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Abstract: We assume data sampled from a mixtur@-afimensional linear subspaces
with outliers distributed symmetrically around the origifde study the recovery of the
globallo subspace (i.e., with largest number of points) by miningzimel,-averaged
distances of data points frothdimensional subspaces&f’, where0 < p € R. Un-
like otherl,, minimization problems, this minimization is non-convex &l p > 0 and
thus requires different methods for its analysis. We shaw iftO < p < 1, then the
globallp subspace can be recoveredlpyminimization with overwhelming probabil-
ity. Moreover, when adding homoscedastic noise aroundrbenlying subspaces, the
generalized subspace (with largest number of points “around it”) can &arly re-
covered byi;,, minimization with an error proportional to the noise lev@h the other
hand, ifp > 1 and there is more than one underlying subspace, then thaldlpb
subspace cannot be recovered and the generalized one ewenobe nearly recov-
ered. The results of this paper clarify the effect of usingavds ofl, minimizations in
RANSAC-type strategies for single subspace recovery.

AMS 2000 subject classificationsPrimary 68Q32, 62G35, 60D05; secondary 62-07,
68T10.

Keywords and phrases:Best approximating subspadg, minimization as relaxation
for lp minimization, robust statistics, sequential hybrid lin@aodeling, optimiza-
tion on the Grassmannian, principal angles and vectorange& probability, high-
dimensional data..

1. Introduction

Principal Component Analysis (PCA) is the most common tadhigh-dimensional
data analysis. It approximates a given data set by a low+tkoaal affine subspace
minimizing anl, sum of distances. Such minimization is not robust to owlietere
we study the robustness to outliers of a generalized vedditris minimization using
anl, sum for allp > 0 under particular assumptions.

This I, optimization problem takes place over a data¥et R” and minimizes
among alld-dimensional subspacds, the quantity:

e, (X,L) =) distx,L)", (1)
xXeEX
where disfx, L) denotes the Euclidean distance between a data gaamd the sub-
spacel.. We call any of the global minimizers of) a global/,, subspaceWe some-
times also refer to this optimization ggometricl, minimization Our study is moti-
vated by the problem of sequential recovery of multiple palsss buried in outliers,
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or in short, sequential Hybrid Linear Modeling (HLM). That irecovering the most
significant subspace among those subspaces, then rembgipgints along it (or in a
strip around it) from the given data and repeating this place according to the given
number of subspaces. It is common in HLM to assume drfymensional linear sub-
spaces (as opposed to affine ones and with mixed dimensiehig) we refer to as
d-subspaces. Therefore our underlying model assumes mheultipubspaces buried in
outliers, while we investigate the recovery of a singisubspace.

1.1. Background and Related Work

Thel; norm has been widely used to form robust statistics. For i@rthe geometric
median is the point in a data set minimizing the sum of distarfcom the rest of
data points, i.e., thh -averaged distance. For points on the real axis, it coilsaidth
the usual median. Its robustness is most commonly quanbffezhowing that it has
a breakdown point of 0.5 (i.e., the estimator will obtainiteuily large values only
when the proportion of large observations is at least a F20f)

Thel; norm has also been successfully applied to robust regrefsipl 6, 23, 21].
Furthermore, Basis pursuBj[uses/; minimization to search for the sparsest solutions
(i.e., solutions minimizing th& norm) of an undercomplete system of linear equations.
This strategy was only recently fully justifie8,[10, 9, 4]. Candeés et al.g] proposed
and analyzed the principal component pursuit algorithnrétust PCA, which min-
imizes a weighted combination of the nuclear norm and a r@iffel; norm among
all decompositions matching the available data. A simp$er of thel; norm between
given data points and representative points in a lower daioeal model (though with-
out using the nuclear norm term to infer this model) has amuea several other
works [1, 14, 19, 18§].

Geometrid,, minimization (as in {)) has been proposed by Guy David and Stephen
SemmesT] for p > 1 in a pure analytic setting (free of outliers in the context of
“Ahlfors regular measures”). Ding et al8][used the geometrit; minimization as a
robust alternative for principal component analysis, titolacking any mathematical
support. Very Recently, Xu et al29] have suggested the combination of the norm
used in the geometrig minimization with the nuclear norm (similar to Candes et
al. [2]) to obtain the outlier pursuit algorithm which is convexdaobust to outliers and
estimates the intrinsic dimension without prior knowledgevertheless, it depends on
a tuning parameter, which is used to weigh the two norms, taldé cannot use the
true dimension (if known) or any other information on the erging subspace (e.g.,
an initial guess).

A sequential HLM algorithm was suggested by Yang et20] ising the Random
Sample Consensus (RANSAQ)J heuristic to find a single subspace iteratively. This
RANSAC strategy repeatedly applies the following two stdpsandomly select a set
of d independent vectors; 2. count the number of data pointsmétstrip of widthe
around thei-subspace spanned by thaseectors (bothe and the number of iterations
of these two steps are parameters set by the user). The fipaitai this algorithm is
thed-subspace maximizing the quantity computed in step 2.

Torr and Zissermar2p, 27] have suggested a RANSAC-type strategy which mini-
mizes a variant of thg distance from a subspace. This variant uses the squarédnnct
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until a fixed threshold and a constant function for largeugal

1.2. Basic Conventions and Notation

By saying “with overwhelming probability”, or in short “w.p.”, we mean that the
underlying probability is at least — Ce=/¢, whereC is a constant independent of
N (we will also use “w.p.” as a shorthand for “with probability

We denote byG(D, d) the Grassmannian space, i.e., the set ofl-albspaces of
RP with a manifold structure. Following2P, Section 3.9], we denote byp 4 the
“uniform probability measure ofx(D, d)”. We will measure distances betweErand
G in G(D, d) by the metric

dista(F, G) = )

where{6,;}Z_, are the principal angles betweghand G (we explain the choice of
this metric at the end of Sectid2.1). We designate a ball ii(D, d) by B¢ (L, r) as
opposed to a Euclidean ball&”, B(x, r).

1.3. Precise Formulation of the Problem

We assume an underlying data $&t_ R” of N points identically and independently
sampled from the following kind of a mixture measure repnéisg a spherically sym-
metric setting of HLM with outliers:

Definition 1.1. We say that a probability measureon R” is a spherically symmet-
ric HLM measurgequivalently, spherically symmetric HLM measure with n@sa or
with noise levek = 0) if p = Zfioaim, whereayg > 0, > 0,7 =1,..., K,
and Zfio a; = 1, o is a probability measure spherically symmetric around the o
gin with bounded support (it represents outliers) gnd} X ; are probability measures
supported within distinaf-subspaces{L;} ¥ |, respectively and created by an appro-
priate rotation of the same probability measure, which iBesjically symmetric within
a d-subspace and has a bounded and nontrivial support (i®support is not a sin-
gleton).

For e > 0, we say thaj.. is aspherically symmetric HLM measure with noise level
eif pe = 0‘0#0"‘21*[;1 aifhie, Wherep; . = pix v, i=1,... K, {ai}fio, {L}E,
and{p; {io are the same as above at{n@&{io are probability measures with bound
support in{L;- } X, first moments smaller thanand p-th moments smaller tha?
forp < 1.

In Section4.1 we discuss more general settings for an underlying HLM measu
and the required modifications in our theory.
Throughout this paper we assume the condition

K
o] > Z a7} (3)
1=2
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and consequently say thht is themost significant subspacEor the noiseless case
of ¢ = 0, the most significant subspace coincides with the glébaubspace (i.e.,
the subspace containing the largest number of points) wradped, the subspace with
largest mixture componentin the model is the subspace aigest number of sampled
points w.o.p. For the noisy case©f 0, we view condition 8) as a generalized notion
of globally subspace w.o.p., that is having the highest fraction oftsdaround” that
subspace w.o.p.

1.4. Main Theorems

In the noiseless case afick p < 1, we can exactly recover the globalsubspace by
[, minimization as follows.

Theorem 1.1.If ;1 is a spherically symmetric HLM measure®R with K d-subspaces
{L;}£, C RP and mixture coefficientso; } £, satisfying(3), X is a data set ofV
points identically and independently sampled fromnd0 < p < 1, then the probabil-
ity thatL, is a globall,, subspace is at least— C exp(—N/C'), whereC'is a constant
depending oD, d, K, D, o, Q1,4 o, M1 andminggigK(diStG (Ll,Ll))

In the noisy case, we extend the above formulation to neawesy. For this purpose
we use the function

Pu(t) = Hmlfl—xl (n(x eRP: —t < [x"v|[ <)),

which we estimate for a special case in Appenalik.

Theorem 1.2. If € > 0, . is a spherically symmetric HLM measure B? of noise
levele with K d-subspaceg§L;}X, C RP and mixture coefficients; } X, satisfy-
ing (3), X is a data set ofV points sampled identically and independently fropand
0 < p < 1, then the global, subspace fog. is in the ballBg (L4, f), where

d w;]l(lJrul({O})) .
fEf(E,K,d,p,Oéo,Oél): g ) (4)

(o0 - S5 00)” (- m(fop)s 25

w.p. atleastl — C exp(—N/C'), whereC = C(e, p,d, D, j11, o, a1, ming<;< i (dista

(L1, Li)).
If K = 1, then the above statement extendslfer p < co with

iy, (Lagton {on) phe
af (1 - m({o})7 2%
In Section3.5.3we show that Theorerh.2is only relevant for sufficiently smadl.

At last, we formulate the impossibility df, recovery wherp > 1 andK > 1 and
thus demonstrate a phase transitiop at 1 whenk > 1.

f = f(ﬁ,K,d,p,Oéo,Oél)
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Theorem 1.3. Assume thafL;} £ | are K d-subspaces ifR?, which are identically
and independently distributed accordingp 4. For eache > 0 and a random sample
of {L;}X ., let u. be a spherically symmetric HLM measure 8® of noise levek
w.rt. {L;}X, € RP and letX be a data set ofV points sampled identically and
independently from.. If K > 1 andp > 1, then for almost everyL; } X | (w.rt.v5 ),
there exist positive constanfg and xq, independent ofV, such that for an;()y <

e < &y the globall,, subspace of’ is not in the ballBg (L1, o) with overwhelming
probability.

We remark on the size @f, andxg in Section3.6.5

1.5. Implications of the Theory to Subspace Modeling

Theoremdl.1, 1.2and1.3provide some insights on the effectiveness of recoveriag th
globally d-subspace (or globa} strip of widthe as searched by RANSAQJ)) in a
spherically symmetric HLM setting by minimizing distances in the spirit o, 27].
In particular, they imply that i’ > 1 then onlyl, distances witt) < p < 1 should
be considered. Even distances that coincide with {tdistance for sufficiently small
values, such a2, 27] or Huber’s loss function17], will not recover the underlying
subspaces as the proofs of those theorems show. On the aimey for a single un-
derlying subspace with spherically symmetric outliers podsibly additive noisd,,
recovery should succeed in theory for dnhy: p < oo, though the bounding constants
worsen agp increases. The idea a2, 27] making the loss function constant for large
values is expected to help with significantly far and nonsytrimoutliers (not covered
by our model). Such outliers are discussed e.g., in Se2tibn

In the setting of spherically symmetric HLM measure with rwise, Theoreni.1
can be repetitively applied to justify sequential HLM usipgninimization with0 <
p < 1. Rigorous application of Theoreth?2 for sequential HLM in the noisy case
requires its extension to more general scenarios; suchtansgan depends on the pre-
cise way of removing the part of the data around a subspaaksdtrequires estimates
of the local noise level (see e.g33 32] and [6)).

1.6. Additional Results and Structure of the Paper

Section2 reviews additional theory. In particular, Sectidri demonstrates natural in-
stances, distinct from the case of spherically symmetritieva, where the global,
subspace is neither a locgl subspace (even fgr = 1) nor global one (even for
0 < p < 1); Section2.2 studies the case of a single underlying subspace and asks
when the global, subspace is local minimum of the geometfoptimization. It es-
tablishes some necessary and sufficient conditions to sake a problem. Unlike the
rest of our theory, these conditions are model-indeperatghteterministic (i.e., not
probabilistic); Sectior?.3 uses those conditions to show that if one samplgout-
liers andV; inliers from a spherically symmetric HLM model withi = 1 and if both
No = o(N%) andp = 1 or bothNy = Q(1) and0 < p < 1, then the globaly sub-
space is a locdl minimum. We separately include all mathematical detail¥fyiag
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the theory of this paper in Sectid@ while leaving some auxiliary verifications to the
appendix. Sectiod concludes this paper and discusses some immediate extsmgio
its results as well as open directions.

2. Additional Theory
2.1. Counterexamples for Robustness of B&siSubspaces

We show here that there are many natural situations, thoifighesht than our under-
lying model of spherically symmetric outliers, where glbbad-subspaces are not
robust to outliers for alll < p < co. More precisely, we show how a single outlier can
completely change the underlying subspace.

A typical example includedV; points sampled identically and independently from
a uniform distribution orB(0,¢) U L. € R, whereL is ad-subspace oR”, and an
additional outlier located on a unit vector orthogonaltdBy choosinge sufficiently
small, e.g.¢ < (1/N1)'/?, the global,, subspace passes through the single outlier and
is thus orthogonal to the initial-subspace for ajp > 0.

If p = 1, then the globaly d-subspace in this example is still a lo¢alsubspace.
Nevertheless, if the outlier is located instead on a unitorelcaving elevation angle
with the originald-subspace less thary2, thene can be chosen so that the glohal
subspace is neither a local nor globalsubspace. However, if < p < 1, then the
globally subspace is still a locd), subspace in both examples as well as almost any
other scenario (see e.g., Propositibhbelow).

Similarly, it is not hard to produce an example of data poartghe unit sphere of
RP” where the global, subspace is still not a global subspace. This is in contrast to
the case of sparse representation of signals, where naatiafi of the column vectors
of a matrix representing an undercomplete linear systengoétons ensures that the
solution minimizing the; norm is also the sparsest solution as long as it is suffigientl
sparse 11, Theorem 2]). For simplicity we give a counterexampledot 2 by letting
N data points be uniformly sampled along an arc of lergtii a great circle of the
spheres? C R3. We then place an outlier on another great circle, whichgsgsough
the center of the-arc and has a small angle with it. Takiagufficiently small and the
outlier furthest from the intersection of the two great l&s; we obtain that the global
lp subspace is not a local subspace and consequently not a global one. We remark
that in this example the assumption of bounded sphericgltynsetric outliers used
throughout this paper is not satisfied.

2.2. Combinatorial Conditions fol, Subspaces being Loc#}, Subspaces
2.2.1. Preliminary Notation
We denote the orthogonal grouprok n matrices byO(n) and the semigroup of x n

nonnegative scalar matrices By (n). We designate the projection froR onto the
d-subspacé. by P, and the corresponding orthogonal projectionftyy. The nuclear
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norm of A is denoted by|A|.. We define the scaled outlying “correlation” matrix
B, x of a data seft’ and ad-subspacé. as follows

BLx= » PLx)P(x)"/distx,L). (5)
xeX\L

Example 1. LetD =2,d =1, X = {(0,1),(1,1), (1,0)} andL be thez-axis. Then

BLx= » Pu(x)P(x)"distix,L)"!
xeX\L

= PL((0,1)) P ((0,1))"/dist((0,1), L) + PL((1, 1)) P;-((1,1))" /dist((1,1),L)

(
=(0,0)7(0,1)/1 4 (1,0)7 (0,1)/1 = < é

= O

2.2.2. The Three Conditions

We formulate conditions for the globgl subspace to be a locg) subspace, while
distinguishing between three cases= 1,0 < p < 1 andp > 1. We prove these
results in Sectio.2

Theorem 2.1. If Ly € G(D,d), X1 = {x;}Y', € Ly, & = {y:}Y°, e RP\ L; and
X = Ap U A1, then a sufficient condition fdt; to be a local minimum of;, (X, L)
among alld-subspace& € G(D, d) is that for anyV € O(d) andC € S, (d):

N,
> [CVPL (x)]| > ||ICVBL, x| (6)
=1

Proposition 2.1. If Ly € G(D,d), X1 = {x;}, € L1, & = {yi}°, € RP \ Ly,
Sp({x;}M',) = L; andp < 1, thenL; is a local minimum ok;, (X, L) among all
L e G(D,d).

Proposition 2.2. 1f L; € G(D,d), X1 = {x;}, € L1, Xy = {y:} 2, € RP\ L, and
p > 1, then a necessary condition féx to be a local minimum of;, (X', L) among
allL € G(D,d) is

No
> P (yi) PR () "dist(y;, L)~ = 0. 7

i=1

The above results manifest a phase transition phenomendeed, the global,
subspace is almost always a lo¢alsubspace fop < 1, whereas fop > 1 this is
often not the case (except for an underlying measure whigphsrically symmetric in
the complement df.; ; for example, in the case of an underlying spherically symnime
HLM with K = 1, the global, subspace is asymptotically a globasubspace for all
p > 0). The combinatorial condition implying when it is a lodalsubspace is more
complicated and we exemplify its application throughoetplaper.
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2.3. Local or Globall, Subspaces for Spherically Symmetric Sampling with a
Single Subspace

We assume here the probabilistic setting of sphericallyrsginic HLM measure with
a single underlying subspate, i.e., K = 1. Clearly,L; is the global, subspace for
the sampled data w.o.p. For amy> 0, we ask whethek;, is also a local or even global
[, subspace w.o.p. We prove the corresponding results deddoiow in Sectio.3.

We first claim that fop = 1 the globall, subspace is a loca} subspace w.o.p. as
long as the fraction of inliers is sufficiently large. In orde simplify our estimates we
assume that the support of the underlying distributionitighe unit ball.

Theorem 2.2.1f L; € G(D,d) andX is a data set irR” of Ny + N; points, where
Ny of them are identically and independently sampled from agpally symmetric
distribution onB(0, 1) and N; of them are identically and independently sampled from
a spherically symmetric distribution dm, N B(0, 1) with nontrivial support; Ther.,

is a locall; subspace aft’ w.p. at least

Nin? Nye? N
2 17 0 0
1 —2d*exp (— S ) — 2dD exp (_2d2D> , Wheren + Ee < Ox(p1),
andd.(u) is a constant depending only @n.

In particular, if No = o(N?), thenL; is a locall; subspace o’ w.p. at least

dx(p1)* N1 O (p1)? N?
1 2d®exp |~ ) 9D exp (2 ) 8
P ( 2 & FP\ TS E2DN, ®

In AppendixA.5 we establish the following expression for the constani:;) in
the special case wherg is the uniform distribution o.; N B(0, 1):

Su(i1) = 1/(d +2). 9)

For0 < p < 1, Proposition2.1 implies that if N; = (1) thenL; is a local
[, subspace w.o.p. On the other hanghit> 1 and N; = Q(1), then the following
proposition shows that the subspdgeis a locall,, subspace w.p. 0.

Proposition 2.3. ConsiderL; € G(D,d), uo a spherically symmetric distribution
on R? with bounded support satisfying,({0}) = 0, u; a spherically symmetric
distribution onL; with bounded and nontrivial suppott, = agpo + o111, Whereay,
a1 are nonnegative numbers summing tand X’ is a data set sampled identically and
independently fromp. If p > 1, then the probability thak; is a locall,, subspace oft’

is 0.

The proof of this proposition is immediate. Indeed, dergthre i.i.d. outliers sam-
pled fromyq by {y;} 1, and applying82), the probability thaf,, (y;) is a fixed num-
ber is zero. Therefore, the probability thaf"*, Py, (y:) P~ (v:) " dist(y;, L1)?~2 = 0
is also zero.

Another question is whether the glodalsubspace is also the glokglsubspace.
Propositior2.3and Theoreni.1lalready answered this question in our setting. Indeed,
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if p > 1, then by Propositioi2.3 the globall, subspace is a globg) subspace with
probability O; whereas i < p < 1, then Theoreni.1with K = 1 implies that for
Ny = O(Nq) the globally subspace is also the gloliglsubspace w.o.p.

At last, we remark that the phase transition phenomenon dstraded above at
p = 1is rather artificial in the current setting. Indeed, this gghtransition is based on
the fact that 7) holds w.p. O forp > 1 and any finite sample; however, the LHS @f (
divided by N is 0 w.p. 1 asV approaches infinity. Moreover, when> 1 the positive
distance between the globigl subspace and the globil subspace approaches 0 as
N approaches infinity. We will show in Theoreb® that this formal phase transition
also breaks down with noise. Nevertheless, as we show inréheh 3 there is a clear
phase transition for a spherically symmetric HLM model with> 1. This is rather
intuitive since the underlying measure of the latter cas®ispherically symmetric on
the complement aof.;, unlike the case wherg = 1.

3. Verification of Theory

We describe here the complete proofs of the various theoaaahgropositions of this
paper. We start with preliminary notation and conventionsvall statements of aux-
iliary lemmata and then prove the theory according to thiefohg order of sections:
2.2 2.3and1.

3.1. Preliminaries
3.1.1. Basic Notation and Conventions

All distributions in the statements of theorems have bodnslgpports. We assume
WLOG that the support of these distributions is contained (i@, 1).

The Frobenius norm oA is denoted by| A ||.. Then x n identity matrix is written
asI,. We denote the subset Bf (n) with Frobenius norm 1 bNS. (n). If m > n
we letO(m,n) = {X € R™*" : XTX =1,,}, whereas ifv. > m, O(m,n) = {X €
Rm*n . XXT =1,,}.

We sometimes apply the enerdl) o a single pointx, while using the notation:
e, (x,L) = e, ({x},L).

3.1.2. Auxiliary Lemmata

We formulate several technical lemmata, which will be pbveAppendice#\.2-A.4.

Lemma 3.1. If Ly, Ly € G(D,d), p > 0, u; is a spherically symmetric measure on
L, with bounded and nontrivial support anrlistg (L1, L1) > ¢, then

(-mo) -2t
(7va) - (v (@ +m({0}) /2))"

E,, (elp (x,ﬁl)) >
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Lemma 3.2. For anyx € R” andL;, L, € G(D, d):
|diSt(X, Ll) — diSt(X, L2)| < ||X|| diSt(;(Ll, Lg)

Lemma 3.3. If Li, Lo € G(D,d), u1 and uo are probability measures supported
within L; andLs respectively and created by an appropriate rotation of #u@e prob-
ability measure, which is spherically symmetric within aubspace and has a bounded
and nontrivial support (i.e., not a singleton), apd< 1, then for anyl, € G(D,d):

Ex, €0, (dist(xy, L)?) + Bx, e, (dist(xa, L)P)
>Ey, ep, (dist(x1, L;)P) 4+ Ex, e, (dist(xz, L;)P) fori =1,2. (10)

3.2. Proofs for Theory of Sectio2.2 Combinatorial Conditions via Calculus on
the Grassmannian

3.2.1. Preliminaries: Principal Angles, Principal VecgmRepresentation of the
Grassmannian and Geodesics on the Grassmannian

We denote the principal anglesd between twail-subspaceB andG by 7 /2 > 6; >

0y > --- >0, > 0, where we order them decreasingly, unlike common notaté.
denote byt = k(F, G) the largest number such tht # 0, so thatd; > ... > 0, >
Ok11 = ... = 04 = 0. We refer to this number as interaction dimension and reserv
the indexk for denoting it (the subspac@&sandG will be clear from the context). We
recall that the principal vectorsy; }¢_, and{v/}%_, of F andG respectively are two
orthogonal bases fdr andG satisfying

(vi,vi)y =cos(6;), fori=1,...,d,

and
vi Lvj, foralll <i#j<k.

We define the complementary orthogonal systam}¢_, for G with respect ta?
by the formula:

. (12)
u; = vy, i=k+1,---,d.

{V; =cos(6;)v; +sin(f;)u;, i =1,2,--- k,
We note that
u; Lv; forall 1<i,j<k.

We note that the above vectors orthogonally decompeasé into the2-dimensional
subspaceSp(v;,u;), i = 1,...,k, of mutually orthogonal systems and the residual
subspacé’ N G. The interaction betweeR andG can then be described only within
these subspaces via the principal angles. This idea is altivated by purely geomet-
ric intuition in [28, Section 2].

We implicitly use principal vectors to repres€mtD, d) by O(d) x O(d, D — d) x
S+(d). Indeed, we fix al-subspacé&,; € G(D, d) and for anyL. € G(D, d) we form
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the principal vectorgv;}¢ ; and{v/}¢ , for L, andL respectively; the projection
of {v;}&_, ontoL; corresponds to an element©@fd); the projection of{v/}¢_, (or
the complementary vectofsi; }¢_, of L w.r.t. L;) ontoL{ gives rise to an element of
O(d, D — d); The principal angles i, then relate elements projected oftp and
L;. Our representation is rather different than the commoresgmtation in numerical
computation 12, Table 2.1], which uses either of the quotient spacgd, d)/O(d)
orO(D)/(0(d) x O(D — d)).

It follows from [28, Theorem 9] that if the largest principal angle betwéeand
G is less thanr /2, then there is a unique geodesic line between them. Folip{ti
Theorem 2.3], we can parametrize this line fréhto G by the following function
L: [0,1]— G(D,d), which is expressed in terms of the principal andlég¢_, of F
andG, the principal vector§v,}¢, of F and the complementary orthogonal system
{u}d_, of G with respect td-:

L(t) = Sp({cos(tb;)v; + sin(t@i)ui}le). (12)

We remark that this formula only holds when equipping thesSmaannian with the
distanceliste of (2) and this is the reason why we use this distance.

3.2.2. Proof of Theorerd.1

In order to show thal.; is a local minimum ofe;, (X', L) among alld-subspaces in
G(D, d), we arbitrarily fix ad-subspacé € Bg(Li, 1) and show that the derivative of
thel, energy when restricted to the geodesic line ffbonto an arbitrary subspadeis
positive atl.

The restriction ofL. to B (L1, 1) implies thatd; < 1 and thus by 28, Theorem 9]
this geodesic line (connectifig andL) is unique. We parametrize it by the functibn
[0,1]— G(D, d) of (12), where herd 6, }%_, are the principal angles betwebpandL,
{v;}¢_, are the principal vectors df; and{u}?_, are the complementary orthogonal
system forL, with respect td_;. Using this parametrization we need to prove that the
functione;, (X, L(t)): [0,1]— R has a positive derivative at= 0.

We follow by simplifying the expression for the functien (X', L(t)) and its deriva-
tive according ta. We denote the projection frof” ontoSp(v;, u;), wherel < j <
d, by P; and the projection fronR” onto (L, + L)* by P and use this notation to
express the following components of the function( X', L(¢)) fori = 1,..., Ny:

d
dist(y;,L(t)) = \l ZdistQ(Pj(yi),L(t)) + dis?(PL(y;), L(t)). (13)

Forl < j < d, we letg; € [0,2n] denote the angle such th&(y;) = ||P;(y:)||
(cos(¢;)v; + sin(¢;)u;) and consequently express each term of the sumMi 3 s
follows:

dist (P; (y:), L(t)) = ||P; (yo)|* sin®(¢; — t6;), j=1,....d. (14)
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Applying (14) in (13) and differentiating, we obtain the following expressian the
derivative of disty;, L(¢)) forall 1 <i < Npy:

d . S0y 0311 P ()12 sin(e; — t0;) cos(; — t0))
S0 0 ((cos(t0;)v; + sin(t0;)u;) - yi) ((— sin(t0;)v; + cos(t0;)u;) - yi)
dist(y;, L(t))

(15)
At ¢t = 0 it becomes
d . S 05(vy i) (s yi)
at (dIST(YivL(t))) o = - diST(yi,L(O))
_ _Z?ﬂ 0;(vj yi)(u; -yi)’ (16)

dist(y:, L(0))

where the interaction dimensidn= k(L;, L) has been introduced in Secti8r2.1

We form the following matricesC = diag(61, 6, --- ,04), V € O(d, D) with j-th
row va andU € O(k, D) with j-th row uJT. We then reformulatel@) using these
matrices as follows:

d . tr,(CVy;y/ UT)
— (dist(y;, L(t =— : L , a7
g (st L) Tty LD
wheretr;, denotes the trace of the filstows of the correspondingx k£ matrix, whose
lastd — k rows are zeros. Similarly, forald; € Ly, =1,2,--- , Ny,
d
dist(x;, L(t)) = | Y |(v; - x;)[2 sin®(t6;),
Jj=1
and .,
d . 21051y - x;|? sin(t6;) cos(t0;)
E (dlST(X“ L(t))) - diST(Xi, L(t)) (18)
At ¢t = 0, this derivative becomes
q d
- (distxi, L(®)))| - = D OIv %) 262 = [|CVx,]]. (19)
t=0 j=1

Combining (L7) and @9) and using

Ny
A=) ylyi/distly;, L),

i=1



G. Lerman and T. Zhanby/-Recovery of the Most Significant Subspace 13

we obtain the following expression for the derivative of thenergy of ():

Ny
=Y |lCVxi|| - tre(CVAUT). (20)
=0 =1

< e (X, L(0)

SinceV is a projection ontd.; and U is a projection ontd.{ , we may rewrite
this expression by the matriX € O(d), whosej-th row is P, (v;)? and the matrix

U € O(k, D — d), whosej-th row is Pi- (v;) 7

Ny
d . N X
= (en (X, L(1) =Y [[CVPL, x| — trx(CVBy, 2U"). (21)
=0 =1
At last, we note that
max(try(CVBL, xUT)) = ||[CVByL, x| (22)

or

Indeed, denoting the SVD decompositior@VBLhX by UyX, VI we have that

trx(CVBL, 2 U”) = tr4(Ug B Vi UT) = tri(Zo Vi UTUp) < > (diag(So))
= |ICVBL, x|l

and this equality can be achieved wHER' consists of the first columns of Vo UZ.
The theorem is thus concluded by combi2d)(and @2).

3.2.3. Simultaneous Proof for Both Propositi¢ch&and2.2

For thed-subspacd.; and an arbitraryi-subspace. € Ba(Ly, 1), we form the
geodesic line parametrizatidn(¢) and the corresponding matric€s V, U, V and
U as in the proof of Theorer.1 Similarly to verifying (L7) and (L9) in the latter
proof, we obtain that

% (dist(y;, L(t))P) = —pdist(y;, Ll)p_2 trk(CVyiy;‘FUT) (23)

t=0
and q
T (dist(x;, L(¢))?) = pdist(x;, L1)? 7' |CVx|. (24)
t=0
Consequently
d o
5 (e, (X L)) =pD_distlx;, L)"[|CVxi| (25)
t=0 i=1
N() Nl

—p Y _dist(y;, L))" tr,(CVy,;y] UT) = p Y distix;, L))" '|CV PL, (x:) |

=1 i=1
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No
—p Y _dist(y;, L))" 2 tr,(CV P, (i) P (yi) " UT).
i=1

Assume first thap < 1. Then

Ny
d i _ N
5 (e, (L)) | =pt' 7Y distxi, L) ||CV A, (i) (26)
t=0 i=1
No
—pt'" Y dist(y;, L))" tri(CV P, (vi) P (yi) " UT)
1=1

Ny p— . No R
=Y (limdistoes, L) /1) IOV Gl = S IICVAL ()7

=1
It follows immediately from the definitions & and'V that

1CVxi]| = 01 [[vixl. 27)

Now, the assumptioSp({xi}f\Ql) = L; implies that there exists < j < N; such
thatv?x; # 0 and thug|CV Py, (x;)|| = ||CVx;|| > 0. Therefore, 26) is positive,
L, is a local minimum ok, (X', L(t)) and Propositior2.1is proved.

Next, assume that > 1 and note that

Ny
p Y _dist(x;, L)’} |CV P, x| = 0. (28)

=1
SinceL; is a local minimum ofe;, (X, L), the derivative in 25) is nonnegative and

in view of (28), the subtracted term ir2) is thus nonpositive. Now, for a subspace
L € G(D,d) such thalC = V = I; we obtain that

No
0> maxp > dist(yi, Lo)P~* tri(Pr, (vi) P, (yi) " UT)
1=1

=D

3

No
> dist(y;, Ly )" 2P, (i) P (vi) "
=1

*

where the last equality follows fron2®). Therefore, ) holds and PropositioB.2 is
thus proved.

3.3. Proof of Theoren®.2 Combination of Combinatorial Estimates (Sectidh2)
with Probabilistic Estimates

To find the probability thal,; is a locall; subspace we will estimate the probabilities
of large LHS and small RHS o for arbitraryL. € B (L1, 1). We use the similar
notation as in the proof of Theorefhl, in particular, we denote th®&, outliers and
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N inliers by {y;}¥°, and{x;} ", respectively. Due to the homogeneity 6j (n C,
we will assume WLOG thdtC||; = 1,i.e.,0; = 1.

We start with estimating the probability that the RHS @¥i6 small. Applying the
above assumption th§C||» = 1 we have that

ICVBL, x||r < [|[VBL, x||F = [IBL, x||F

and consequently

Pr <||CVBL1,X||* - 6) > Pr (||CVBL1,X||F - L)

Ny Ny \/E
IBL, x||[F ¢ ) (maxp.l |(BL, x)p.i € >
> pr ( I2LXE - © ) S py : APl .
- ( No Vd) ~ No dv' D

f We further estimate this probability by Hoeffding’s inegitly as follows: we view
the matrixBy, x as the sum of random variablé}, (y;) P (y:)" /1P (vi)l|, i =
1,..., No. Since the distribution of outliers is spherically symnetn B(0,1), the
coordinates of bottPy, (y;) and P: (y:)” /|| PZ; (y:)|| have expectationg and take
values in [-1,1]. We can thus apply Hoeffding's inequalitythe sum definin@r, x
and consequently obtain that

max,; [(Br, x)p. € Noe?
P b, LAp, >1—-2dD — . 29
! ( N WD)~ P\ "3¢D (29)

Next, we estimate the probability that the LHS 6§ is sufficiently large. Unlike the
rest of the paper where we often represént by aD x D projection matrix (of rank
d), it will be convenient here to represent it adax d matrix of projection. We first
note that

Ny Ny Ni

S NCVPL (x| > Y 16:vi Py (xi)| = > [vi Pu, (xi)]

i=1 i=1 i=1

N1 Nl
> $Z Vi L, (x:)* > min o (Z P, (x;) P, (Xi)T> :
=1

i=1
(30)

Second of all, sincg, is spherically symmetric distribution i, N B(0, 1) and given
the representation df,, by aD x d matrix, we have

B, (P, (x)P, (x)7) = 6,14, wheres, = d.(u1) dependsom,.  (31)
We will prove in AppendixA.6 the following statement:
N,y
If max o (Zl P, (%) Py, (x:)T — 5*Id> <n,

Ny
then mtin ot (Z P, (xi) P, (xi)T> > 6, —1n. (32)

i=1
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We combine 80)-(32) and Hoeffding’s inequality to obtain the following prohlidtic
estimate for the LHS off):

N1 )
Pr (Zi—l ||CVPL1 (XZ)H > 6* _ 77) (33)
Ny
Ny ) AT
> Pr (mtin oy <Zi_1 PLl(;Z)PL] (i) ) > 0y — 77)
1

Ny

N1 T
1 Py (%) Py (%
Z Pl“ ( tax o <Z’L_l Ly (X ) Ly (X ) _ §*Id> < n)

Ny T
P i) P ;
> Pr (H Zz:l L1(]i]( ) L (X ) _ §*Id < 77)
! F
Z?Ql Pr, (xi) P, (x)" 7 2 Nin?
ZPr(n}lﬂx 1N1 L — 0,1y Z<E >1—2d”exp —5p )
P

From 29) and @33), (6) is valid with probability at least

Nin? Nye? N,
_942 ANt _ e e
1—2d” exp ( 5 ) 2dD exp ( 5 ) Ve, n stn+ Nle < d.(p1). (34)

We can choose = Nj4.(u1)/(2Ng) = N1/(2No(d + 2)), n = 1/(3(d+2)) and
obtain that if Ny = o(IN?) then @) is valid with the probability specified ir8].

3.4. Proof of Theorenl.l: From Local Probabilistic Estimates to Global Ones
3.4.1. Proof of the Special Cas&: = 1
Part I: L; is a Globall, Subspace iB¢(L1,71)

We assume here that there is only one underlying subspac¢aijnce it is easier to
follow our proof in this case. We prove in this part that thexésts a constanf; > 0
such that w.0.pL; is the globall, subspace iBg(L1,v1). We arbitrarily choose
L € G(D, d) such thatlistq (L, L;) = 1 and parameterize a geodesic line frimto
L by a functionL: [0,1] — G(D, d), whereL(0) = L; andL(1) = L. We then observe
that there exists; > 0 such that the function;, (', L(¢)): [0,1] — R of (1) has a
positive derivative w.0.p. at antye [0, v1], that is,

a <zxex dist(x, L(1))”
dep N

) >0 forallt € [0,v1] w.0.p. (35)

We will deduce 85) from the following two equations:

% (erx dijvt(x, L(t))p>

> v W.0.p. for somey; > 0. (36)
t=0
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and

% (erx dij\tfx’ L(t))p>

e
t=to 2

(37)

_ % (erx dii(xv L(t))p)

t=0

Vo € [0,v1] w.0.p.

Whenp = 1, equation 86) practically follows from the proof of Theore@.2 by
arbitrarily fixinge andn such thatag /a1 +1n+72/a1 < 6, and noting that when sam-
pling from the mixture measure specified in the current taeopgunlike Theoren2.2)
the ratio of sampled outliers to inlierd), /N, goes w.o.p. tayy /1. Whenp < 1,
equation 86) follows from (26). We also observe that = v(ag, a1,d, u1, p).

We first verify 37) for the sum of elements it} = X N L;. In view of (18), for
anyx € A; the single term in that sum (i.e., digt L(¢))?) has a bounded second
derivative with respect to t; hence, we can find constap@nd~, satisfying

d (erX1 dist(x, L(t))p) d (erXl dist(x, L(t))p>

dtr N oA N

72

t=0 t=tg

(38)
Yitg € [O,’yl].

We derive a similar estimate by replacing the summatior ef X; by the summa-
tion ofx € X'\ X;. Using the constans, which we clarify later, we separate the latter
sum into two componentst := {x € X'\ Xy : dist(x,L;) < 23} and(X'\ 1)\ X.

In order to deal with the first sum, we define

v = p(x : 0 < dist(x, L;) < 273)

and note that we can choosg = v3(D, y2, 1t0) = v3(D, d, o, a1, o, pt1, p) Suffi-
ciently small such that, = 74(d, o, a1, o) is arbitrarily small. We use, to bound
the ratio of sampled points frodr and X’ as follows:

#(X)
I

Indeed, we note that(X) = 3, [3(x), E(I3(x)) = p(x : x € X) = v, and
I;(x) takes values in0, 1], therefore by applying Hoeffding’s inequality 0, (x),
wherex € X, we concludegd9).

Now fory; € X, the derivatives expressed ib5) and @6) are bounded by 1 since
the support ofy is contained il3(0, 1). Thus, by combining this observation witB9)
we obtain that there existg and~, such that for any, € [0, 1]:

%(erxdi;f](w(ﬂ)p) _%(erxdijvt(xaw))p)

t=0 t=to

W.0.p.
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Differentiating (15) and @6) one more time, we obtain that fare (X \ X1) \ X,
the second derivative of dist, L(¢)) with respect ta? is bounded by’ (d)/~3. Thus
we can choose; = v1(y2,73,d) = v1 (o, a1, po, 111, d, D, p) sufficiently small such
that for anyto € [0,71]:

4 Doxe (a2 distix, L(t)) o d > xe (@ dist(x, L(2))? _?

dtp N dtp N 6"
t=0 t=to

(41)

Equation 87) and consequently86) are thus verified by combin@®), (40) and @41).
That is, we showed thdt, is the globall, subspace iBq(L1,v1) for sufficiently
small~;.

Part 1l: L; is a Globall, Subspace ittx(D, d)

We will first show that for all. € G(D, d) \ Ba(L1,v1) and any fixedh < 1, there
exists some; > 0 such that

€, (Xa L) — €, (Xa Ll) > 77N7 W.0.p. (42)
Indeed, we first conclude from Lemn3al that

E, (elp (x, L)) -E, (elp (x,Ll)) > ag (Em) (elp (x, L)) —E,, (elp (x, Ll))) (43)
os(1— ({0217
i (5 (2o

+ o (ENI (elp (X7L)) - Eﬂl (elp (X’Ll))) 2

on (1—p1({0}))2797
(V)P (111;1] <1+u12({0})
ity, we obtain 42).

Now, (42) extends for a small neighborhoodlof That is, for anyl. € G(D, d) we
can find a balBg (L, t) for somet > 0 such that w.o.p. the subspake is a better
[, subspace than any of the subspaces in that ball. By covdimmgampact space
G(D,d) \ Ba(Ly,~1) with finite number of such balls we obtain that w.dlp.is the
globall, subspace ifz(D, d) \ Bg(L1,v1). Combining this observation with part I,
we conclude that w.o.fL; is the global, subspace it:(D, d).

Settingy; =

))p and combining43) with Hoeffding’s inequal-

3.4.2. Extension of the Proof f§ > 1
Part I: L; is a Globall,, Subspace iB¢(L1,71)

We maintain the same notation of Secti®d.1, especially for similar constants. We
will show in this part that w.o.pL; is a globall,, subspace in the babg (L1, 1),
wherey; is a sufficiently small constant different than the one oft®ed.4.1

In order to do so, we arbitrarily fik € G(D, d) such thatlist (L, L;) = 1 (so that
C € NS, (d)) and parameterize a geodesic line frimto L by a functionL: [0,1]
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— G(D,d), whereL(0) = L; andL(1) = L. We will then estimate the probability
that for any such. the functione;, (X, L(t)): [0,1] — R has a positive derivative at
anyt € (0,71), that is

a4 (zxex distix, L(1))”
dep N

) >0 forallt e (0,7). (44)

First of all, we prove that the LHS ofid) is larger than some constapt > 0 at
t = 0 w.0.p., thatis:

> 9 W.0.P. (45)

t=0

% (erx dij»\tf(x, L(t))v)

When0 < p < 1, it follows from (26) and Hoeffding’s inequality tha#6) is valid
W.p.1 —exp(—2N~3) for v2 = a1 B, (|CoVo P, (x)]7)/2. Whenp = 1, it follows
from (6) that this probability is the same as the probability of thera

erxl IICV P, (x)]| - ||CVBL1,X\X1||
> Y2
N
VC € NS4 (d) andV € O(d).

(46)

Applying the spherical symmetry iy, we have that for allC € NS, (d) and
V € O(d):

ICVBL, vl = ICV S P ()P ()7 /distx, L) .

XEX\ X1
=[[CV > PP ()" /distx, L)l
xeX\{X1UXp}
< Y leVA,PLE/IPLEIL < Y [ICVAL, ()]
XEX\{XlLJXo} XEX\{XluX()}

Consequently, in order to estimate the probability4)(t is sufficient to estimate the
probability that

erxl ICV P, (%) — erx\{xluxo} ICV P, (x)]
N
VC € NS4 (d) andV € O(d).

> Y2 (47)

We arbitrarily fix Co € NS, (d), Vo € O(d) and verify @7) by Hoeffding’s
inequality in the following way. We define the random var@abl(x) = (2I(x €
X1) —1)||Co Vo P, (x)|| and using the spherical symmetry{of; } X |, we have

B, (J()) = Eon <erx1 [[CoVoPL, (%) = Xoxer {auoy ICo VoL, (X)|>
1 =

o

N
(48)
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K
= 1B |ICoVoPL, ()l = 3 0y B, [CoVo P, ()|

j=2

K

> 1B, [[CoVoPL, (X)|| = Y @ By, [|CoVoPr, (x)]|
i=2

= /BOE,U«I | |COV0PL1 (X)Ha

wherefy = aq — 25(22 aj.

Now, letys := ByE,, ||CoVoPy, (x)||/4. We note that the random variabléx)
has expectation larger than, and it takes values ifi-1, 1]; thus by Hoeffding’s in-
equality:

> oxex 1CoVoPL, (%) = Xoxeaa, ICo VoL, ()|
N
W.p.> 1 —exp(—2N73).

> 279 (49)

We have thus proved thad9) is valid with sufficiently high probability for fixed
matricesCy € NS, (d) andV, € O(d). Next we estimate the probability oA%) for
all matricesC € NS, (d) andV € O(d), when restricted to a ball with sufficiently
small radius. We let

distns_ (4),0(a))((C1, V1), (C2, V2)) := max(||C1 — Czl|2, [[V1 — Va|2) (50)
and note that whenever dist , (4),0(4))((C1, V1), (C2, V2)) < 72/2andx € B(0,1)

we have that
[[C1 V1P, (x)]| = [|[CaVa P, (%)
= ([|IC V1P, (¥)]| = [|C2 V1P, (x)]]) + (||C2 V1P, (x)]| — [[C2Va P, (x)]])
<||C1 = Call2 + [[Cal[2]| V1 — Val|2 < 72. (51)

Combining @9) and 61) we obtain that for any ball iftz(D, d) of radius~,/2 and
center(Cy, Vo):

Doxex, ICVPL ()] = seria, ICV AL (X)]]
N

> 99 W.Pp.> 1 —exp(—2N73).
(52)
We easily extendd2) for all pairs of matrice$C, V) in the compact spadéS ; (d) x
O(d) (with the distance specified i8Q)). Indeed, it follows from 25] together with

some basic estimates that the latter space can be cove@Hby/? /(y,/2)d(d+1)/2
balls of radiusy, /2. Therefore,

(45) is valid for anyC € NS (d) andV € O(d)
w.p. 1 — C7exp(=2N73)/(12/2)** 1. (53)

Equation 44) follows w.o.p. from @5) in exactly the same way of derivin@%)
from (36) and @7). We remark that37), which is deterministic, easily extends to the
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current case. While we did not estimate the overwhelmingalodity for (35), it is easy
to show that in the current casd5 implies @4) w.p. 1 — exp(—N~sg)/vs. Carrying
this analysis, one notices that both and~s depend oni, K, aq, a1, o, p1, p and
ming<;< g (diste (L1, L;)). Combining this with $3), we obtain that

L, is a globall, subspace iB¢ (L1, 1)
w.p.1 = CF* exp(—2N73)/(72/2)*" " — exp(=Nva) /1. (54)

Part 1l: L; is a Globall, Subspace ittx(D, d)

We will first prove thatL; is a globall, subspace w.0.p. iG(D,d) \ Ba(L1,71)-
Applying Lemma3.3we obtain that for alk < i < K:

E,,, (dist(x, L)? — dist(x, L;)?) + E,,, (dist(x, L)? — dist(x,L;)?) > 0.  (55)

Further application of Lemma.1with L € G(D,d) \ Bg(L1,71) results in the in-
equality:

(L-m{op) 27" o (56)
(7va)" - (v ((1+ m({0}) /2))"

Now, combining 65) and 66) we have that

E,, (dist(x,L)) >

E,,(dist(x, L)? — dist(x, L;)?)
— Z ;i (B, (dist(x, L)? — dist(x, L1)?) + E,,, (dist(x, L)? — dist(x, L;)))
+ BOE,“ (dist(x, L)? — dist(x, L))

Bo-(1—m({0}))-2"7" - 47
= P
(7va)" (Wit (1 + pa({0}) /2))”
where~y depends onl, K, po, f1, &, @1 andming<; <k (dist (L, L;)). Noting

further that distx, L) — dist(x, L) takes bounded values and applying Hoeffding’s
inequality we obtain that for any € G(D, d) \ Ba(L1,71):

er, (X, L) — e, (X, L1) > 79 N/2 wp. > 1 —exp(—N73/8). (57)

By Lemma3.2 we have that for any.’ € G(D,d) satisfyingdistg(L,L") <
(79/4)'/P and anyx € B(0,1):

|dist(x, L")? — dist(x, L)?| < vo/4.
Consequently, for aniy € G(D, d) \ Bg(L1, 1) and alll’ € Bg(L, (y9/4)'/?):

e, (X, L)) — e, (X,L1) >0 wp. > 1—exp(—Nvg/8). (58)
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Following [24, Remark 8.4] we can covét(D, d)\Bg (L1, 1) by CQd(D’d) /wg(D’d)/”
balls of radiugy /4)'/?. Now, for each such ball we have th&fj is valid for its center
w.p.1—exp(—N~3/8) and consequenthp@) is valid for subspaces in that ball with the
same probability. We thus conclude tha8)is valid for allL” € G(D, d)\ Bg(L1,71)
w.p.1— exp(—Nyg/8)0§<D‘d>/P/73<D‘d>. Combining this with $4), we obtain that
the probability thal.; is a globall; subspace itGz(D, d) is

1-C2 exp(—2N72)/ (12/2)%4 —exp(— Na) /ya—exp(— N2 /8) C5 P~ j4gP=d/p,

or equivalently,l — C'exp(—N/C) for someC depending oD, d, K, ug, f11, o, 1,
p andminggigK (diStG (Ll, Ll))

3.5. Proof of Theoreml.2 Stability Analysis
3.5.1. Reduction of Theorem?2

We first explain how to reduce the proof of Theor&@when0 < p < 1 to the veri-
fication of a simpler statement. We then adapt this idea fovipg the same theorem
when bothp > 1 andK = 1.

In order to prove Theoreh.2when0 < p < 1, i.e., prove that the global minimum
of e, (X,L) isinBg(Ly, f) w.0.p., we only need to show that there exists a constant
~1 > 0 such that for any. ¢ Bg (L4, f):

Elte (elp (X’ L)) > Eus (elp (X’ Ll)) + 7 (59)

Indeed, we cover the compact spd&€eD, d) \ B¢ (L1, f) by small balls with radius
71/2. Then by using 89) and Hoeffding’s inequality, we obtain that, (X,L) >
e, (X, L) for anyL in each such ball w.o.p. Thereforg, (X', L) > ¢;, (X, L;) for
L € G(D,d) \ Ba(L1, f) w.o.p. EquivalentlyG(D, d) \ B (L1, f) does not contain
the global minimum ot;, (X', L) w.o.p.

Fori=1,..., K, letf, . be the measure obtained by projecting onto its corre-
sponding subspadg (thatis, forany seEl C B(0,1)NL;: i, (F) = Ni,e(PIjil(E)))-
We also lefi, := Oéo/toJrZiK:l a;fii..(F). By the triangle inequality and the definition
of pe:

|E s(elp (X7 L)) - Eﬂs (elp (X7 L))| < Ep'

Hence, in order to provés@) and thus Theorerh.2for p < 1, the following equation
is sufficient:

Ej, (e, (x,L)) > Ej, (e, (x,L1)) + 71 + 2€¢8, foranyL € G(D,d) \ Ba(Ly, f).
(60)
We can similarly reduce Theorein2 when X' = 1 andp > 1 to the following
condition:

Ep (e, (x, 1)) > Ej (e, (x,L1)) + 71 + 2pe, foranyL € G(D,d) \ Ba(Ly, f).
(61)
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This reduction follows the same arguments above combinguthe following obser-
vation: For any;, x» € B(0, 1) with dist(x1,x2) < n < 1and anyl.;, Ly € G(D, d)
with diSt(;(Ll, Lg) <.

dist(x;, L1)P — dist(xz, L1)? < 1 — (1 —7n)” < pn, (62)
and ) )

dist(x1,L1)? — dist(x1,L2)? <1 — (1 —n)? < pn. (63)
Whenp = 1, (62) follows from the triangle inequality an&8) follows from Lemma3.2,

whereas both equations extencpto- 1 by the following property of the-th power: if
0<yi,y2 <1,y1 —y2 <mandp > 1, theny] —y5 < 1—(1—n)".

3.5.2. Proof of(60) and(61) and Conclusion of Theorefn2

We arbitrarily fixL € G(D, d) \ Bg(L1, f). We assume first théit< p < 1 and apply
Lemma3.3to obtain that

Eﬂr(aer(ﬁ a;i)fit,e

= Z @i (Eﬂl,s-l-ﬂi,selp (X, L) - Eﬂl,s“‘ﬂi,eelp (X’ Ll)) >0

e, (x,L) - F

fie—(o1 =K, ei)jin o (x,L1)

Consequently, we provéQ) with +; := 2¢P as follows:
Ep.(e1,(x,L)) — B, (e, (x,L1)) <a1 Zm) (e, (x, L) (64)

(o S8 ) 1 it
(mVd) ( (M))

where the second inequality applies Lem8ih
Equation 61) (with p > 1) follows from the same argument 084), wheree? is
now replaced bye.

= 4€",

3.5.3. Remark on The Sizeeof

Ifo<p<tland
(0 =i i) (1= m{o})?
2% ¢;11( 1+#12({0}))

ar (1 —m({0})2°7°
pﬂpd2 Vi (1+#1({0}))

thenf > # which implies thaB¢ (L1, f) = G(D,d) (since all principle angles

are at mostr/2). It thus makes sense to restrict the level of noise to beast lewer
than the right hand sides d%) or (66).

€> (65)

orp>1,K =1and

(66)
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3.6. Proof of Theoreml.3 Symmetry Arguments
3.6.1. First Reduction of Theoret3

We use the same notation of Sect®b.], in particular,i.. Theoreml.3states that the
globall, subspace is notiB¢ (L1, x¢) W.0.p. for almost everyL; } X, € G(D, d)X.
We claim that it reduces to the following simple equation:

'ygd ({Lz}fil C G(D,d) : Ly = argming Ej_ (e, (x, L))) =0. (67)

Indeed, if 67) is not satisfied, then for ani d-subspacegL;}X, in a subset of
G(D,d)" with nonzeroyfs , measure there exists) € G(D, d) such that

Y1 = Ep. (e, (x,11)) — Ep_ (e, (x,Lo)) > 0.
Lettingdy = ko = 71/4pe, we obtain from§2) and ©3) that for any.* € B¢ (L1, ko):
By (e1, (%, 1)) = By (e1, (x,Lo)) > Ep (e, (x,17)) — Ej, (e, (x, Lo)) — 2dop
> By, (e1, (x. L)) = By (e1, (x, Lo)) — 260p — rop = -
Therefore, by Hoeffding’s inequality:
e, (X, L") — e, (X,Lo) > % W.0.p.
In order to have
e, (X,L") — e, (X,Lo) >0 forallL* € Bq(L1, o) W.0.p.,

we coverBg(Li, ko) by small balls with radius; /16, so thate;, (X', L) > e, (X, Lo)
for all L in each such ball w.o.p. Thereforg, (X,L) > ¢, (X,Lo) for all L <
Ba (L, ko) w.0.p. EquivalentlyBg (L1, ko) will not contain the global minimum of
er, (X, L) w.o.p. This contradicts Theoret3and thereforeq?) implies this theorem.

3.6.2. Second Reduction of Theor&r8

We define the operator
Dy, = Pu(x) P (x) dist(x, L)?~2 (68)

and the function
h(L1,L;) = B, .(Dr, xp), 2<i<K.

In view of Propositior?.2, (67) follows from the condition:
0.4 ({LitE: € G(D,d) : B, (Dp,xp) = 0) =0, (69)
which we rewrite as follows:

’Vg,d ({Li}iiil c G(D, d) t B, (DL1,x,p) = 0)
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=80 (1L}, C GD,d): Bz, (Diycp) = 0)

K
=8 4 ({Li}fil C G(D,d): Y (L, L) = o) =0. (70)

=2

Since{L;}X | are identically and independently distributed according 4, Fubini’s
Theorem implies that7(Q) follows from the equation:

vp,d (L2 € G(D,d) : h(Ly,Ly) = C(Ly,Ls,--- ,Lk)) =0, (71)

WhereC(Ll,Lg, S ,LK) = - ZzK:Z)’ o h(leLi)/QQ'

3.6.3. Third Reduction of Theoreh3

We denote the principal angles betwdenandl; by {Hj}szl, the principal vectors
of Ly andL, by {v; }ff:l and{vj}gz1 respectively and the complementary orthogonal
system forL, w.r.t. L; by {uj}‘j:l. Note thath(L;,Ls), as a function ofk, maps
Sp({w;}¢_;) to Sp({v:}% ;). Now, transformingx € L, N B(0,1) to {a;}, in a
d-dimensional unit ball bx = Zle a;v;, we have that for any < iq,is < d:

V;frlh(Ll, Lo)u;, = E,, (V;‘F1 P, (X)Pﬂ‘1 (X)TuizdiST(X, Ll)p_z)

p—2

d 2
= / ) cos 8;, a;, sinb;,a;, E a? sin? 6; dv,
2oy ai?<l

i=1

wheredV denotes the scaled volume element onduémensional baIEf:1 a;? < 1.

For simplicity, we will assume till the rest of the proof that is a uniform dis-
tribution onB(0, 1) N Ly. Nevertheless, the proof can be easily generalized to any
spherically symmetric distribution oh, with bounded support. Wheiy # io, the
function

p—2

d 2
cos 0;,a;, sinb;,a;, (Z a? sin® 9i>
i=1
is odd w.r.t.a;, and consequently

p—2

d 2
COS 91'1 Agq sin 91'2 Ay <Z CLZ2 sin2 91> dV =0.

=1

V;-Zlh,(Ll, Lg)ui2 = /

d .2
j=1 @i? <1

Therefore, when we fornV and U as in (L7), thed x d matrix Vh(Ly,Ly)U7T is
diagonal with the elements

p—2
2

d
cos 0 sin 0;a’ a? sin” 0; dv, j=1,---,d.
/Zflaﬂg S (;
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Notice thatVh(Li,Ls) = h(L1,Ls) = h(L1,Lo) U7, h(Ly, Ls) has the followingd
singular values:

Aj(h(L1, L2)) = /

¢ a2<1

d 2
cosf;sinb;a;2 (Z a;2sin 291-) L j=1,---.d.

i=1

We arbitrarily fixLy, Ls, Ly, - - -, Lx and denote the singular values@f= C(Ly, Ls,

Ly, - ,Lx) by {o;}2, and observe thaf() is implied by the following equation:
vp,a (L2 € G(D,d) : A1(h(Ly,Lo)) € {oy}2,) =0, (72)

which we express as:

pP—2

d 3
YD.d / cos 6 sin 91@% Z CL? sin2 0; dVv e {Ui}iDzl (73)
Yy ai?<1

i=1

=0.

3.6.4. Proof of(73) and Conclusion of Theorefn3

We first conclude?3) whenp = 2. In this case

p—2

d 3
/ cos 0y sin 01a3 <Z a? sin” 91) dv
Y a?<1

=1

= /Ed i cos @y sinfraidV  (74)
i=1 17

is @ monotone function af; on [0, /4] as well agr /4, w/2]. That is, the requirement
that)\; (h(Ly, Lg)) € {o;}2, can occur only at discrete valuestfand consequently
hasyp, ¢ measure 0, that is78) (and consequenth{)) is verified in this case.

If p # 2 and{6,;}¢= are fixed, then

p—2

d 2
/ cosfy sinfyai (Y af sin®6; av (75)
{121

1=1
is a monotone function df;. Following a similar argument, we obtain that
0.0 (ML, L2) € {oi} 2, [{0:}{=)) = 0. (76)

Combining {6) and Fubini’'s Theorem, we conclude3).
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3.6.5. Remark on the Size®fand kg

The above constanty andxy depend on other parameters of the underlying spheri-
cally symmetric HLM model in particular the underlying spases{L;}X . For ex-
ample, in the case of > 2 one can estimate from below bath andd, by the follow-
ing number:

13255 @i B, . (D, x) I3

dD2p+5 ’

whereDy,, « , is defined in 68) and forany; = 1, ..., K, fi;  iS obtained by project-
ing u; . onto the subspade; (as in Sectior8.5.1).

4. Discussion

We studied the effectiveness f minimization for recovering and nearly recovering
the most significant subspace w.o.p. Our setting assumediddeand independent
sampling from a spherically symmetric HLM measure with edsvele > 0. A re-
stricted setting like this is necessary and indeed we desg¢some typical cases where
globall, subspaces are different than gloalsubspaces for all < p < oo. Our
analysis has provided some guarantees for the robustnbesaled spherically sym-
metric outliers of the single subspace recovery advocatéd] ias well as sequential
HLM as in [30] (while usingl, minimization withO < p < 1 in the spirit of 26, 27]).
We conclude with some possible extensions and open directio

4.1. More General Distributions

The strict spherical symmetry of the distributiofys; } X, in Theoremsl.1 and 1.2
can be relaxed. Indeed, one can notice that our proofs extéhdveaker bounds to
approximatelyspherically symmetric distributions (with bounded sugpd@y approx-
imate spherically symmetric we mean that it is absolutelytiomous with respect to
a spherically symmetric distribution and with derivativainded away frond andoc.
This weaker assumption requires an upper boundgn.e.,

ap < Ce(po, 1), (77)

and the condition .
Ci(m)ar > Cilpi)e + Colpo)axo (78)

i=2

instead of 8). We also need to replace the corresponding part of the diexadon of @)
by (C1(pn)ar — iy Cipi) e — Co(uo)ao)%-

Similarly, one can relax Theoreth2 by assuming that both, and;; are approxi-
mately spherically symmetric (with bounded support) ad eahditions {7) and (78).
This will imply though that the global, subspace is a loca), subspace only when
Ny = o(Ny) (instead ofNy = o(N3?)).
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In Theorem2.2it is also possible to replace the spherical symmetry assampn
1o by symmetry with respect thy, without changing the implication of that theorem.
Itis even possible to assume a slightly weaker assumpign(Dr,, x,,) = 0, where
Dy, x,» Was defined ing§8).

4.2. The Case of Affine Subspaces

The assumption of spherical symmetry is natural in the regtif linear subspaces,
unlike affine subspaces. We can only formulate a weak thewry frecovery of a sin-
gle subspace among affine subspaces intersecting a fixed-bakxample, one can
assume that the mixture distribution .o + Zfig a1k 1S approximately spherically
symmetric with a bounded support and apply the theory deeeldn this paper to re-
coverL; by, minimization. Strong restrictions on the sampling alorfinafsubspaces
are needed in order to avoid cases in the spirit of of Se&ihrFor example, points on
a subspace, which is sufficiently far from the origin and sigfitly dense but not the
globally subspace, are outliers that can misguide the recovery gldheall, subspace
by I, minimization for allp > 0.

The common strategy of using homogenous coordinates wizinkformd-dimensional
affine subspaces iR” to (d + 1)-dimensional linear subspacesi¥*! is not useful
to us since it distorts the structure of both noise and astlie

4.3. Implementation and Relation to Other Algorithms

One can approximate the geometticminimizer by gradient descent or stochastic
gradient descent (see e.d3]1]). However, since the underlying minimization is not
convex such approximation will likely converge to a locahimium different than the
global one. It will be interesting to suggest a convex sgathat is closely related to
the geometri¢; minimization without including an additional parameter.

Two convex strategies which include an additional paranstethe principal com-
ponent pursuit®] and the outlier pursuitd9]. It is possible that by carefully choosing
the tuning parameter o2p], the rows of the low rank matrix obtained b®d] span the
d-subspace that minimizes theenergy in ().
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Appendix A: Supplementary Details

A.1. Upper Bound ofi,, for a Uniform Distribution in B(0,1) N Ly

We establish here the following upper boundp in the special case whegeis
uniform onB(0, 1) N L; andL; is ad-subspace iR ":

ult) < 2 (79

This implies a lower bound 0@;1, which simplifies some of the estimates of this
paper (involvingzpljl) in this special case.
Denoting the volume of-dimensional unit ball by ; and noticing that

{x= (1,22, - ,2q) € B(0,1) N Ly : |z1] < t}
d
_ ) 2
C{x— (1,22, - ,xq) € B(0,1) N Ly : |x1] < ¢, |xe| < I,in < 1},
i=3

we have that
Vol{x :x € B(0,1) N Ly, |z1]| < t} < 4vg_ot. (80)

Combining 80) with the observationv; = %”vd_g, we find the upper bound af,, (¢):

Ya(t) = Vol {x € B(0,1) NLy : 1] < )} /Vol {x € B(0,1)NLy}

dvg_ot  2d
cAvaot 2
Va 7T

t.

A.2. Proof of Lemma3.1

We will use the following inequality, which we verify below SectionA.2.1:
. . . d
1 (x € B(0,1) N Ly : dist(x, L) < ﬂdistg(Ll,Ll)) < 1/%(%5) VB > 0.
(81)

We fix 51 = %ﬂw;f (”‘“f({o})) and later prove the existence of this constant. Using

the fact thatiistG(Ll,ﬁl) = ¢ and applying 81), we obtain that

11 (x € B(0,1)N L, : dist(x,L;) < 6 e)
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= (x € B(0,1) N L, : dist(x, 1) < 6 distG(Ll,ﬁl)) <1+ mo})/2.
Consequently, we derive the following estimate
i (x € B(0,1) MLy : distx, 1) = fie) = (1 = i ({0}))/2,
and thus by Chebyshev’s inequality the lemma is concludédliasvs:

(- oy
(et (Lefony”

By (6zp<x,131)) > BPeP /2 =

The existence oiu;ll (1*‘:7\%’})) will follow from the following observation:

u1(L) = 0 for any affine subspade C L,
w1 (L) = p1({0}) for any linear subspade C Ly, (82)

We prove it as follows: Assume thdp is the smallest dimension for which there
exists a subspade, such that82) is not true, then we arbitrarily rotaig, with respect
to the origin large number of times. Each of the rotated satasphas the same positive
measure a%, and the measure of the intersection between any such paifsisce
the intersection has a lower dimension th&), therefore the measure of the union
of these rotated subspaces can be arbitrarily large, whiatradictsy; (R”) = 1.
Then we proved&2), and from it we obtain that,,, (0) = ©1({0}), ¢, (1) = 1, and

Y, (t) is continuous in the interval, 1]. Therefore, the existence of, ! (H“lf({o}))
is concluded.

A.2.1. Proof of(81)

We denote the principal angles betwdenandL; by {6;}4_,, the principle vectors
of Ly andL; by {v;}¢_, and{¥;}Z_, respectively, the interaction dimension by=
k(Li1,Ls) (see Sectio.2.D), the volume of thel-dimensional unit ball by; and
sin 91 2
)

Zj:l sin(6;)?

Sincer:1 ~vi = 1, WLOG we assume that > 1/k > 1/d. Expressing every point
xinL; byx = (21,22, -+ ,zq4) = (vIx,vlx, -+, vix), we obtain that

{x € Ly - dist(x, L) < Bdistg (L, ﬁl)}
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d d
{ (1,22, ,xq) € Ly : fosin29i< gﬂ ZsinQGi}
i=1 \ i=1
k T
_ ) 2T
- 'rlv'rQa 7Id)€L1- ;szi < 25

, X2, , eL < —
$1 €2 d) 1 |$1| 2\/_5}

C

C{x€L1.|v1x|<iﬁ}

We prove 81), by combing the equation above and
Vd Vd
111 <{x cly: |VFIFx| < WTﬁ = 1/1;L1(7TT5)-

A.3. Proof of Lemma3.2

We denote the principal angles between dhgubspaces.;, 1o by 6; > 65 > 03 >
- > 6,. Arbitrarily choosingQ:, Q2 € O(D, d), representind.;, L, respectively,
we note that

|dist(x, L) — dist(x, Lo)| = | ||x — xQ1 Q7 || — ||x — xQ2Q% |||
<Jx —xQuQT —x+xQQ7 || < /| [|Q1Q] — Q2Q3 ||,

=||x|| , Zsm )2 < |Ix|| 4 292—||x||dlstg(L1,L2)
i=1

A.4. Proof of Lemma3.3

We assume WLOG that= 1 in (10). We thus need to prove that for &lle G(D,d):

ey (dist(x1, L)) + Ex e, (dist(xz, L)P)
>Ex, e, (dist(x1, L1)?) + Ex,ep, (dist(xa, L1)P). (83)
We denote the principal angles betwdgnandL, by {#;}¢_,, the principle vectors of
L; andLs by {v;}¢_, and{v;}¢_, and the complementary orthogonal systemifer
w.rt. Ly by {u;}d ;.

We notice that we can restrict the set of subspacsatisfying 83). First of all, we
only need to consider subspaces

Lel;+L,. (84)
Indeed, the LHS ofg3) is the same if we repladeby L N (L; + Ly).
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Second of all, we claim that it is sufficient to assume that
Sp(vi,v;) ¢ L forall1 <i <k (85)
Indeed, WLOG let = 1 and suppose on the contrary 85| thatv,, v, € L. Since

L is d-dimensional, there exists < j < d (assume WLOGj = 2) such that it
does not contain botk; andv;. For any pair of pointsx = Z‘Z:l a;v; € Li and

~ d ~ .
X = Zi:l a;v; € Lsa:

dist(x, L) = y/sin(#2)2a2 + v2 and distx, L) = y/sin(6;)2a2 + 2,
d R d .
v = dist (Z a;Vi, L) and Vo = dist (Z ai\?i,L> .
=3

=3

where

Now, for L = Sp(L \ {v1,V1}, v1, v2), we obtain that

dist(x,L) = \/sin(91)2a% + sin(fy)2a2 + 2 and distx, L) = v;.
Therefore ~ 5 R R
dist(x, L)P + dist(x, L)? < dist(x, L)? + dist(x, L)?
and by direct integration we have that
Ex, e (dist(x1, L)) + Ex, e, (dist(xz, L))

<Ex, ey (dlist(xr, L)P) + Exyep, (dist(xz, L)?).

We can thus replace the subspacegith the subspack, which satisfiesg5) (fori = 1,
but can similarly be changed for dll< i < K).
It follows from (84) and 85) thatL can be represented as follows:

L= SP(VLV;" ! 7V:;)7

where
v; = cosf;v; + sinf;u;.

Thus, for any pair of points = Z‘Z:l a;v; € Ly andx = Z‘Z:l a;V; € La:

d d
dist(x,L) = \| Y _sin®67a? and distx, L) = | > sin®(0; — 07)a?  (86)
i=1

7
=1
and

dist(x,L;) = 0 and distx,L;) = (87)




G. Lerman and T. Zhanby/-Recovery of the Most Significant Subspace 33

Combining 86), (87), the triangle inequality (for “sine vectors” ik?) and the subad-
ditivity of the sine function, we conclude that

d

dist(x, L) + dist(x, L) > J S~ (sinf +sin (6; — 07)) a2

i=1

d
> | sin® ;a2 = dist(k, Ly) + dist(x, Ly).
i=1

Sincep < 1, this inequality extends to
dist(x, L)? + dist(x, L)? > dist(x, L1 )? = dist(x, L;)? + dist(x,L;)?.  (88)

Integrating 88) w.r.t. the uniform distribution we conclud®3 and thus prove the
lemma.

A.5. Proof of (9)

The fact that®,,, (Pr, (x) P, (x)7) is a scalar matrix follows from the symmetry of
onL; UB(0, 1). We compute the underlying scalar, as follows. We arbitrarily fix a
vectorv € R? as well as dd — 1)-subspacé,; C L; orthogonal tov and observe that

5, = By, (P, (%) v)2) = B, (dist(x, 1:)2) .

We further note that for an§ < r < 1, the set{x € B(0,1) N L, : dist(x,L) = r}
consists of twdd — 1)-dimensional balls of radiug'1 — 2. We consequently compute
the constand.. using the beta functio® and the Gamma functiol in the following
way:

Eh 7 gin2 it
5. = By, (dist(x,1)) = Jgr?(1 =1 R i, (9)038 (0) o

! reo(l—=7 )% dt fe pcos 2 (0)do
_BG.%H) TG (%)F(#) 1
= B, T T T () d+2

A.6. Proofof (32

For simplicity we denot® = 211'\21 Pr, (x;) P, (x;)T. We note thatifnax, o; (B — 0,1,) <
7, then
[Bv — .

v <7 forallv € R\ {0},
A\

and consequently

Ss <H forallv € R\ {0},

that is,min; o, (B) > . — 7.
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