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We study expansions in non-integer negative bageintroduced by Ito and Sadahiro. Using countable automata
associated witli—3)-expansions, we characterize the case wheré-ti8-shift is a system of finite type. We prove
that, if 8 is a Pisot number, then tie- 3)-shift is a sofic system. In that case, addition (and more rgdigenormal-
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1 Introduction

Expansions in integer negative basg, whereb > 2, seem to have been introduced by GrUnwaIch [8],
and rediscovered by several authors, see the historicainemts given by Knutl”ml]. The choice of a
negative base b and of the alphabdD, . . ., b—1} is interesting, because it provides a signless representa-
tion for every number (positive or negative). In this case @asy to distinguish the sequences representing
a positive integer from the ones representing a negatiegént denotinqw.)_; := Zf:o wy, (—b)* for
anyw = wy, - - - wg in{0, ..., b — 1}* with no leading)’s, we haveN = {(w.)_; | |w]| is odd}. The clas-
sical monotonicity between the lexicographical orderingaords and the represented numerical values
does not hold anymore in negative base, for instahee (111.)_5, 4 = (100.)_2 and111 >, 100.
Nevertheless it is possible to restore such a correspordanmtroducing an appropriate ordering on
words, in the sequel denoted by,;;, and called thalternate order

Representations in negative base also appear in some cobgse number systems, for instance base
B = 2i since? = —4 (see BS] for a study of their properties from an automata tbgopoint of view).
Thus, beyond the interest in the problem in itself, the argtlatso wish the study of negative bases to be
an useful preliminar step to better understanding the cexigase.

Ito and Sadabhiro recently introduced expansions in noggert negative basegs in [@]. They have
given a characterization of admissible sequences, andrsti@avthe(—3)-shift is sofic if and only if the
(—p)-expansion of the number% is eventually periodic.

In this paper we pursue their work. The purpose of this cbation is to show that many properties of
the positive base (integer or not) numeration systems éxtethe negative base case, the main difference
being the sets of numbers that are representable in the ffeveatit cases. The results could seem not
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surprising, but this study put into light the important rplayed by the order on words: the lexicographic
order for the positive bases, the alternate order for thathegbases.

Very recently there have been several contributions tottigyof numbers having only positive powers
of the base in their expansion, the so-callecB)-integers, in L], [2}], and[21].

We first establish some properties of the negative integeg b4, that are more or less folklore. This
allows to introduce the definitions of alternate order andtadrt-alternate order, that are natural to order
numbers by theif—3)-expansions.

We then prove a general result which is not related to nunoeralstems but to the alternate order,
and which is of interest in itself. We define a symbolic dyneahsystem associated with a given infinite
word s satisfying some properties with respect to the alternaderoon infinite words. We design an
infinite countable automaton recognizing it. We then are &bkharacterize the case when the symbolic
dynamical system is sofic (resp. of finite type). Using thisegal construction we can prove that the
(—B)-shift is a symbolic dynamical system of finite type if andyoiflthe (—3)-expansion of—% is
purely periodic. We also show that the entropy of the?)-shift is equal tdog 3.

We then focus on the case whetés a Pisot number, that is to say, an algebraic integer gréwa 1
such that the modulus of its Galois conjugates is less tharh&.natural integers and the Golden Mean
are Pisot numbers. We extend all the results known to hotditrihe Pisot case fg#-expansions to the
(—pB)-expansions. In particular we prove thatgiis a Pisot number, then every number fr@3) has
an eventually periodi¢—3)-expansion, and thus that thie 8)-shift is a sofic system.

Wheng is a Pisot number, it is known that addition in base— and more generally normalization in
bases on an arbitrary alphabet — is realizable by a finite transd[@e We show that this is still the
case in base .

The conversion from positive integer base to negative aitbgse is realizable by a finite right sequen-
tial transducer. Whegi is not an integer, we give an on-line algorithm for the cosigr from bases to
base— 3, where the result is not admissible. Wheis a Pisot number, the conversion can be realized by
a finite on-line transducer.

A preliminary version of Sectior$ 4 afifl 5 has been presentf].i

2 Definitions and preliminaries

2.1 Words and automata

An alphabetis a totally ordered set. In this paper the alphabets areyalfimite. A finite sequence of
elements of an alphabet is called aword, and the set of words oA is the free monoidd*. The empty
word is denoted by. The set of infinite (resp. bi-infinite) words ofi is denoted byA™ (resp. A%).
Let v be a word ofA*, denote byv™ the concatenation af to itself n times, and byv* the infinite
concatenationwvv - - -. A word of the formuv® is said to besventually periodic A (purely) periodic
word is an eventually periodic word of the forfi.

A finite word v is afactor of a (finite, infinite or bi-infinite) wordy if there existsu andw such that
x = uwvw. Whenu is the empty wordy is aprefixof z. The prefixv is strict if v # z. Whenw is empty,
v is said to be auffixof z.

We recall some definitions on automata, s@e [3] [18] fstaimce. Anmautomaton oved, A =
(Q,A,E I,T), is a directed graph labelled by elementsshf The set of vertices, traditionally called
states is denoted byQ, I C Q is the set ofinitial states,T” C @ is the set ofterminal states and
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E C Q x A x Qs the set of labelleedges If (p,a,q) € E, we writep % ¢. The automaton ifinite if

Q is finite. The automaton is deterministiaf F is the graph of a (partial) function fro@ x A into @,
and if there is a unique initial state. A subgétof A* is said to beecognizable by a finite automatoor
regular, if there exists a finite automato# such that” is equal to the set of labels of paths starting in an
initial state and ending in a terminal state.

Recall that two words andv are said to beight congruent moduld{ if, for every w, uw is in H if
and only ifvw is in H. It is well known thatH is recognizable by a finite automaton if and only if the
congruence modul& has finite index.

Let A and A’ be two alphabets. Aansduceiis an automatofl = (Q, A* x A™, E,I,T) where the
edges ofF are labelled by couples iA* x A™. Itis said to bdiniteif the setQ of states and the sét of

edges are finite. Ifp, (u,v), q) € E, we writep u—|v> q. Theinput automatorfresp.output automatoyof

such a transducer is obtained by taking the projection oéedg the first (resp. second) component. A
transducer is said to s®quentialf its input automaton is deterministic.

An on-line transducer is a particular kind of sequentiah$ducer. Aron-line transducewith delay
0, A =(Q,Ax (A Ue),E {q}), is a sequential automaton composed of a transient part aad o
synchronous part, seE|15]. The set of states is equal to Q; U Qs, where(), is the set of transient
states and), is the set of synchronous states. In the transient party @agh of length) starting in the
initial stateq is of the form

z1le Tale zsle

qo —>q1 —> " —> (g5

whereqo, ...,gs—1 are inQy, z; in A4, for1 < j < 6, and the only edge arriving in a state @f is as
above. In the synchronous part, edges are labelled by eternid x A’. This means that the transducer
starts reading words of length § and outputting nothing, and after that delay, outputs Bgidame digit
for each input digit. If the set of statég and the set of edges are finite, the on-line automaton is said
to be finite.

The same notions can be defined for automata and transdwoesging words from right to left : they
are calledight automata or transducers.

2.2 Symbolic dynamics

Let us recall some definitions on symbolic dynamical systensubshifts (seem.3, Chapter 1] [12]).
The setd”? is endowed with the lexicographic order, denoteg,,, the product topology, and the shift
o, defined byo ((2;)icz) = (zi11)icz. A setS C A% is asymbolic dynamical systerar subshift if it
is shift-invariant and closed for the product topology.4f. A bi-infinite word = avoidsa set of word
X C A*if no factor of z is in X. The set of all words which avoi is denotedSx. A setS C A% isa
subshift if and only ifS is of the formSx for someX.

The same notion can be defined for a one-sided subshift'of

Let F'(S) be the set of factors of elements 8f let I(S) = AT \ F(S) be the set of words avoided
by S, and letX (S) be the set of elements @fS) which have no proper factor if{.S). The subshifts
is soficif and only if F'(.S) is recognizable by a finite automaton, or equivalentl¥({fS) is recognizable
by a finite automaton. The subshfftis of finite typeif S = Sx for some finite sef(, or equivalently if
X(S) is finite.

The topological entropy of a subsh#tis

h(S) = lim llog(Bn(S))

n—,oo N
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whereB,,(5) is the number of elements &f(S) of lengthn. WhensS is sofic, the entropy of is equal
to the logarithm of the spectral radius of the adjacency imafrthe finite automaton recognizing(.s).

2.3 Numeration systems

The reader is referred tﬂl& Chapter 7] and ﬂ) [7] for a tedapresentation of these topics. Repre-
sentations of real numbers in a non-integer baseere introduced by R’enyi]l?] under the namegef
expansionsLetx be areal number in the intervél 1]. A representation in base (or as-representation)
of z is an infinite word(z; );>1 such that

T = szﬂﬂ

i>1

Letx = (;);>1. Thenumerical valuen bases is the functionr; defined byrs(x) = >°°° | ;87"

A particularg-representation — called thieexpansior— can be computed by the “greedy algorithm”:
denote by y|, [y] and{y} the lower integer part, the upper integer part and the faatipart of a number
y. Setrqg =z and letfori > 1, x; = |Bri—1], s = {Bri—1}. Thenz = Zi21 x; 4. The digitsz; are
elements of the canonical alphabgs = {0, ..., [8] — 1}.

The g-expansion ofc € [0, 1] will be denoted bydg(z) = (;)i>1. If > 1, there exists some > 1
such that: /8% belongs td0, 1). If dg(x/8%) = (y;)i>1 then by shiftingr = (y1 - - - Yk-Ys+1Yk+2 -+ )a-

An equivalent definition is obtained by using tRetransformationof the unit interval which is the
mapping

Ts:x— pz— |Bx].
Thends(z) = (2;)i>1 ifand only if z; = (BT ' (z)].

If a representation ends in infinitely many zeros, lik¢’, the ending zeros are omitted and the repre-
sentation is said to binite.

In the case where the-expansion of 1 is finite, there is a special representatiayingy an important
role. Letdg(1) = (¢;)i>1 and set3(1) = dg(1) if dg(1) is infinite andd; (1) = (t1 - - tim—1(tm — 1))
if dg(1) =11+ tm—1tn isfinite.

Denote byDg the set ofg-expansions of numbers ¢, 1). It is a shift-invariant subset oﬁg‘. The
B-shift Sg is the closure oDy and it is a subshift oﬂ%. Wheng is an integerSy is the full -shift A%.

Theorem 2.1 (Parry]) Let3 > 1 be a real number. A wor¢w;);>1 belongs toD; if and only if for
alln>1

WpWnt1 -+ <pew dj(1).
A word (w;);ecz belongs taSg if and only if for alln
WnWp+1 glez dz(l)

The following results are well-known (sefe [13, Chapt. 7]).
Theorem 2.2 1. Theg-shiftis sofic if and only iz (1) is eventually periodic.

2. Theg-shift is of finite type if and only Hz(1) is finite.
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It is known that the entropy of thé-shift is equal tdog 3.

If 5 is a Pisot number, then every elemen@f3) N [0, 1] has an eventually periodjg-expansion, and
the 3-shift S is a sofic systen{]4, 19].
Let C be an arbitrary finite alphabet of integer digits. Tr@malization functiorin bases on C

vg.C: CN — .AI;

is the partial function which maps an infinite waoyd= (y;);>1 overC, such thad < y = Zi>1 yiB7 <
1, onto the5-expansion of;. It is known |E] that, wherg is a Pisot number, normalization is computable
by a finite transducer on any alphalgeét Note that addition is a particular case of normalizatioithw

C={0,....2([3] - 1)}.

3 Negative integer base

Letb > 1 be an integer. It is well known, see Knull] for instandettevery integer (positive or
negative) has a unique-b)-representation with digits i, = {0,1,...,b — 1}. Every real number
(positive or negative) has(a-b)-representation, not necessarily unique, since

1

(- m),b =.1((b - 1)0)* = .0(0(b — 1))~

for instance. The representatidri(b — 1)0)“ will be the admissible one.
We recall some well-known facts.

Proposition 3.1 The set of —b)-representations of the positive integers{is € {0,1,...,b6 — 1}* |
does not begin witld and |u| is odd;. The set of —b)-representations of the negative integergis €
{0,1,...,b— 1}* | w does not begin with and |u| is ever}.

Let A be afinite alphabet totally ordered, andileith A be its smallest element.

Definition 3.2 Thealternate ordex,;; on infinite words or finite words with same length dns defined
by:

UIUUS ~ - - <git V1V2V3 -~ *
if and only if there exist > 1 such that
ui=wv; for 1<i<k and (—1)%(ur —vp) <0.

This order was implicitely defined ir[|[8].

Definition 3.3 On finite words, we define ttshort-alternate ordedenoted<,,, by: ifu = uy - - - uy and
v =1 Uy, are in A*, thenu <, v if and only if

e /andm are odd, and’ < m, or £ = m and(min A)u <4 (min A)v
e /andm are even, and > m, or{ = m andu < v

e /< mand(min A)™ *u <4, v
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e /> mandu <, (min A)""v.

The short-alt order is analogous to the short-lex or radibeorelatively to the lexicographical order.
Denote(z)_;, the (—b)-representation of. We have the following result.

Proposition 3.4 If z andy are integersg < y if and only if (x) _y <sa (y)—b.
If z andy are real numbers from the interv{a\lrb%, b%) thenz < yifand only if(z) _p, <ait (y)—sp.

Example 3.5 In base—2, (3) _o = 111, (4)_» = 100, (6)_o = 11010, and111 <, 100 <, 11010.

Proposition 3.6 The function that maps thierepresentation of a positive integer to it$-representation
can be realized by a finite right sequential transducer.

Proof: In Fig. ﬂ,O <e<b-1,1<d<b-1,0< e < b-—2. The processing is done from right
to left by 2-letter blocks. A finite word:—_1 - - - zp Which is theb-expansion ofc is transformed by the
transducer into a finite worg - - - yo which is the(—b)-expansion of. It is straightforward to transform
this transducer into a finite right sequential transducer.

0el0(e + 1) 1

de|(b—d—1)(b—c—1),0(b—1)|(b— 1)0@&4%
|1 de|(b — d)e

Fig. 1: Finite right sequential transducer realizing conversiamf base) to base—b

Example 3.7 Base—2.

00]01

01|10,10|11,11|OOC(?/—\
11 10/10,11[11

Fig. 2: Finite right sequential transducer realizing conversiamfbase2 to base—2

00]00,01]01

4 Symbolic dynamical systems and the alternate order

We have seen in the previous section that the alternate @dbe tool to compare numbers written

in a negative base. In this section we give general resulsyorbolic dynamical systems defined by the
alternate order. This is analogous to the symbolic dyndmejctiems defined by the lexicographical order,
see [?]. LetA be a totally ordered finite alphabet.
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Definition 4.1 Awords = s;s, - - - in AN is said to be aralternately shift minimaivord (asmin-word for
short) if s; = max A ands is smaller than, or equal to, any of its shifted images in theraate order:
foreachn > 1, s <uit SnSn+1 - -

Let

S(s) = {w = (w;)icz € A? | V0, 5 Zai WpWny1 -}

We construct a countable infinite automatdg,, as follows (see Fig] 3, wherle, b] denotes the set
{a,a+1,...,b} if a < b, ¢ else. Itis assumed in Fi. 3 that > s; for j > 2.) The set of states is
N. For each staté > 0, there is an edgesi—“> 1 + 1. Thus the state is the name corresponding to the
path labelleds; - - - s;. If 7 is even, then for eactasuch thad < a < s;41 — 1, there is an edge —- j,
wherej is such thak, - - - s; is the suffix of maximal length of; - - - s;a. If ¢ is odd, then for each such
thats;;1 +1 < b < s; — 1, thereis an edgei> j wherej is maximal such thai; - - - s; is a suffix of

s1---s;b;andifs; 11 < s1 there is one edg{ei> 1. By contruction, the deterministic automatds,)
recognizes exactly the wordssuch that every suffix ab is =,;; s and the result below follows.

(0,51 —1] 51 S1

ST S2 7\ S3
= =0

[54 + 1, 51 — 1]
Fig. 3: The automatomd s ,)

Proposition 4.2 The subshif6(s) = {w = (w;)icz € A% | Vn, s a1t Wpwyy1 -+ +iS recognizable by
the countable infinite automatof ).

Proposition 4.3 The subshif6(s) = {w = (w;)icz € A% | ¥n, 5 <t Wpw,yy - -+ }is sofic if and only
if s is eventually periodic.

Proof: The subshiftS(s) is sofic if and only if the set of its finite factods(S(s)) is recognizable by a
finite automaton. Given a word of A*, denote byju] the right class of: moduloF'(S(s)). Then in the
automatonAg,), for each staté > 1, = [s; - - - 5;], and0 = [¢]. Suppose that is eventually periodic,
§=81""Sm(Smt1 " Sm+p)®, With m andp minimal. Thus, for eaclt > 0 and eact) < i < p—1,
Sm+pk+i = Sm+i-

Case 1piseven. Them +i = [s1 - Spmts] = [S1° - Smtpkti) fOr everyk > 0and0 < ¢ <p— L.
Then the set of states ofg,) is {0, 1,...,m +p — 1}.

Case 2pisodd. Thenn + i = [s1 - Symti] = [S1 - - Smt2pk+4] fOr everyk > 0and0 < ¢ < 2p — 1.
The set of states oflg(,) is {0,1,...,m +2p — 1}.

Conversely, suppose thatis not eventually periodic. Then there exists an infiniteusege of indices
i1 < 9 < --- such that the sequencess;, 11 - - - are all different for allk > 1. Take any paifi;, i¢),
J,¢ = 1. If i; andi, do not have the same parity, thep- - - s;; ands; -- - s;, are not right congruent
modulo F'(S(s)). If i; andi, have the same parity, there exigts> 0 such thats;, ---s;, 141 =
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Sig ** Sigt-q—1 = v and, for instance(—1)""9(s;, 14 — si,+q) > 0 (With the convention that, if = 0
thenv = ¢€). Thensy ---s;, 108,14 € F(S(5)), 51+ 54,1085, 44 € F(S(s)), butsy --- 55, 1054, 44
does not belong td’(S(s)). Hences;---s;, ands; ---s;, are not right congruent modulb(S(s)),
so the number of right congruence classes is infinite B(f(s)) is thus not recognizable by a finite
automaton. O

Proposition 4.4 The subshifS(s) = {w = (w;)icz € AZ | Vn, s =it Wpwpy1 -} is a subshift of
finite type if and only it is purely periodic.

Proof: Suppose that = (s; - --s,)“. Consider the finite seX = {s;---s,-1b | b€ A, (—-1)"(b—
sp) < 0, 1 < n < p}. We show thatS(s) = S(s)y. If wisin S(s), thenw avoidsX, and con-
versely. Now, suppose that(s) is of finite type. It is thus sofic, and by Propositiﬂs.?os even-
tually periodic. If it is not purely periodic, thef = s - S (Sm+1 - - Sm4p)™, With m andp min-
imal, ands; --- s, # e. Letl = {s1---sp—1b | b € A, (-1)"(b—s,) <0, 1 <n < m}U
{51 $m(Sm+1-"- sm+p)2k Smal  Sman_1b| b€ A, k=0, (=1)m+2kpnp 5, 00) <0, 1<
n < 2p}. ThenI C A*\ F(S(s)). First, suppose there exists< j < psuch that—1)7(s; — s;m45) <0
andsy -+ 8j—1 = Sm41 -+ Smtj—1. FOrk > 0 fixed, letwF) = gy .- Sm(Smt1 - Sm+p)2k81 85 €
I. We haves; - -« 8 (Sm41 -+ Smap) ¥ Sma1 -+ Smij—1 € F(S(s)). On the other hand, for > 2,
Sn v Sm(Smag1 - sm+p)2’g is greater in the alternate order than the prefixsaff same length, thus
Sn - Sm(Sma1 - Smap) st - - 55 belongs taF' (S(s)). Hence any strict factor ab*) is in F(S(s)).
Therefore for anys > 0, w(**) € X (S(s)), andX (S(s)) is thus infinite:S(s) is not of finite type. Now,
if such aj does not exist, then for evety< j < p, s; = Sm+;, ands = (s1 - - - s,,)* is purely periodic.
a

Remark 4.5 Lets’ = s s} --- be aword inA" such thats) = min A and, foreachn > 1,s/,s/, | -+ <an
s’. Such a word is said to be aadternately shift maximaiord. LetS’(s’) = {w = (w;)iez € A” |
Vn, wpwnit - Zau s'}. The statements in Propositions]|4.2] 4.3 &ndl 4.4 are alsid fai the subshift
S'(s") (with the automatot s (/) constructed accordingly).

5 Negative real base

5.1 The (—p)-shift

Ito and SadahirO] introduced a greedy algorithm to repne¢any real number in real basg, g > 1,
and with digits inA_z = {0, 1,..., | 3| }. Remark that, whef is not an integerd_g = Ag.

A transformation on_g = [—%, ﬁ) is defined as follows:
_ B
T p(x) = =Pz — [Pz + B+1

For every real numbet € I_gs denoted_g(z) the (—B)-expansion ofc. Thend_g(x) = (z;)i>1 if
and only ifz; = L—BTigl(x) + %J, andz = Y, zi(—f8)". When this last equality holds, we may
also write:

x = (wm2--+)_p.

We show that the alternate ordey,;; on (—3)-expansions gives the numerical order.
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Proposition 5.1 Letz andy be in_g. Then

r <y <= d_g(z) <u d_s(y).

Proof: Suppose thad_g(z) <qu: d_g(y). Then there existd > 1 such thate; = y; for 1 < i < k and
(—=1)*(z — yr) < 0. Suppose thak is evenk = 2q. Thenzy, < yzq — 1. Thusz — y < —B~ 2q 4

D izagr Til— B~ — Zz}_Qqu_l yt( B)~" <0, SlnceZm Tog+i(—B) " and} ;- yag+i(—B) " arein
I_g. The casé = 2¢ + 1is similar. The converse is immediate. O

Aword (z;);>1 is said to bd —3)-admissiblef there exists a real numbere I_s such thatl_g(x) =
(xi)i>1. The(—p)-shift S_z is the closure of the set ¢f-3)-admissible words, and it is a subshift of
AZ,

B

Define the sequenaE (ﬁ—) as follows:

o ifd_g(— 5“) dids - - - is not a periodic sequence with odd period,
1 1
d* 5(=——=) =d_g(=——) =0drdy - - -

o otherwise ifd_g(—557) = (d1 -+ dapi1)”,

1

*_B(ﬁ + 1) = (0dy - -~ dap(dap1 — 1))

Theorem 5.2 (Ito-Sadahiro [1P]) A word (w;)>1 is (—3)-admissible if and only if for each > 1

.1
d—,@( B T 1) Dalt WnWn+1 * - <alt dfﬁ(m)
A word (w;);cz is an element of the—3)-shift if and only if for each
p 1
—
dfﬁ( B T 1) Dalt WnWn+1 * Dalt d (ﬂ n 1)
Putd = d_3(—557) = dids -+ - andd* = d* 4(527). Theoren{5R can be restated as follows.

Lemmab5.31fd=d_g(— Bf_l) is not a periodic sequence with odd period, then

Sfﬁ = S(d) = {(wi)iGZ (S A% | VTL, d jalt WpWp+1 " }
Ifd= d,ﬁ(—%) is a periodic sequence of odd period, th#h= (0d; - - - dop(dop+1 — 1))* and
S_p=5(d)nS'(d")

where
S/(d*) = {(wi)iEZ € A[Zj | VTL, WpWn41 jalt d*}
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Theorem 5.4 The(—()-shift is a system of finite type if and onlyif 3(— 55 ) is purely periodic.

5+1

Proof: If d_g(— i) is purely periodic With an even period, the result followsnfr Theoren.z

B+1
Lemma[5.B and Propositign §.4. df 5(— ) is purely periodic with an odd period, the result fol-
lows from Theoren.2 Lemniab.3, Proposnizrl 4.4, Rerhdikahd the fact that the intersection of two
finite sets is finite. O

By Theoren{5]2, Lemmp 5.3, Propositipn]4.3, Renfark 4.5, hadact that the intersection of two
regular sets is again regular the following result follows.

Theorem 5.5 (Ito-Sadahiro [1P]) The(—3)-shift is a sofic system if and onlyiif 5 (—
periodic.

#7) is eventually

Example 5.6 LetG = 1£Y5: thend (1) = 11 and theG-shift s of finite type. Sinak ¢ (- %) = 10¥

the (—G)-shift is a sofic system which is not of finite type.

The automaton in Figﬂ4 (right) recognizing tlie G)-shift is obtained by minimizing the result of the
construction of Propositio@z. Remark that it is the autiton which recognizes the celebrated even

shift (see [1p]).
0 1
50 50
0 0

Fig. 4: Finite automata for thé&/-shift (left) and for the(—G)-shift (right)

Example 5.7 Let 3 = G? = # thends(1) = 21% and thes-shift is sofic, but not of finite type.

Now,d,ﬁ(—%) = (21)¥ and the(—f)-shift is of finite type: the set of minimal forbidden fact@'s
X(5-p) = {20}.
0,1 1 0,1 2
S =
0 1

Fig. 5: Finite automata for th&-shift (left) and for the(—G?)-shift (right)

5.2 Entropy of the —j3-shift

Example6 an@.? suggest that the entropy of-tfeshift is the same as the entropy of theshift
because the adjacency matrices of the automata are the Shimés what we show in this section.

A standard technique for computing the entropy of a subshigtto construct a (not necessarily finite)
automaton recognizing'(S). Then the submatrices of the adjacency matrix are takeraictount and
for everyn the greatest eigenvalug, of the submatrix of order is computed. A result proved irﬂ[g]
ensures that the limi of the sequencg,, exists and it satisfies(S) = log A\. Unfortunately the explicit
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computation of the\,,’s in the general case turns out to be very complicated, soseetapls from the
theory of dynamical systems:

— the notion of topological entropy for one-dimensional ayrical systems, a one-dimensional dy-
namical system being a couflg, T') consisting in a bounded intervAfand a piecewise continuous
transformatiold” : I — I,

— aresultby Takahasiﬂ[ZZ] establishing the relation betwepological entropies of one-dimensional
dynamical systems and symbolic dynamical systems;

— aresult by ShultzIﬂO] on the topological entropy of some-dimensional dynamical systems.

Let us begin with the definition of topological entropy foresdimensional dynamical systems.

Definition 5.8 Let (I, T) be a dynamical system.
For every finite cover of, sayC, set:

n—1
H(T,C) := limsup 1 log N ( \/ TmC>
n

m=0

with \/ denoting the finest common refinement &h@) denoting the number of elements of the smallest
subcover of’, a subcover of being a subfamily of still covering!.
Thetopological entropyf (I, T) is given by the formula

h(I,T) :=sup H(T,C). 1)

In [@] Takahashi proved the equality between the topoliggntropy of a piecewise continuous dy-
namical system and the topological entropy of an apprapsabshift. Before stating such a result we
need a definition.

Definition 5.9 LetT : I — I be a piecewise continuous map on the intedvalrhelap intervalsly, . .., I;
of T' are closed intervals satisfying the following conditions:

@ Lhu---ul =1,
(b) T is monotone on each interva), i =0,...,1;
(c) the numbet is minimal under the conditions (a) and (b).

The numbet is calledlap numbeand it is denotedap(T).

Remark 5.10 If the mapT is piecewise linear then the lap intervals are unique ang tt@ncide with
the intervals of continuity df.

Theorem 5.11 (Takahashi ]) LetT be a piecewise continuous transformation over the closeadJal
I onitself. Letyr : I — Al be the map defined by the relatian— ;25 --- with x,, satisfying

T"(x) € I, . Define the subshif{r := (1) in AY.
If lap(T) is finite then:
hXr) =h(1,T). (2)
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The entropy in the very particular case of a piecewise lingagp with constant slope is explicitely given
in the following result.

Proposition 5.12 (Shultz , Proposition 3.7])Let T" be a piecewise linear map with sloge3. Then
the topological entropy df is equal tolog £.

We now prove our result.

Theorem 5.13 The topological entropy of_ 4 is equal tolog 5.

Proof: Consider the dynamical systefi_g,T_g5). We extend the maffi_z to the closure off_g to
fullfill the conditions of Theorerfi 5.11. By definition of tife- 3)-expansion, the subshiff, coincides
with the closure of the set of the- 3)-expansions inﬂﬁ, whose entropy is the same isg C A%ﬁ. As
T_ g is piecewise linear, the lap intervals coincide with thei@@hnumber of continuity intervals. Then,

by Theoren{5.31 and by Propositi.bZS,ﬁ) =h(I_3,T_5) =logp. O

5.3 The Pisot case

We first prove that the classical result saying thati a Pisot number, then every elementf3) N[0, 1]
has an eventually periodi¢-expansion is still valid for the baseg.

Theorem 5.141f 5 is a Pisot number, then every element@(f3) N I_g has an eventually periodic
(—pB)-expansion.

Proof: Let Ms(X) = X?¢ — a; X% ! — ... — a, be the minimal polynomial o and denote by =
B1, ..., Bq the conjugates of. Letz be arbitrarily fixed inQ(8) N I_g. SinceQ(8) = Q(—F), x can
be expressed as = ¢! Zf;ol pi(—pB)* with ¢ andp; in Z, ¢ > 0 as small as possible in order to have
unigueness.

Let (z;)i>1 be the(—p)-expansion of, and write

mlzzrg):zrgn(x)::w"+l<+ Tn+2 4= C_ﬂ)n <x__ . T (—ﬂ)_k>.
—5 " (=p)p il

Sincer,, = T" ;(x) belongs tal_ 5 then|r, | < % <1l.For2<j<d,let

d—1 n
r) =1 () = (=8;)" <q_1 > opil=85) - Zxk(—ﬁj)_k> :
=0 k=1

Letn = max{|8;| | 2 < j < d}: sinceg is a Pisot number; < 1. Sincex;, < |3] we get

d—1 n—1
P <Y piln™ T+ 18] o
1=0 k=0

and since) < 1, maxlgjgd{supn{wzj)”} < 0.

We need a technical result. S, = (r,(ll), ce r,(ld)) and letB the matrixB = ((—f;)"")1<i,j<d-
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Lemma 5.15 Letz = ¢~ 32"} p;(—B). Foreveryn > 0there exists auniquéupleZ, = (23", ..., 2\")

in Z¢ such thatR,, = ¢~ 'Z,,B.

Proof: By induction onn. First,r; = —fx — x1, thus

(Enemt o) -t (s )
r=q pi(=B)" —qm | =q¢ | =+ g
' i=0 ' —B (=B)

using the fact that—3)? = —ay(— )" + as(~ )2 + -+ + (~1)%aq. NOW, 1 = —Brn — i1,
hence

) 2D Z(l)l Z(d)l
Tyl =q 27(11) + —1—6 N _(_B)d—l —qTns1 | =q " i} et (_ng)d

sincez\”) — qz,41 € Z. Thus for every there existgz", . .., 2 in Z¢ such that
d
re=g 1Y 2P (=) 7E

k=1

Since the latter equation has integral coefficients andtisfigal by —/, it is also satisfied by-5;, 2 <
j<d,and

d—1 n d
) = (=5)" (q_l > (=8 - Zxk(—ﬂj)_k> =q 'Y 2P(=8)"
1=0 k=1 k=1

a

Let us go back to the proof of Theordm §.14. lgt= qR,,. The(V,,),>1 have bounded norm, since
maxlgj@{supn{|rff)|}} < oo. As the matrixB is invertible, for everyn > 1,

1Zall = 1(=0, - 2P| = max{[=$] 1< j <d} <o0

so there exisp andm > 1 such thatZ,,,,, = Z,, hencer,,;,, = r, and the(—{3)-expansion ofz is
eventually periodic. i

As a corollary we get the following result.
Theorem 5.16 If § is a Pisot number then thie-3)-shift is a sofic system.

Thenormalizationin base—g is the function which maps ary-3)-representation on an alphalggt
of digits of a given number of_ 3 onto the admissiblé—3)-expansion of that number.
LetC = {—¢,...,c}, wherec > | ] is an integer. Denote

Z_5(2¢) = {(zi)go e {-2c,...,2c}" } Y u(-8) = o}.

i>0
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The setZ_z(2¢) is recognized by a countable infinite automatdng(2c): the set of state§)(2c)

consists of alls € Z[5] N [—%, %]. Transitions are of the form = s’ with e € {—c,...,c} such
thats’ = — s + e. The staté is initial; every state is terminal.
Let M3(X) be the minimal polynomial of, and denote by = 1, fa, ..., B4 the roots ofMz. We

define a norm on the discrete lattice of rahiZ[X|/(Mp), as

I1P(X)]| = max, |P(5)]
Proposition 5.17 If 3 is a Pisot number then the automatdn s (2¢) is finite for everye > | §].

Proof: Every states in Q(2c¢) is associated with the label of the shortest patfy - - - f,, from 0 to s in
the automaton. Thus= fo(—8)" + f1(=8)" "' + - + fn. = P(B), with P(X) in Z[X]/(Mp). Since
fofi--- fnis a prefix of a word oZ_3(2¢), there existsf,,+1 frn+2 - - - such thatf;);>o is in Z_g(2¢).
Thuss = |P(8)| < BQ_CI. For every conjugatg;, 2 < i < d, |B;] < 1, and|P(5;)| < % Thus every
state of@(2¢) is bounded in norm, and so there is only a finite number of them. O

The redundancy transduceR _(c) is similar to.A_s(2c). Each transitions = s’ of A_5(2c) is

replaced inR_g(c) by a set of transitions RllA s, witha,b € {—¢,...,c} anda — b = e. Thus one

obtains the following proposition.

Proposition 5.18 The redundancy transduc&_ s (c) recognizes the set

{(a:lzcg L Y1y2ecc) € N x M | in(_ﬂ)*i = Zyi(—ﬂ)ii}-

i>1 i>1
If 8 is a Pisot number, theR _s(c) is finite.

Theorem 5.19 If 3 is a Pisot number, then normalization in bas@ on any alphabe€ is realizable by
a finite transducer.

Proof: The normalization is obtained by keeping/h s (c) only the outputg that are(—3)-admissible.
By Theorem6 the set of admissible words is recognizapla binite automatorD_g. The finite
transduceV_ 3(c) doing the normalization is obtained by making the inteiiseaif the output automaton
of 'R,_B(C) with D_g. O

Proposition 5.20 If 8 is a Pisot number, then the conversion from basgto bases is realizable by a
finite transducer. The result j$-admissible.

Proof: Letxz € I_g, z > 0, such thad_g(z) = zi1x223---. Denotea the signit digit(—a). Then
T1xoT3 - -+ IS @ f-representation of on the alphabetl_z = {—|3],...,|8]}. Thus the conversion

is equivalent to the normalization in bageon the alphabe#i_g, and whens is a Pisot number, it is
realizable by a finite transducer lﬂ' [4]. |
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6 On-line conversion from positive to negative base

PropositioO shows the actability of the conversiomfimositive to negative base with a finite trans-
ducer for a particular class of bases, the Pisot numbers. The result is admissible, but this tnaceds
not sequential.

In the case where the base is a negative integer, we haversSeutiorﬂB that the conversion from base
b to base-b is realizable by a finite right sequential transducer.

6.1 On-line conversion in the general case

An on-line algorithm is such that, after a certain delay téteyé during which the data are read without
writing, a digit of the output is produced for each digit obtmput, see|E5] for on-line arithmetic in
integer base.

Theorem 6.1 There exists a conversion from basé base— which is computable by an on-line algo-
rithm with delayd, whereé is the smallest positive integer such that

A Ui @

The result is not admissible.

On-line algorithm

Input a word(z;);>1 of Aj suchthatr = 3=, ;677 and0 < o < 4.
Output a word(y;);>1 of Ag such thatr = Zj}l yj(_ﬂ)ij'

begi n
qo:=0
for j:=1to ¢ do
q; = qj-1+ 5t
ji=1
while j>1 do
= —Bsvj—1 + (-1)7 55

. 2
i f —% S 264j S %then Yj = L%ﬂ""%J

. 2
if 251, > £ theny; .= (5]
if 251 < —ghptheny; =0
45+j *= Z5+5 — Yj
ji=i+1

end

2643+

Proof: Claim 1. Foreachj > 1

KA €2 Ts+j Y1 Y2 i Yi i d5+3
E‘F@‘F"""Blﬂ_;:—E+@—"'+(—1)J4+(—1)J ,J.
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Claim 2. If — /5+1 < 2545 < 3 belongs tods andgs4; belongs tal_g = [— %, ﬁ).
Proof of Claim 2: Clearly) < < < /3+1 + B+1 = . Moreoverzs; + m =y;+ {254, + %}, thus

Q545 = 2545 — Yj = {z(;ﬂ + /5+1} — 5+1, and the claim is proved.
Claim 3. If z5,; > /3+1 thengsy; > —%. 2
Proof of Claim 3: Wezhave thag,; = z5+j — 18] > £ — 18] > -5
Claim 4. If 25, ; > % andgs,; 1> — /3+1 thengsy; < 537
2
Proof of Claim 4: Sinc@s.; = —Bgs+;-1 + (—1)’ 55 — [8] < Ao+ Lﬁj — 8], the claim is proved

= B+1
if, and only if, L;%J — 8] < 1-— 4, thatis to say, |f, and only |f,LBB§J < 1 — {B}, which is true thanks
to @).
Claim 5. If z54; < —[3 7 andgsy ;1 € I_p thenj is odd,— /3+1 — % < Goyj < —%, andgs4j+1
belongs tal_ 3.
Proof of Claim 5: Ifj is even then; . := —B¢s1j—1+ ””gﬁj > —55 + mgﬁj > — /5+1' hencej must be
odd. Setj = 2k + 1. We haveysr, 1 = 0 andgsor1 = 2syok+1 = — 542k — % > —% - %J

sincegs4j—1 € I_g
Thenzs o2 = —BQ5+2k+1 + M > /5+1 Henceyar 2 = [3]. By Claim 3,g51 2142 > — ﬁil
On the other hangs 2,12 = z(;+2k+2 — 18] = —BCIJ+2k+1 + M - 18] = B2qs10n + I5+2k+1 +

T 8] < [f—fl + ﬁtﬁjl LﬁJ — 18] < 577 by @), thUSQ5+2k+2 belongs tal_g.

By hypothesisgs is in I_B By the previous claims, for every > 0, gs421 belongs tol_g and

—% - fsj Gs+2k+1 < 777- Thus, for every >
! Lo+j (21 Yj G5+j
4.4 ~ = 4+ .4 _ 4+ _
B gt (=P) (=B)7  (=B)

with g5+ ; bounded. Therefore the algorithm converges, and

doaBT = y(—

Jjz1 j=1

6.2 Conversion in the Pisot case
We now show that, whefi is a Pisot number, there is a finite on-line transducer reglithe conversion.

Theorem 6.2 If 3 is a Pisot number, the conversion from basdo base—; is realizable by a finite
on-line transducer.

Proof: Following the on-line algorithm of Sectidn .1 we constranton-line transduce? as follows.
The set of states i = Q: U Q,, with the set of transient stat€} = {¢; | 0 < j < § — 1}, and the set
of synchronous state9, = {¢s+, | 7 > 0}. The initial state isy. Forl < j < ¢, transient edges are
defined by

xzjle

qgj—1 — ¢qj.
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Synchronous edges are defined by
To45|Y5
q5+j—1 e 45+

for 7 > 1. There is an infinite path in the automaidstarting ingy and labelled by

z1le zsle  zst1|ya Ts42|y2
g —q1 " —>4qs — q5s+1 —— 5427

if, and only if, = ;877 = 3" .o, yi(=B) 7.

Let Mg(X) be the minimal polynomial of and let3 = 1, 82, . . ., B4 be the roots ofi/z. Recall that
ZIX]/(Mg(X)) ~ Z[5] is a discrete lattice of rank Sinceg is a Pisot numbefs;| < 1 for2 < i < d.

For eachj > 1, ¢; is an element oZ[3, 37!]. Forl < i < d letg;(53;) be the element dE[3;, 3; o
obtained by replacing by ; in g;. Theng; = g;(3).

First of all, for everyj > 1, — -2 — 8l < <gi(B) < ﬁ+1 by the on-line algorithm.

B+1 /35
Secondly, forevery > 1 and2 < i < d,

. .
05+5(Bi) = =Bigs+j—1(Bi) + (1)’ g}” —yj. (4)
For2 <i<dlet
18] 1
M; = 1+ )
1 R
Then, if|gs4;—1(8:)| < M, then|q5+j(ﬂl-)| < M; by @).
Now, for0 < j < dand2 <i < d,

1 1
48] < LBI(G1 + -+

Define a norm otZ[X]/(Ms(X)) by ||¢|| = maxi<i<a|¢(5:)|- Thus the elements @ are all bounded
in norm, and s is finite. O

) < M;.

In the particular case th@® = a3 + 1 (3 is thus a Pisot number) we can construct directly a simpler
finite left sequential transducer realizing the conversion

Proposition 6.3 If 52 = a8 + 1, a > 1, then the conversion from bageo base—3 is realizable by the
finite left sequential transducer of Flﬂ. 6.

Proof: The left sequential transducer in FE;. 6 convert§-axpansion of a real numberin [0, 3) of
the formzg.z122 - - - into a (—pB)-representation of of the formyg.y1y2---. We take0 < d < a
0<c<a—1,1<e<a. Sincethe inputis admissible, no factar, with 1 < e < a can occur.

O
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ce|(c+1)(a—e)

do|do \_/@Qooma,deu(a— €)

e0|(e —1)0
Fig. 6: Finite left sequential transducer realizing conversiamfibase3 to base—3, 8% = a8 + 1
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