite sample size

In the set{h,(tk), k = 1,...,n}, the largest individual contri-
bution toSy(a, q) comes, whera — 0, from the lowest value
of h,. To quantify the order of magnitude of the typical lowest
available value of this set, a simple idea is to consider estir
old hi(n) such that

In Sp, (&, 0) as; In M(a, q)

P(ha(ty). ... ha(ts) > i) = €, (37) A Tnad A g (45)



The proof of this result, which mainly relies on the Borel- This result is particularly interesting from the point oéwi of
Cantelli lemma, is provided if_Appendix]| B. In a standard multifractal analysis, and its interpretation will be fuer dis-
framework of i.i.d. random variables, this limit would ber fa cussed in Sectidn 3.5
too rough to provide any useful insight ab&(a, g). In our Egs. [35) and(36) implicitly rely on the assumptiuﬁb he,
case, however the limit retains some fundamental infolwnati that we now briefly discuss. Using E@.{24) and the fact that
about the behaviour &, ¥ is a decreasing function frofm, to h, one can see that the

conditionhg > hc is equivalent to
3.4. Critical order

- . . 1<1-heQc.
Combining the truncation and saddle-point arguments, we

observe that two dierent situations can arise (cf/ [2]). Hence the property’(qe) = he < 0 impliesh! > he, a condi-
Whenhy(q) > hi(ns), the truncated momerii(a, ), and  ; ich i i i i o irmi
m(Q alNa), Q. tion which is thus true in all interesting cases, confirmihg t

hence the structure functi®(a, g), correctly accounts for the y5)igity of Egs. [35) and{36). Combining these equatiorthwi
ensemble averadé (a, t)), which can thus be evaluated as (us- Egs. [42) and{48) yields the relation:
ing a saddle-point evaluation in the lingit— 0):

ln(na/T) 1 ~F *
. InM(a, = 4’ (da) — A(da)- (52)
im T - (gho(a) + U@ (46) na T
Usingn, = L/a, we find
In contrast, whemm(q) < hi(n,), the dominant contribution |
i i - n L/T * )/ K k
to the truncated moment is no longer locatedhatq) but in (L/7) 1= () — AG). (53)

stead comes from the lower bouhk(n,) of the integration in- Ina
terval, in which case IM(a, ) reads (again from a saddle-point

evaluation wherm — 0): In the limita — 0, Eq. [53) defines a finite asymptotic critical

orderg* as:

InM(a,q) 0=1+q2(q") - Aq). (54)

lim = = (@) Tutima). (@7)
The comparison of Eq.{51) and Ef.154) moreover immedi-

This reveals that, for small enough S,(a, q) undergoes a ately shows that:

“phase transition” when varying, occurring at a critical order hg =2'(q). (55)

0, defined as
hm(@) = hi(Na). (48) In summary, assimilatin§n(a, q) with M(a, g) and combin-

ing Eqgs.[(46) and{47), we find that the empirical structurecfu
Interestingly, Eq.[(47) reveals a linear behaviour dnof tion S (a, q) typically behaves as a power law with respect to
In Sn(a, g) whenq > ¢, thus accounting for the linearization the analysis scalewhena — 0, namelySy(a, q) ~ So(q) e
effect reported in [25, 26, 16| 1]. Note also that Eq.] (48) carwith ¢¢(g) an empirical scaling exponent. More formally, we
alternatively be interpreted as the minimal number of irsfep  can define the scaling exponestq) as the random variable:
dent samples;(q) needed to correctly estimate the moment of
orderq.

We now investigate the asymptotic behaviourgyfin the
limit n, - o (ora — 0). In practice, this limit is obtained . . .
by successively considering smaller and smaller resaiatin ~ Ed- (43) then implies thage(q) is almost surely equal to its
We have seen in Eq_{L6) that the variabléa, ) are correlated average values(a)) = £(q):
over a timea, so that the same result is expected Hg(t). A

In Sn(a, @)

Ina (56)

Ze(Q) = Ligg

a.s
natural estimate fom, is thus Ze(a) =2(a). (57)
0= L (49) The value of’(qg) can be expressed, using E§s.(46) (47), as
a —
a
f(a) = 4a), -l<q=q,
whereL is the total length of the signal. 1+ V(). q>q. (58)

We first observe that Eq$.(43) andl(49) implies
From a practical viewpoint, the above results can be summa-

y(hl) - 1 (50)  rized as follows in terms of the structure functiBp(a, g). If
s . . a<q,
whena — 0. Hencehj(n) converges in the limia — 0 to a N
finite valueh{, independent of, and uniquely determined by InSn(a. @) ~ () Ina, (59)
zﬁ(hg) = 1 which, in the multifractal settings, can be rewritten while if g > ¢,
as:
D(h) = 0. (51) InSn(a,q) = (1+92'(q)) Ina. (60)



3.5. Comments on the critical order MF | REM

To sum up, Eqs.[(B4)[(55) (58], (59) and](60) constitute — 1vn N_ L v2" o JpE
the most important results of the present contributiort, taa S(@ @~ o ZL T@ L)Y | 2/2" = v X €
be regarded as the necessary knowledge for a correct use and Inn, ~ ~Ina Inn=Nlin2

g y g -1
understanding of the multifractal formalism. These resc#ll 9 p=T
for a number of comments: InT(a t) —Ej

i) For multifractal processes such as CPM, the time averages - ha(t,) €/In2
(or structure functions$,(a, ) do not converge at large to ~qIn(na Sn(a, ) F=-Tinz
the ensemble averag@ (a, t)|%, for q > q*. 9@ -4 +1 S/(NIn2)

ii) It is important to note thatj® # ¢.. Using Egs.[(54) and q By
@), it can easily be shown thgt < g.. Therefore, the critical h! €/In2
order up to whichSy(a, q) accurately estimates the ensemble hm €ém/IN2
average is not related to the finiteness of the momeniq aft)|
but occurs for much lower values qf Table 1:MF vs. REM. Mapping between quantities defined in the multifractal

L. " " .. i+ analysis (MF) and in the Random Energy Model (REM), validhia timit of
|||) The critical Orderq and the critical Holder exponehg smalla and largeN. In order to interpreBn(a, ) as a sum of (almost) indepen-

are found to be independent of the actual numbef avail- dent variables, a sequenceraftimes(ty;, j = 1,...,na} is extracted from the
able samples. Therefore, increasimgthrough a decrease of full set{tc,k=1,...,n}.
the sampling periodt) does not allow for a significantly better
result. Moreover, Eq[($3) shows that in practice tffeaive
critical order at scale only weakly varies witm or a. 4 Monte-Carlo smulations

iv) The above properties, which appear as consequences of
Eq. (1), can be interpreted as follows, in a way closely par- |n the study of systems such as the REM, or, more gener-
alleling the arguments of the REM (sge Appendik A). In aally, in the frozen phase of spin glasses, the condensafion o
given sample, the number of independent points having a sirexplored configurations onto a small subset is classicatig-m
gularity exponenh scales asi,e¥™"4 fora — 0. Using  sured using a theoretical or numerical tool referred to as th
na = L/a, the above number thus scalesefls”™1""a. This  participation ratio[22,[23]. In this section, we make use of this
means that in a given sample, there will be a large number abol to further analyze thénearization gfectin the context of
points with singularityh when 1- y(h) > 0 (correspondingto multifractal analysis.
D(h) > 0), while there will be no such points in a typical sam-  The definition of the participation ratje(a, g, p) is taylored
ple when 1- y(h) < O, irrespective of its observation duration from classical formulations in statistical physics to thaext
L and of the analysis scate The valueh), suchD(h{) = 0 (cf.  of multifractal processes, with, = L/a:
Eq. (51)), therefore receives a simple interpretation iwithis
framework. The analogy with the REM can even be pushed o T(a ke P
further. Given the correspondance between, on one-haead, th (Zna T(a, ka)|q)P'
partition functionZ of the REM and the structure functiy, k=1

in the multifractal case, and, on other-hand, the inverse te  |n the analysis of the REM, it can be shown that, in the glassy
peratures and the ordeq of moments, we find that the analog phaseg > By (associated here tq > q), the participation
of the entropy per degree of freedom (which is zero in the lowatio isnon-self-averagingvhich means that it depends on the
temperature phase of the REB> S5 = Tg?) is the quantity  explicit observation (or sample) of the proce&s), and hence
a’(9) - £(a) + 1, which is indeed equal to zero in the linear of its increments (a, t), even in the limita — 0. Therefore, in
regime obtained fog > g". Table[l sketches the correspon- that limit, its expectation satisfies the following expliciosed-
dence between the quantities defined in the REM and in multiform formula, for allp > 1 andq > 0, [22, 23]:
fractal analysis (sge Appendix| A for the definition of theazot
tions used in the REM). lima—oo(a, g, p)) 0 ifg<qg,
v) Itis worth mentioning that the interpretations of thelgna = % if g> g } (62)
ses reported above in termsltofompared tdng and entropy had
already been envisaged by B. Mandelbrot in a series of sémina The expected behavior recalled in Eqg.]1(62) is now tested nu-
articles dedicated to detailed practical aspects of mattitl  merically, in the context of CPM, by means of Monte-Carlo
analysis, the most prominent of them being elg.,[[18, 19]. simulations. Thep(a, q, p), as defined in Eq.[{61) above,
vi) The theoretical analysis of the linearizatioffeet ob- are computed over 500 independent realizations of CPM of
tained in the present contribution from REM-type statitic length 22, forq = 1,...,15, p = 2,4,5 anda = 2I, with
physics arguments is similar to (and hence fully confottg) t j = 1,...,18. The ensemble average(a, g, p)) is estimated
conjecture formulated in[16} 1], stemming from the intetpr by the averag€p(a, g, p))mc of the p(a, g, p) over the inde-
tion in terms of extreme values and local regularity of efcpir  pendent realizations. The expecteda, g, p)), according to
observations obtained from the application of the multifah  Eq. (62), andp(a, g, p))mc are compared in Figl 1. For< g,
formalism to numerical simulations of CPM and other related(p(a, g, p))mc = (0(a,q,p)) = O, for allp > 1 anda > 0.
multifractal processes. Forq > g, {(o(a 0, p))mc departs unambiguously from 0, for

p(ad,p) = (61)



all p > 1 anda > 0, and moreover follows a dependence in Monte-Carlo simulations, based on the numerical synthesis
g and p, that globally matches that dp(a, g, p)), expected of independent sample paths of CPM and estimation of the par-
from Eq. [62). The transition from zero to non-zero values ofticipation ratio, a classical tool in the statistical ptogsof con-
(p(a, q, p))mc occurs for values o typically aroundy*, as the-  densed matter, satisfactorily confirm these predictionsesé
oretically computed from Eq_{54). predictions based on REM-type statistical physics argusen
The match between the expectgda, g, p)), according to  are in perfect consistence with those proposed inl[16, Egtha
Eg. (62) and(p(a, g, p))mc is not perfect though. This may on an extreme value analysis of the multifractal formaliswd a
stem from a number of causes. On the one hand{Eh&k = provides a complementary understanding of why time average
1,...,njinthe REM and th¢In T(a,tx), k= 1,...,n,} in CPM, do not converge to ensemble averages.
though both heavy-tailed might have not exactly the same dis The analysis conducted here can be, mutatis mutandis, ap-
tributions. On the other hand, the derivation of the thecatt plied straightforwardly to other multifractal processasiis is
results in Eq.[(62) relies on an exact independence assompti notably the case for fractional Brownian motion in multdtal
ofthe{Ex,k=1,...,n},whilethe{lnT(a,k),k=1,..., ny} still time [21], which is obtained by subordinating CPM to a clas-
remain significantly correlated, as predicted by Eql (14icv  sical fractional Brownian motion and which constitutes ayve
may dfect the limiting ensemble average. Note that results arappealing model to account for the multifractal propertés
shown for the arbitrary scala = 4 only, as all conclusions real data. Monte-Carlo simulations, not reported hereh sisc
drawn above are identical at all scales. those described in Sectibh 4, performed on fractional Biawn
These empirical observations are regarded as satisfagtory motion in multifractal time, yield conclusions in perfecrtsis-
sults, corroborating numerically the theoretical analysithe  tency with those drawn from the analysis of CPM.
linearization &ect observed in multifractal analysis and con- In addition, the analysis conducted here can also naturally
ducted from REM-type arguments. be extended to multiresolution quantities other than tlceein
ments. We performed Monte-Carlo simulations on CPM and
fractional Brownian motion in multifractal time (not shown
here) using increments of ordéX (i.e., increments of incre-
In this contribution, it has been shown that the time avesagements of increments...) as well as waveletfiognts (com-
(or structure functions) of thegtth power of the) increments puted from mother wavelets withféérent number of vanishing
of the sample path of Compound Poisson Motion, chosen amoments, see e.g., [17]). These simulations also lead te com
a simple representative of multifractal processes, ceaset parable conclusions.
count correctly for the (ensemble average) moments of @der  Furthermore, this work opens the track for a systematic defi-
above a critical ordeq*. This critical order is entirely defined nition and estimation of a critical order for the momentrasti
from quantities entering the definition of the process aneksdo tion, in different contexts where the variables of interest consist
not depend on the sample size of the observation: Increasingf random exponentials, as in [4]. This, together with thacpr
this sample size (by decreasing the sampling peftpdloes tical estimation of the critical order from a finite sampleesi
not permit to increase the range of ordeffer which moments  observation, is under current investigation [2].
can be correctly estimated. This critical order is not esdagi-
ther to the lack of finiten.ess qf the.m.oments. Moreover., forAcknowIedgements
g > g, the structure function still exhibits power-law behagior
with respect to scala, with scaling exponents that however be- PA and MM gratefully acknowledge the organizers of the
have linearly ing. Both the critical ordeq* and the slope of the 2008 edition of the Peyresq summer school in Signal and Image
linear behavior are predicted quantitatively. These mteatis ~ Processing, where this work was originally envisaged.
are obtained from the tayloring of statistical physics angats
involved in the analysis of the REM to multifractal processe Appendix A. Random Energy Model
The reason why increasing the sample size does not permit a
correct computation of the moments fpr> g* can be under- A very simple disordered model, which nevertheless capture
stood as thm0n-se|f-averagene$goperty in the g|ass phase a lot of the phenomenology of realistic disordered SyStéTaS,
of the REM. This correspondence is reminiscent of the aryalogb€en proposed by Derrida, and called Random Energy Model
that leads from the thermodynamical formalism to the multi-(REM) [€]. It can be thought of as a spin model, although spins
fractal formalism, commonly used to measure the multiftact do not play any essential role in the description. Consiggri
spectrum from empirical data [12, 3]. a system ofN spins, the corresponding number of configura-
This contribution can hence be read as a furth®oreto tions isn = N, To each Configuratiojﬂs associated a random
make explicit the fruitful correspondences between the-the energyg; drawn at random from a distributid?(E):

5. Discussion and conclusion

modynamical and multifractal formalisms, in the spirit of ¢ E2
[12,127, 3| 11], with a specific emphasis on marrying in a €ngl P(E) = N p(—w) (A.2)
point of view diferent perspectives on the linearizatidfeet: N7

that of stochastic process sample path based statistiialaes The energieg&; are independentand identically distributed ran-
tion, that of statistical physics and that of local regujafiinc-  dom variables. We denote aéE)dE the number of configura-
tional analysis. tions with energy in the intervaH, E + dE], so thatp(E) is the



density of configurations with enerdy. The density(E) is a
random quantity, but its fluctuations are smalp(E) is large,
namelyp(E) =~ (o(E)). By definition,(p(E)) = nP(E), leading

to

E2

v7)
£
J2In2
where the energy densigy= E/N has been introduced. One
sees that if - £2/(J%In2) > 0, corresponding tfe] < &' =
JVIn2, (p(E)) is exponentially large withN, so that there is
a large number of configurations at energy densjtand the
assumptiop(E) =~ (o(E)) is justified. In contrast, ifs| > &,
(o(E)) is extremely small for larga. This means that in most
samples, there are no configurations at energy dejasitys".
The non-zero, but small value ¢5(E)) comes from the contri-

bution to the average value of very rare samples, which delu
some configurations with exceptionally low (or high) energy

(p(E)) exp(N In2-

exp[ln n (1 - (A.2)

We can now evaluate the partition function of the REM, de-

fined as

2N
z=> ehT, (A.3)

=1
This partition function is a random variable, the typicaluea
of which can be evaluated as follows:

.
ZxZyp= f de (p(e)y e Ne/T, (A.4)
&t

with the notationo{e) = Np(Neg). In the above equation, we
have replaceg(z) by (5(g)) for |¢| < &, and by 0 forlg| > &'.
We can then write

.
Zyp = f de g (N (A.5)
with )
& &
= —=+—--1 A.6
9(e) J2In2+TIn2 (A.6)

In the largen limit, we can evaluat&,, through a saddle-point
calculation, namely

Zyp ~ (1) Grin(e") (A7)

wheregmin(¢") is the minimum value ofj(s) over the interval
[-£',€"]. Let us first consider the valug, which minimizes
d(e) over the entire real line. Taking the derivativeg§f), one

has
1

9€) = Tz " Tinz: (A-8)
Fromg'(¢) = 0, we find
JZ
Em = _E. (A.g)

As g(¢) is a parabola, it decreases fok ¢, and increases for
&> em. If em > =T, thengmin(e?) = g(em), so that

Zyyp ~ e NYem), (A.10)

The conditionsy, > —&' translates intd@ > T4, where the so-
called glass transition temperatirgis defined as

T - J
°7 2vin2
Forem < —&', or equivalentlyT < Tg, g(¢) is an increasing

function ofs over the entire intervaHs", £'], so thatgmin(e') =
g(-¢"), and

(A.11)

7Ng(—g")

Zyp ~ . (A.12)

From these estimates @jf,, one can compute the free energy
F = -TInZy,, and the entrop$ = —0F/dT. ForT > Tg, one
finds

2
F :—N(Tln2+ j—T) (A.13)
leading for the entropy to
J2
S= N(In2— ﬁ). (A.14)
ForT < T4, we have
F=TNg-£) = -NJVin2. (A.15)

The free energy does not depend on temperature in this range,
so that the corresponding entropy vanishes:

S=0, T<T, (A.16)

It can also be checked that the entropy given in Eq._(A.14) for
T > T4 vanishes continuously fof — T4. Hence the temper-
ature Ty corresponds to a glass transition temperature, where
the entropy goes to zero when lowering temperature, and re-
mains zero belowly. Actually, to make the statement sharper,
only the entropy densit$/N goes to zero fol < Ty, in the
infinite N limit. Computing subleading corrections to the en-
tropy S, one finds tha$ is independent o, but non-zero, for

T < Tg4. The entropy is then intensive in this temperature range,
meaning that only a finite number of configurations, among the
n = 2N possible configurations, ardfectively occupied: the
system is quenched in the lowest energy configurations.

Appendix B. Almost sureconvergenceof In S/|In a|

The aim of this appendix is to demonstrate thatripe= 2%
anday = 27KL:

ko+oo | INay| a-0 |[Ina|
We refine the definition dfi" by choosing
1
Tk = F (BZ)

in Eg. (39), instead of a constant This alteration does not
aﬁecthg due to the property

In Tk

=0. B.
kl»rpoo“nakl 0 B3



With this choice ofry, we have

Z P(Ii < Nk, ha(i) < hf) < +oo. (B.4)
k

The Borel-Cantelli lemma states that if a sequence of evants
satisfies), P(Ax) < +oo, then the evenfy only happens for
a finite number ok. Choosing the events to b = (3i <
Nk, ha (i) < hb' we find that for stficiently largek, all the h,
are almost surely larger thdq'ﬁ . Denotingy, the characteristic
function of the set,

1 ifxel
X) = R B.5
a9 {O otherwise (B-5)
we can write
1 &
a.s
Sne D F - > a gy o (1) (B.6)
i=1

In order to refine this result, we partition the intervall, [+oco)
in different sub-intervals. First, we define a separation print

by

¥'(Ccx) = 0. (B.7)
The corresponding sub-interval is
lo = (Coo, +00). (B.8)
The remaining intervall”ﬁ, C] has a finite lengtthy
lk = Cw — /. (B.9)

We partition this interval into a number [21R] of sub-intervals
(where [] denotes the integer part &f, with

Ik

—_ ht
=N P g

Cp (B.10)

Ip = [Cp, Cp+1], (B.ll)
We call thenm, the density of points inside the interval

Ipl < 1+ [Inny]

my= o 30, (0. (B.12)

The quantitym, can be bounded using the Borel-Cantelli
lemma, leading to

(Ip)

(Inny)?

a.s

Zmp E(Inn)1 ) (B.13)

Moreover the vanishing length of the intervalsmplies that :

e quten

B.14
In ng ( )

| ~
( P k—+00

Hence, we have asy € (0, 1) such that for sfliciently largek,

Sn.(ak. 9) ?Z(m NO)2le(L + &)%) + ma®.  (B.15)
p

We are mainly interested in the extremal contribution, \hic
comes froncy, :

aqcm“”(cm) a.s a.s
T <Sn(ak g) < (1 + &3)(Inny)l %Gt Cn).
GTE n(@ @) < (1 + &3)(In )l

(B.16)
with &;,£3 € (0,1). These two inequalities can be rewritten in
logarithmic terms,

(1-&2)lk

3Ininng + In(1 + &2) + Inly as In Sp, (2, 0)

~(@em + wem) - T el
InSy, (&, q) as 3Ininng + In(1 + &3) + Il
Tinad < —(gcm + y(cm)) + linal

(B.17)

The total lengthy is bounded because so zhf;eandcm. When
k — +oo, the length of the intervdl, tends to 0, which means
that

Cm — max(y, h'), (B.18)

Thus taking the limik — +co in Eq. (B.17) leads to

P89 22 qmaxtin, 1) - y(maxin. 1)

(B.19)
The right hand side of the previous equation exactly corre-
sponds to the evaluation of the truncated moment by thesaddl
point method obtained in Eq4._(46) aidl(47), which demon-
strates the validity of Eq[(Bl.1).

k—+00
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Figure 1: Participation ratio. Solid black line:{o(a, g, p)), according to Eq.
(62) ; dashed red linelo(a, g, p))mc averaged over Monte-Carlo simulations,
with 95% confidence intervals ; red vertical dashed lineitwsof the critical

g* as computed from Eq[_(b4). Tom = 2, middlep = 4, bottomp = 5, for
scalea = 4.
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