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Abstract: We assume data sampled from a mixture ofd-dimensional linear subspaces
with outliers distributed symmetrically around the origin. We study the recovery of the
global l0 subspace (i.e., with largest number of points) by minimizing thelp-averaged
distances of data points fromd-dimensional subspaces ofRD , where0 < p ∈ R. Un-
like otherlp minimization problems, this minimization is non-convex for all p > 0 and
thus requires different methods for its analysis. We show that if 0 < p ≤ 1, then the
global l0 subspace can be recovered bylp minimization with overwhelming probabil-
ity. Moreover, when adding homoscedastic noise around the underlying subspaces, the
generalizedl0 subspace (with largest number of points “around it”) can be nearly re-
covered bylp minimization with an error proportional to the noise level.On the other
hand, if p > 1 and there is more than one underlying subspace, then the global l0
subspace cannot be recovered and the generalized one cannoteven be nearly recov-
ered. The results of this paper clarify the effect of using variants oflp minimizations in
RANSAC-type strategies for single subspace recovery.
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68T10.
Keywords and phrases:Best approximating subspace,lp minimization as relaxation
for l0 minimization, robust statistics, sequential hybrid linear modeling, optimiza-
tion on the Grassmannian, principal angles and vectors, geometric probability, high-
dimensional data..

1. Introduction

Principal Component Analysis (PCA) is the most common tool in high-dimensional
data analysis. It approximates a given data set by a low-dimensional affine subspace
minimizing anl2 sum of distances. Such minimization is not robust to outliers. Here
we study the robustness to outliers of a generalized versionof this minimization using
anlp sum for allp > 0 under particular assumptions.

This lp optimization problem takes place over a data setX ∈ RD and minimizes
among alld-dimensional subspaces,L, the quantity:

elp(X ,L) =
∑

x∈X
dist(x,L)p, (1)

where dist(x,L) denotes the Euclidean distance between a data pointx and the sub-
spaceL. We call any of the global minimizers of (1) a global lp subspace. We some-
times also refer to this optimization asgeometriclp minimization. Our study is moti-
vated by the problem of sequential recovery of multiple subspaces buried in outliers,
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or in short, sequential Hybrid Linear Modeling (HLM). That is, recovering the most
significant subspace among those subspaces, then removing the points along it (or in a
strip around it) from the given data and repeating this procedure according to the given
number of subspaces. It is common in HLM to assume onlyd-dimensional linear sub-
spaces (as opposed to affine ones and with mixed dimensions),which we refer to as
d-subspaces. Therefore our underlying model assumes multiple d-subspaces buried in
outliers, while we investigate the recovery of a singled-subspace.

1.1. Background and Related Work

Thel1 norm has been widely used to form robust statistics. For example, the geometric
median is the point in a data set minimizing the sum of distances from the rest of
data points, i.e., thel1-averaged distance. For points on the real axis, it coincides with
the usual median. Its robustness is most commonly quantifiedby showing that it has
a breakdown point of 0.5 (i.e., the estimator will obtain arbitrarily large values only
when the proportion of large observations is at least a half)[20].

Thel1 norm has also been successfully applied to robust regression [17, 16, 23, 21].
Furthermore, Basis pursuit [5] usesl1 minimization to search for the sparsest solutions
(i.e., solutions minimizing thel0 norm) of an undercomplete system of linear equations.
This strategy was only recently fully justified [3, 10, 9, 4]. Candès et al. [2] proposed
and analyzed the principal component pursuit algorithm forrobust PCA, which min-
imizes a weighted combination of the nuclear norm and a different l1 norm among
all decompositions matching the available data. A simpler use of thel1 norm between
given data points and representative points in a lower dimensional model (though with-
out using the nuclear norm term to infer this model) has appeared in several other
works [1, 14, 19, 18].

Geometriclp minimization (as in (1)) has been proposed by Guy David and Stephen
Semmes [7] for p ≥ 1 in a pure analytic setting (free of outliers in the context of
“Ahlfors regular measures”). Ding et al. [8] used the geometricl1 minimization as a
robust alternative for principal component analysis, though lacking any mathematical
support. Very Recently, Xu et al. [29] have suggested the combination of the norm
used in the geometricl1 minimization with the nuclear norm (similar to Candès et
al. [2]) to obtain the outlier pursuit algorithm which is convex and robust to outliers and
estimates the intrinsic dimension without prior knowledge. Nevertheless, it depends on
a tuning parameter, which is used to weigh the two norms, and it also cannot use the
true dimension (if known) or any other information on the underlying subspace (e.g.,
an initial guess).

A sequential HLM algorithm was suggested by Yang et al. [30] using the Random
Sample Consensus (RANSAC) [13] heuristic to find a single subspace iteratively. This
RANSAC strategy repeatedly applies the following two steps: 1. randomly select a set
of d independent vectors; 2. count the number of data points within a strip of widthǫ
around thed-subspace spanned by thosed vectors (bothǫ and the number of iterations
of these two steps are parameters set by the user). The final output of this algorithm is
thed-subspace maximizing the quantity computed in step 2.

Torr and Zisserman [26, 27] have suggested a RANSAC-type strategy which mini-
mizes a variant of thel2 distance from a subspace. This variant uses the square function
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until a fixed threshold and a constant function for larger values.

1.2. Basic Conventions and Notation

By saying “with overwhelming probability”, or in short “w.o.p.”, we mean that the
underlying probability is at least1 − Ce−N/C , whereC is a constant independent of
N (we will also use “w.p.” as a shorthand for “with probability”).

We denote byG(D, d) the Grassmannian space, i.e., the set of alld-subspaces of
RD with a manifold structure. Following [22, Section 3.9], we denote byγD,d the
“uniform probability measure onG(D, d)”. We will measure distances betweenF and
G in G(D, d) by the metric

distG(F,G) =

√

√

√

√

d
∑

i=1

θ2i , (2)

where{θi}di=1 are the principal angles betweenF andG (we explain the choice of
this metric at the end of Section3.2.1). We designate a ball inG(D, d) byBG(L, r) as
opposed to a Euclidean ball inRD, B(x, r).

1.3. Precise Formulation of the Problem

We assume an underlying data setX ⊆ RD of N points identically and independently
sampled from the following kind of a mixture measure representing a spherically sym-
metric setting of HLM with outliers:

Definition 1.1. We say that a probability measureµ onRD is a spherically symmet-
ric HLM measure(equivalently, spherically symmetric HLM measure with no noise or
with noise levelǫ = 0) if µ =

∑K
i=0 αiµi, whereα0 ≥ 0, αi > 0, i = 1, . . . ,K,

and
∑K

i=0 αi = 1, µ0 is a probability measure spherically symmetric around the ori-
gin with bounded support (it represents outliers) and{µi}Ki=1 are probability measures
supported within distinctd-subspaces ,{Li}Ki=1, respectively and created by an appro-
priate rotation of the same probability measure, which is spherically symmetric within
a d-subspace and has a bounded and nontrivial support (i.e., its support is not a sin-
gleton).

For ǫ > 0, we say thatµǫ is aspherically symmetric HLM measure with noise level
ǫ if µǫ = α0µ0+

∑K
i=1 αiµi,ǫ, whereµi,ǫ = µi×νi,ǫ, i = 1, . . . ,K, {αi}Ki=0, {Li}Ki=1

and{µi}Ki=0 are the same as above and{νi,ǫ}Ki=0 are probability measures with bound
support in{L⊥

i }Ki=1, first moments smaller thanǫ andp-th moments smaller thanǫp

for p < 1.

In Section4.1 we discuss more general settings for an underlying HLM measure
and the required modifications in our theory.

Throughout this paper we assume the condition

α1 >

K
∑

i=2

αi (3)
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and consequently say thatL1 is themost significant subspace. For the noiseless case
of ǫ = 0, the most significant subspace coincides with the globall0 subspace (i.e.,
the subspace containing the largest number of points) w.o.p. Indeed, the subspace with
largest mixture component in the model is the subspace with largest number of sampled
points w.o.p. For the noisy case ofǫ > 0, we view condition (3) as a generalized notion
of globall0 subspace w.o.p., that is having the highest fraction of points “around” that
subspace w.o.p.

1.4. Main Theorems

In the noiseless case and0 < p ≤ 1, we can exactly recover the globall0 subspace by
lp minimization as follows.

Theorem 1.1. If µ is a spherically symmetric HLM measure onRD withK d-subspaces
{Li}Ki=1 ⊆ RD and mixture coefficients{αi}Ki=0 satisfying(3), X is a data set ofN
points identically and independently sampled fromµ and0 < p ≤ 1, then the probabil-
ity thatL1 is a globallp subspace is at least1−C exp(−N/C), whereC is a constant
depending onD, d,K, p, α0, α1, µ0, µ1 andmin2≤i≤K(distG(L1,Li)).

In the noisy case, we extend the above formulation to near recovery. For this purpose
we use the function

ψµ(t) = max
‖v‖=1

(

µ(x ∈ RD : −t < |xTv| < t)
)

,

which we estimate for a special case in AppendixA.1.

Theorem 1.2. If ǫ > 0, µǫ is a spherically symmetric HLM measure onRD of noise
level ǫ with K d-subspaces{Li}Ki=1 ⊆ RD and mixture coefficients{αi}Ki=0 satisfy-
ing (3), X is a data set ofN points sampled identically and independently fromµǫ and
0 < p ≤ 1, then the globallp subspace forµǫ is in the ballBG(L1, f), where

f ≡ f(ǫ,K, d, p, α0, α1) =
π
√
d ψ−1

µ1

(

1+µ1({0})
2

)

ǫ

(

α1 −
∑K

i=2 αi

)
1
p

(1− µ1({0}))
1
p 2

p−3
p

, (4)

w.p. at least1−C exp(−N/C), whereC = C(ǫ, p, d,D, µ1, α0, α1,min2≤i≤K(distG
(L1,Li)).

If K = 1, then the above statement extends for1 < p <∞ with

f ≡ f(ǫ,K, d, p, α0, α1) =
π
√
d ψ−1

µ1

(

1+µ1({0})
2

)

p
1
p ǫ

1
p

α
1
p

1 (1− µ1({0}))
1
p 2

p−3
p

.

In Section3.5.3we show that Theorem1.2is only relevant for sufficiently smallǫ.
At last, we formulate the impossibility oflp recovery whenp > 1 andK > 1 and

thus demonstrate a phase transition atp = 1 whenK > 1.
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Theorem 1.3. Assume that{Li}Ki=1 areK d-subspaces inRD, which are identically
and independently distributed according toγD,d. For eachǫ ≥ 0 and a random sample
of {Li}Ki=1, let µǫ be a spherically symmetric HLM measure onRD of noise levelǫ
w.r.t. {Li}Ki=1 ⊆ RD and letX be a data set ofN points sampled identically and
independently fromµǫ. IfK > 1 andp > 1, then for almost every{Li}Ki=1 (w.r.t.γKD,d),
there exist positive constantsδ0 and κ0, independent ofN , such that for any0 ≤
ǫ < δ0 the globallp subspace ofX is not in the ballBG (L1, κ0) with overwhelming
probability.

We remark on the size ofδ0 andκ0 in Section3.6.5

1.5. Implications of the Theory to Subspace Modeling

Theorems1.1, 1.2and1.3provide some insights on the effectiveness of recovering the
global l0 d-subspace (or globall0 strip of widthǫ as searched by RANSAC [13]) in a
spherically symmetric HLM setting by minimizinglp distances in the spirit of [26, 27].
In particular, they imply that ifK > 1 then onlylp distances with0 < p ≤ 1 should
be considered. Even distances that coincide with thel2 distance for sufficiently small
values, such as [26, 27] or Huber’s loss function [17], will not recover the underlying
subspaces as the proofs of those theorems show. On the other hand, for a single un-
derlying subspace with spherically symmetric outliers andpossibly additive noise,lp
recovery should succeed in theory for any0 < p < ∞, though the bounding constants
worsen asp increases. The idea of [26, 27] making the loss function constant for large
values is expected to help with significantly far and nonsymmetric outliers (not covered
by our model). Such outliers are discussed e.g., in Section2.1.

In the setting of spherically symmetric HLM measure with no noise, Theorem1.1
can be repetitively applied to justify sequential HLM usinglp minimization with0 <
p ≤ 1. Rigorous application of Theorem1.2 for sequential HLM in the noisy case
requires its extension to more general scenarios; such an extension depends on the pre-
cise way of removing the part of the data around a subspace. Italso requires estimates
of the local noise level (see e.g., [33, 32] and [6]).

1.6. Additional Results and Structure of the Paper

Section2 reviews additional theory. In particular, Section2.1demonstrates natural in-
stances, distinct from the case of spherically symmetric outliers, where the globall0
subspace is neither a locallp subspace (even forp = 1) nor global one (even for
0 < p < 1); Section2.2 studies the case of a single underlying subspace and asks
when the globall0 subspace is local minimum of the geometriclp optimization. It es-
tablishes some necessary and sufficient conditions to solvesuch a problem. Unlike the
rest of our theory, these conditions are model-independentand deterministic (i.e., not
probabilistic); Section2.3 uses those conditions to show that if one samplesN0 out-
liers andN1 inliers from a spherically symmetric HLM model withK = 1 and if both
N0 = o(N2

1 ) andp = 1 or bothN0 = Ω(1) and0 < p < 1, then the globall0 sub-
space is a locall1 minimum. We separately include all mathematical details verifying
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the theory of this paper in Section3, while leaving some auxiliary verifications to the
appendix. Section4 concludes this paper and discusses some immediate extensions of
its results as well as open directions.

2. Additional Theory

2.1. Counterexamples for Robustness of Bestlp Subspaces

We show here that there are many natural situations, though different than our under-
lying model of spherically symmetric outliers, where global lp d-subspaces are not
robust to outliers for all0 < p <∞. More precisely, we show how a single outlier can
completely change the underlying subspace.

A typical example includesN1 points sampled identically and independently from
a uniform distribution onB(0, ǫ) ∪ L ⊆ RD, whereL is ad-subspace ofRD, and an
additional outlier located on a unit vector orthogonal toL. By choosingǫ sufficiently
small, e.g.,ǫ / (1/N1)

1/p, the globallp subspace passes through the single outlier and
is thus orthogonal to the initiald-subspace for allp > 0.

If p = 1, then the globall0 d-subspace in this example is still a locall1 subspace.
Nevertheless, if the outlier is located instead on a unit vector having elevation angle
with the originald-subspace less thanπ/2, thenǫ can be chosen so that the globall0
subspace is neither a local nor globall1 subspace. However, if0 < p < 1, then the
global l0 subspace is still a locallp subspace in both examples as well as almost any
other scenario (see e.g., Proposition2.1below).

Similarly, it is not hard to produce an example of data pointson the unit sphere of
RD where the globall0 subspace is still not a globall1 subspace. This is in contrast to
the case of sparse representation of signals, where normalization of the column vectors
of a matrix representing an undercomplete linear system of equations ensures that the
solution minimizing thel1 norm is also the sparsest solution as long as it is sufficiently
sparse [11, Theorem 2]). For simplicity we give a counterexample ford = 2 by letting
N1 data points be uniformly sampled along an arc of lengthǫ of a great circle of the
sphereS2 ⊆ R3. We then place an outlier on another great circle, which passes through
the center of theǫ-arc and has a small angle with it. Takingǫ sufficiently small and the
outlier furthest from the intersection of the two great circles, we obtain that the global
l0 subspace is not a locall1 subspace and consequently not a global one. We remark
that in this example the assumption of bounded spherically symmetric outliers used
throughout this paper is not satisfied.

2.2. Combinatorial Conditions forl0 Subspaces being Locallp Subspaces

2.2.1. Preliminary Notation

We denote the orthogonal group ofn×nmatrices byO(n) and the semigroup ofn×n
nonnegative scalar matrices byS+(n). We designate the projection fromRD onto the
d-subspaceL by PL and the corresponding orthogonal projection byP⊥

L . The nuclear
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norm ofA is denoted by‖A‖∗. We define the scaled outlying “correlation” matrix
BL,X of a data setX and ad-subspaceL as follows

BL,X =
∑

x∈X\L
PL(x)P

⊥
L (x)T /dist(x,L). (5)

Example 1. LetD = 2, d = 1, X = {(0, 1), (1, 1), (1, 0)} andL be thex-axis. Then

BL,X =
∑

x∈X\L
PL(x)P

⊥
L (x)Tdist(x,L)−1

= PL((0, 1))P
⊥
L ((0, 1))T /dist((0, 1),L) + PL((1, 1))P

⊥
L ((1, 1))T /dist((1, 1),L)

= (0, 0)T (0, 1)/1 + (1, 0)T (0, 1)/1 =

(

0 1
1 0

)

.

2.2.2. The Three Conditions

We formulate conditions for the globall0 subspace to be a locallp subspace, while
distinguishing between three cases:p = 1, 0 < p < 1 andp > 1. We prove these
results in Section3.2.

Theorem 2.1. If L1 ∈ G(D, d), X1 = {xi}N1

i=1 ∈ L1, X0 = {yi}N0

i=1 ∈ RD \ L1 and
X = X0 ∪ X1, then a sufficient condition forL1 to be a local minimum ofel1(X ,L)
among alld-subspacesL ∈ G(D, d) is that for anyV ∈ O(d) andC ∈ S+(d):

N1
∑

i=1

||CVPL1(xi)|| > ||CVBL1,X ‖∗ . (6)

Proposition 2.1. If L1 ∈ G(D, d), X1 = {xi}N1

i=1 ∈ L1, X0 = {yi}N0

i=1 ∈ RD \ L1,
Sp({xi}N1

i=1) = L1 and p < 1, thenL1 is a local minimum ofelp(X ,L) among all
L ∈ G(D, d).

Proposition 2.2. If L1 ∈ G(D, d), X1 = {xi}N1

i=1 ∈ L1,X0 = {yi}N0

i=1 ∈ RD \L1 and
p > 1, then a necessary condition forL1 to be a local minimum ofelp(X ,L) among
all L ∈ G(D, d) is

N0
∑

i=1

PL1(yi)P
⊥
L1
(yi)

Tdist(yi,L1)
p−2 = 0. (7)

The above results manifest a phase transition phenomenon. Indeed, the globall0
subspace is almost always a locallp subspace forp < 1, whereas forp > 1 this is
often not the case (except for an underlying measure which isspherically symmetric in
the complement ofL1; for example, in the case of an underlying spherically symmetric
HLM with K = 1, the globall0 subspace is asymptotically a globallp subspace for all
p > 0). The combinatorial condition implying when it is a locall1 subspace is more
complicated and we exemplify its application throughout the paper.
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2.3. Local or Globallp Subspaces for Spherically Symmetric Sampling with a
Single Subspace

We assume here the probabilistic setting of spherically symmetric HLM measure with
a single underlying subspaceL1, i.e.,K = 1. Clearly,L1 is the globall0 subspace for
the sampled data w.o.p. For anyp > 0, we ask whetherL1 is also a local or even global
lp subspace w.o.p. We prove the corresponding results described below in Section3.3.

We first claim that forp = 1 the globall0 subspace is a locallp subspace w.o.p. as
long as the fraction of inliers is sufficiently large. In order to simplify our estimates we
assume that the support of the underlying distribution liesin the unit ball.

Theorem 2.2. If L1 ∈ G(D, d) andX is a data set inRD ofN0 + N1 points, where
N0 of them are identically and independently sampled from a spherically symmetric
distribution onB(0, 1) andN1 of them are identically and independently sampled from
a spherically symmetric distribution onL1 ∩ B(0, 1) with nontrivial support; ThenL1

is a locall1 subspace ofX w.p. at least

1− 2d2 exp

(

−N1η
2

8d2

)

− 2dD exp

(

−N0ǫ
2

2d2D

)

, where η +
N0

N1
ǫ < δ∗(µ1) ,

andδ∗(µ1) is a constant depending only onµ1.
In particular, ifN0 = o(N2

1 ), thenL1 is a locall1 subspace ofX w.p. at least

1− 2d2 exp

(

−δ∗(µ1)
2N1

72 d2

)

− 2dD exp

(

−δ∗(µ1)
2N2

1

8 d2DN0

)

. (8)

In AppendixA.5 we establish the following expression for the constantδ∗(µ1) in
the special case whereµ1 is the uniform distribution onL1 ∩ B(0, 1):

δ∗(µ1) = 1/(d+ 2). (9)

For 0 < p < 1, Proposition2.1 implies that ifN1 = Ω(1) thenL1 is a local
lp subspace w.o.p. On the other hand ifp > 1 andN1 = Ω(1), then the following
proposition shows that the subspaceL1 is a locallp subspace w.p. 0.

Proposition 2.3. ConsiderL1 ∈ G(D, d), µ0 a spherically symmetric distribution
on RD with bounded support satisfyingµ0({0}) = 0, µ1 a spherically symmetric
distribution onL1 with bounded and nontrivial support,µ = α0µ0 + α1µ1, whereα0,
α1 are nonnegative numbers summing to1 andX is a data set sampled identically and
independently fromµ. If p > 1, then the probability thatL1 is a locallp subspace ofX
is 0.

The proof of this proposition is immediate. Indeed, denoting the i.i.d. outliers sam-
pled fromµ0 by{yi}N0

i=1 and applying (82), the probability thatPL1(yi) is a fixed num-
ber is zero. Therefore, the probability that

∑N0

i=1 PL1(yi)P
⊥
L1
(yi)

Tdist(yi,L1)
p−2 = 0

is also zero.
Another question is whether the globall0 subspace is also the globallp subspace.

Proposition2.3and Theorem1.1already answered this question in our setting. Indeed,
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if p > 1, then by Proposition2.3 the globall0 subspace is a globallp subspace with
probability 0; whereas if0 < p ≤ 1, then Theorem1.1 with K = 1 implies that for
N0 = O(N1) the globall0 subspace is also the globallp subspace w.o.p.

At last, we remark that the phase transition phenomenon demonstrated above at
p = 1 is rather artificial in the current setting. Indeed, this phase transition is based on
the fact that (7) holds w.p. 0 forp > 1 and any finite sample; however, the LHS of (7)
divided byN is 0 w.p. 1 asN approaches infinity. Moreover, whenp > 1 the positive
distance between the globall0 subspace and the globallp subspace approaches 0 as
N approaches infinity. We will show in Theorem1.2 that this formal phase transition
also breaks down with noise. Nevertheless, as we show in Theorem1.3, there is a clear
phase transition for a spherically symmetric HLM model withK > 1. This is rather
intuitive since the underlying measure of the latter case isnot spherically symmetric on
the complement ofL1, unlike the case whereK = 1.

3. Verification of Theory

We describe here the complete proofs of the various theoremsand propositions of this
paper. We start with preliminary notation and conventions as well statements of aux-
iliary lemmata and then prove the theory according to the following order of sections:
2.2, 2.3and1.

3.1. Preliminaries

3.1.1. Basic Notation and Conventions

All distributions in the statements of theorems have bounded supports. We assume
WLOG that the support of these distributions is contained inB(0, 1).

The Frobenius norm ofA is denoted by‖A‖F. Then× n identity matrix is written
asIn. We denote the subset ofS+(n) with Frobenius norm 1 byNS+(n). If m > n
we letO(m,n) = {X ∈ Rm×n : XTX = In}, whereas ifn > m, O(m,n) = {X ∈
Rm×n : XXT = Im}.

We sometimes apply the energy (1) to a single pointx, while using the notation:
elp(x,L) ≡ elp({x},L).

3.1.2. Auxiliary Lemmata

We formulate several technical lemmata, which will be proved in AppendicesA.2-A.4.

Lemma 3.1. If L1, L̂1 ∈ G(D, d), p > 0, µ1 is a spherically symmetric measure on
L1 with bounded and nontrivial support anddistG(L1, L̂1) > ǫ, then

Eµ1

(

elp(x, L̂1)
)

>
(1− µ1({0})) · 2p−1 · ǫp

(

π
√
d
)p

·
(

ψ−1
µ1 ((1 + µ1({0})) /2)

)p
.
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Lemma 3.2. For anyx ∈ RD andL1,L2 ∈ G(D, d):

|dist(x,L1)− dist(x,L2)| ≤ ‖x‖ distG(L1,L2).

Lemma 3.3. If L1,L2 ∈ G(D, d), µ1 and µ2 are probability measures supported
withinL1 andL2 respectively and created by an appropriate rotation of the same prob-
ability measure, which is spherically symmetric within a d-subspace and has a bounded
and nontrivial support (i.e., not a singleton), andp ≤ 1, then for anŷL ∈ G(D, d):

Ex1∈µ1(dist(x1, L̂)
p) + Ex2∈µ2(dist(x2, L̂)

p)

≥Ex1∈µ1(dist(x1,Li)
p) + Ex2∈µ2(dist(x2,Li)

p) for i = 1, 2. (10)

3.2. Proofs for Theory of Section2.2: Combinatorial Conditions via Calculus on
the Grassmannian

3.2.1. Preliminaries: Principal Angles, Principal Vectors, Representation of the
Grassmannian and Geodesics on the Grassmannian

We denote the principal angles [15] between twod-subspacesF andG byπ/2 ≥ θ1 ≥
θ2 ≥ · · · ≥ θd ≥ 0, where we order them decreasingly, unlike common notation.We
denote byk = k(F,G) the largest number such thatθk 6= 0, so thatθ1 ≥ . . . ≥ θk >
θk+1 = . . . = θd = 0. We refer to this number as interaction dimension and reserve
the indexk for denoting it (the subspacesF andG will be clear from the context). We
recall that the principal vectors{vi}di=1 and{v′

i}di=1 of F andG respectively are two
orthogonal bases forF andG satisfying

〈vi,v′
i〉 = cos(θi), for i = 1, . . . , d,

and
vi ⊥ v′

j , for all 1 ≤ i 6= j ≤ k.

We define the complementary orthogonal system{ui}di=1 for G with respect toF
by the formula:

{

v′
i = cos(θi)vi + sin(θi)ui, i = 1, 2, · · · , k,

ui = vi, i = k + 1, · · · , d.
(11)

We note that
ui ⊥ vj for all 1 ≤ i, j ≤ k .

We note that the above vectors orthogonally decomposeF+G into the2-dimensional
subspacesSp(vi,ui), i = 1, . . . , k, of mutually orthogonal systems and the residual
subspaceF ∩ G. The interaction betweenF andG can then be described only within
these subspaces via the principal angles. This idea is also motivated by purely geomet-
ric intuition in [28, Section 2].

We implicitly use principal vectors to representG(D, d) byO(d)×O(d,D− d)×
S+(d). Indeed, we fix ad-subspaceL1 ∈ G(D, d) and for anyL ∈ G(D, d) we form
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the principal vectors{vi}di=1 and{v′
i}di=1 for L1 andL respectively; the projection

of {vi}di=1 ontoL1 corresponds to an element ofO(d); the projection of{v′
i}di=1 (or

the complementary vectors{ui}di=1 of L w.r.t.L1) ontoL⊥
1 gives rise to an element of

O(d,D − d); The principal angles inS+ then relate elements projected ontoL⊥
1 and

L1. Our representation is rather different than the common representation in numerical
computation [12, Table 2.1], which uses either of the quotient spaces:O(D, d)/O(d)
orO(D)/(O(d)×O(D − d)).

It follows from [28, Theorem 9] that if the largest principal angle betweenF and
G is less thanπ/2, then there is a unique geodesic line between them. Following [12,
Theorem 2.3], we can parametrize this line fromF to G by the following function
L: [0,1]→ G(D, d), which is expressed in terms of the principal angles{θi}di=1 of F
andG, the principal vectors{vi}di=1 of F and the complementary orthogonal system
{u}di=1 of G with respect toF:

L(t) = Sp({cos(tθi)vi + sin(tθi)ui}di=1). (12)

We remark that this formula only holds when equipping the Grassmannian with the
distancedistG of (2) and this is the reason why we use this distance.

3.2.2. Proof of Theorem2.1

In order to show thatL1 is a local minimum ofel1(X ,L) among alld-subspaces in
G(D, d), we arbitrarily fix ad-subspacêL ∈ BG(L1, 1) and show that the derivative of
thel1 energy when restricted to the geodesic line fromL1 to an arbitrary subspacêL is
positive atL1.

The restriction of̂L to BG(L1, 1) implies thatθ1 ≤ 1 and thus by [28, Theorem 9]
this geodesic line (connectingL1 andL̂) is unique. We parametrize it by the functionL:
[0,1]→ G(D, d) of (12), where here{θi}di=1 are the principal angles betweenL1 andL̂,
{vi}di=1 are the principal vectors ofL1 and{u}di=1 are the complementary orthogonal
system forL̂ with respect toL1. Using this parametrization we need to prove that the
functionel1(X ,L(t)): [0,1]→ R has a positive derivative att = 0.

We follow by simplifying the expression for the functionel1(X ,L(t)) and its deriva-
tive according tot. We denote the projection fromRD ontoSp(vj ,uj), where1 ≤ j ≤
d, by Pj and the projection fromRD onto(L1 + L̂)⊥ by P⊥ and use this notation to
express the following components of the functionel1(X ,L(t)) for i = 1, . . . , N1:

dist(yi,L(t)) =

√

√

√

√

d
∑

j=1

dist2(Pj(yi),L(t)) + dist2(P⊥(yi),L(t)). (13)

For 1 ≤ j ≤ d, we letφj ∈ [0, 2π] denote the angle such thatPj(yi) = ||Pj(yi)||
(cos(φj)vj + sin(φj)uj) and consequently express each term of the sum in (13) as
follows:

dist2(Pj(yi),L(t)) = ||Pj(yi)||2 sin2(φj − tθj), j = 1, . . . , d . (14)



G. Lerman and T. Zhang/lp-Recovery of the Most Significant Subspace 12

Applying (14) in (13) and differentiating, we obtain the following expression for the
derivative of dist(yi,L(t)) for all 1 ≤ i ≤ N0:

d

dt
(dist(yi,L(t))) = −

∑d
j=1 θi||Pj(yi)||2 sin(φj − tθj) cos(φj − tθj)

dist(yi,L(t))

= −
∑d
j=1 θj ((cos(tθj)vj + sin(tθj)uj) · yi) ((− sin(tθj)vj + cos(tθj)uj) · yi)

dist(yi,L(t))
.

(15)

At t = 0 it becomes

d

dt
(dist(yi,L(t)))

∣

∣

∣

∣

t=0

= −
∑d

j=1 θj(vj · yi)(uj · yi)
dist(yi,L(0))

= −
∑k

j=1 θj(vj · yi)(uj · yi)
dist(yi,L(0))

, (16)

where the interaction dimensionk = k(L1, L̂) has been introduced in Section3.2.1.
We form the following matrices:C = diag(θ1, θ2, · · · , θd),V ∈ O(d,D) with j-th

row vTj andU ∈ O(k,D) with j-th row uTj . We then reformulate (16) using these
matrices as follows:

d

dt
(dist(yi,L(t)))

∣

∣

∣

∣

t=0

= − trk(CVyiy
T
i U

T )

dist(yi,L1)
, (17)

wheretrk denotes the trace of the firstk rows of the correspondingd×k matrix, whose
lastd− k rows are zeros. Similarly, for allxi ∈ L1, i = 1, 2, · · · , N1,

dist(xi,L(t)) =

√

√

√

√

d
∑

j=1

|(vj · xi)|2 sin2(tθj),

and
d

dt
(dist(xi,L(t))) =

∑d
j=1 θj |vj · xi|2 sin(tθj) cos(tθj)

dist(xi,L(t))
. (18)

At t = 0, this derivative becomes

d

dt
(dist(xi,L(t)))

∣

∣

∣

∣

t=0

=

√

√

√

√

d
∑

j=1

|(vj · xi)|2 θ2j = ||CVxi||. (19)

Combining (17) and (19) and using

A :=

N0
∑

i=1

yTi yi/dist(yi,L1),
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we obtain the following expression for the derivative of thel1 energy of (1):

d

dt
(el1(X ,L(t)))

∣

∣

∣

∣

t=0

=

N1
∑

i=1

||CVxi|| − trk(CVAUT ). (20)

SinceV is a projection ontoL1 andU is a projection ontoL⊥
1 , we may rewrite

this expression by the matrix̂V ∈ O(d), whosej-th row isPL1(vj)
T and the matrix

Û ∈ O(k,D − d), whosej-th row isP⊥
L1
(vj)

T :

d

dt
(el1(X ,L(t)))

∣

∣

∣

∣

t=0

=

N1
∑

i=1

||CV̂PL1xi|| − trk(CV̂BL1,X ÛT ). (21)

At last, we note that

max
ÛT

(trk(CV̂BL1,X ÛT )) = ||CV̂BL1,X ||∗. (22)

Indeed, denoting the SVD decomposition ofCV̂BL1,X byU0Σ0V
T
0 we have that

trk(CV̂BL1,X ÛT ) = trk(U0Σ0V
T
0 Û

T ) = trk(Σ0V
T
0 Û

TU0) ≤
∑

(diag(Σ0))

= ||CV̂BL1,X ||∗

and this equality can be achieved whenÛT consists of the firstk columns ofV0U
T
0 .

The theorem is thus concluded by combing (21) and (22).

3.2.3. Simultaneous Proof for Both Propositions2.1and2.2

For thed-subspaceL1 and an arbitraryd-subspacêL ∈ BG(L1, 1), we form the
geodesic line parametrizationL(t) and the corresponding matricesC, V, U, V̂ and
Û as in the proof of Theorem2.1. Similarly to verifying (17) and (19) in the latter
proof, we obtain that

d

dt
(dist(yi,L(t))p)

∣

∣

∣

∣

t=0

= −p dist(yi,L1)
p−2 trk(CVyiy

T
i U

T ) (23)

and
d

dt
(dist(xi,L(t))p)

∣

∣

∣

∣

t=0

= p dist(xi,L1)
p−1||CVxi||. (24)

Consequently

d

dt

(

elp(X ,L(t))
)

∣

∣

∣

∣

t=0

= p

N1
∑

i=1

dist(xi,L1)
p−1||CVxi|| (25)

− p

N0
∑

i=1

dist(yi,L1)
p−2 trk(CVyiy

T
i U

T ) = p

N1
∑

i=1

dist(xi,L1)
p−1||CV̂PL1(xi)||



G. Lerman and T. Zhang/lp-Recovery of the Most Significant Subspace 14

− p

N0
∑

i=1

dist(yi,L1)
p−2 trk(CV̂PL1(yi)P

⊥
L1
(yi)

T ÛT ).

Assume first thatp < 1. Then

d

dtp
(

elp(X ,L(t))
)

∣

∣

∣

∣

t=0

= p t1−p
N1
∑

i=1

dist(xi,L1)
p−1||CV̂PL1(xi)|| (26)

− p t1−p
N0
∑

i=1

dist(yi,L1)
p−2 trk(CV̂PL1(yi)P

⊥
L1
(yi)

T ÛT )

= p

N1
∑

i=1

(

lim
t→0

dist(xi,L(t))/t
)p−1

||CV̂PL1(xi)|| =
N0
∑

i=1

||CV̂PL1(xi)||p.

It follows immediately from the definitions ofC andV that

||CVxi|| ≥ θ1 ||vT1 xi||. (27)

Now, the assumptionSp({xi}N1

i=1) = L1 implies that there exists1 ≤ j ≤ N1 such
thatvT1 xj 6= 0 and thus||CV̂PL1(xi)|| = ||CVxi|| > 0. Therefore, (26) is positive,
L1 is a local minimum ofelp(X ,L(t)) and Proposition2.1 is proved.

Next, assume thatp > 1 and note that

p

N1
∑

i=1

dist(xi,L1)
p−1‖CV̂PL1xi‖ = 0. (28)

SinceL1 is a local minimum ofelp(X ,L), the derivative in (25) is nonnegative and
in view of (28), the subtracted term in (25) is thus nonpositive. Now, for a subspace
L̂ ∈ G(D, d) such thatC = V̂ = Id we obtain that

0 ≥ max
Û

p

N0
∑

i=1

dist(yi,L1)
p−2 trk(PL1(yi)P

⊥
L1
(yi)

T ÛT )

= p

∥

∥

∥

∥

∥

N0
∑

i=1

dist(yi,L1)
p−2PL1(yi)P

⊥
L1
(yi)

T

∥

∥

∥

∥

∥

∗

,

where the last equality follows from (22). Therefore, (7) holds and Proposition2.2 is
thus proved.

3.3. Proof of Theorem2.2: Combination of Combinatorial Estimates (Section3.2)
with Probabilistic Estimates

To find the probability thatL1 is a locall1 subspace we will estimate the probabilities
of large LHS and small RHS of (6) for arbitraryL̂ ∈ BG(L1, 1). We use the similar
notation as in the proof of Theorem2.1, in particular, we denote theN0 outliers and



G. Lerman and T. Zhang/lp-Recovery of the Most Significant Subspace 15

N1 inliers by{yi}N0

i=1 and{xi}N1

i=1 respectively. Due to the homogeneity of (6) in C,
we will assume WLOG that||C||2 = 1, i.e.,θ1 = 1.

We start with estimating the probability that the RHS of (6) is small. Applying the
above assumption that||C||2 = 1 we have that

||CVBL1,X ||F ≤ ||VBL1,X ||F = ||BL1,X ||F
and consequently

Pr

( ||CVBL1,X ||∗
N0

< ǫ

)

≥ Pr

( ||CVBL1,X ||F
N0

<
ǫ√
d

)

≥ Pr

( ||BL1,X ||F
N0

<
ǫ√
d

)

≥ Pr

(

maxp,l |(BL1,X )p,l|
N0

<
ǫ

d
√
D

)

.

f We further estimate this probability by Hoeffding’s inequality as follows: we view
the matrixBL1,X as the sum of random variablesPL1(yi)P

⊥
L1
(yi)

T /||P⊥
L1
(yi)||, i =

1, . . . , N0. Since the distribution of outliers is spherically symmetric in B(0, 1), the
coordinates of bothPL1(yi) andP⊥

L1
(yi)

T /||P⊥
L1
(yi)|| have expectations0 and take

values in [-1,1]. We can thus apply Hoeffding’s inequality to the sum definingBL1,X
and consequently obtain that

Pr

(

maxp,l |(BL1,X )p,l|
N0

<
ǫ

d
√
D

)

≥ 1− 2dD exp

(

−N0ǫ
2

2d2D

)

. (29)

Next, we estimate the probability that the LHS of (6) is sufficiently large. Unlike the
rest of the paper where we often representPL1 by aD ×D projection matrix (of rank
d), it will be convenient here to represent it as aD × d matrix of projection. We first
note that

N1
∑

i=1

||CVPL1(xi)|| ≥
N1
∑

i=1

|θ1vT1 PL1(xi)| =
N1
∑

i=1

|vT1 PL1(xi)|

≥

√

√

√

√

N1
∑

i=1

|vT1 PL1(xi)|2 ≥ min
t
σt

(

N1
∑

i=1

PL1(xi)PL1(xi)
T

)

.

(30)

Second of all, sinceµ1 is spherically symmetric distribution inL1 ∩ B(0, 1) and given
the representation ofPL1 by aD × d matrix, we have

Eµ1(PL1 (x)PL1(x)
T ) = δ∗Id, whereδ∗ = δ∗(µ1) depends onµ1. (31)

We will prove in AppendixA.6 the following statement:

If max
t
σt

(

N1
∑

i=1

PL1(xi)PL1(xi)
T − δ∗Id

)

< η,

thenmin
t
σt

(

N1
∑

i=1

PL1(xi)PL1 (xi)
T

)

> δ∗ − η. (32)
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We combine (30)-(32) and Hoeffding’s inequality to obtain the following probabilistic
estimate for the LHS of (6):

Pr

(

∑N1

i=1 ||CVPL1 (xi)||
N1

> δ∗ − η

)

(33)

≥ Pr

(

min
t
σt

(

∑N1

i=1 PL1(xi)PL1(xi)
T

N1

)

> δ∗ − η

)

≥ Pr

(

max
t
σt

(

∑N1

i=1 PL1(xi)PL1(xi)
T

N1
− δ∗Id

)

< η

)

≥ Pr

(∥

∥

∥

∥

∥

∑N1

i=1 PL1(xi)PL1 (xi)
T

N1
− δ∗Id

∥

∥

∥

∥

∥

F

< η

)

≥ Pr



max
p,l

∣

∣

∣

∣

∣

∑N1

i=1 PL1(xi)PL1 (xi)
T

N1
− δ∗Id

∣

∣

∣

∣

∣

p,l

<
η

d



 ≥ 1− 2d2 exp

(

−N1η
2

2d2

)

.

From (29) and (33), (6) is valid with probability at least

1−2d2 exp

(

−N1η
2

2d2

)

−2dD exp

(

−N0ǫ
2

2d2D

)

∀ ǫ, η s.t.η+
N0

N1
ǫ < δ∗(µ1). (34)

We can chooseǫ = N1δ∗(µ1)/(2N0) = N1/(2N0(d + 2)), η = 1/(3(d+ 2)) and
obtain that ifN0 = o(N2

1 ) then (6) is valid with the probability specified in (8).

3.4. Proof of Theorem1.1: From Local Probabilistic Estimates to Global Ones

3.4.1. Proof of the Special Case:K = 1

Part I: L1 is a Globallp Subspace inBG(L1, γ1)

We assume here that there is only one underlying subspace,L1, since it is easier to
follow our proof in this case. We prove in this part that thereexists a constantγ1 > 0
such that w.o.p.L1 is the globallp subspace inBG(L1, γ1). We arbitrarily choose
L̂ ∈ G(D, d) such thatdistG(L̂,L1) = 1 and parameterize a geodesic line fromL1 to
L̂ by a functionL: [0,1]→ G(D, d), whereL(0) = L1 andL(1) = L̂. We then observe
that there existsγ1 > 0 such that the functionel1(X ,L(t)): [0,1] → R of (1) has a
positive derivative w.o.p. at anyt ∈ [0, γ1], that is,

d

dtp

(
∑

x∈X dist(x,L(t))p

N

)

> 0 for all t ∈ [0, γ1] w.o.p. (35)

We will deduce (35) from the following two equations:

d

dtp

(
∑

x∈X dist(x,L(t))p

N

)∣

∣

∣

∣

t=0

> γ2 w.o.p. for someγ2 > 0. (36)
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and

d

dtp

(
∑

x∈X dist(x,L(t))p

N

)∣

∣

∣

∣

t=0

− d

dtp

(
∑

x∈X dist(x,L(t))p

N

)∣

∣

∣

∣

t=t0

<
γ2
2
,

(37)

∀t0 ∈ [0, γ1] w.o.p.

Whenp = 1, equation (36) practically follows from the proof of Theorem2.2 by
arbitrarily fixingǫ andη such thatǫα0/α1+η+γ2/α1 < δ∗ and noting that when sam-
pling from the mixture measure specified in the current theorem (unlike Theorem2.2)
the ratio of sampled outliers to inliers,N0/N1, goes w.o.p. toα0/α1. Whenp < 1,
equation (36) follows from (26). We also observe thatγ2 ≡ γ(α0, α1, d, µ1, p).

We first verify (37) for the sum of elements inX1 = X ∩ L1. In view of (18), for
anyx ∈ X1 the single term in that sum (i.e., dist(x,L(t))p) has a bounded second
derivative with respect to t; hence, we can find constantsγ1 andγ2 satisfying

d

dtp

(

∑

x∈X1
dist(x,L(t))p

N

)∣

∣

∣

∣

t=0

− d

dtp

(

∑

x∈X1
dist(x,L(t))p

N

)∣

∣

∣

∣

t=t0

<
γ2
6

(38)

∀t0 ∈ [0, γ1].

We derive a similar estimate by replacing the summation ofx ∈ X1 by the summa-
tion ofx ∈ X \X1. Using the constantγ3, which we clarify later, we separate the latter
sum into two components:̂X := {x ∈ X \X1 : dist(x,L1) ≤ 2 γ3} and(X \X1) \ X̂ .

In order to deal with the first sum, we define

γ4 := µ(x : 0 < dist(x,L1) ≤ 2 γ3)

and note that we can chooseγ3 ≡ γ3(D, γ2, µ0) ≡ γ3(D, d, α0, α1, µ0, µ1, p) suffi-
ciently small such thatγ4 ≡ γ4(d, α0, α1, µ0) is arbitrarily small. We useγ4 to bound
the ratio of sampled points from̂X andX as follows:

#(X̂ )

#(X )
≤ 2γ4 w.o.p. (39)

Indeed, we note that#(X̂ ) =
∑

x∈X IX̂ (x), E(IX̂ (x)) = µ(x : x ∈ X̂ ) = γ4 and
IX̂ (x) takes values in[0, 1], therefore by applying Hoeffding’s inequality toIX̂ (x),
wherex ∈ X , we conclude (39).

Now for yi ∈ X̂ , the derivatives expressed in (15) and (26) are bounded by 1 since
the support ofµ0 is contained inB(0, 1). Thus, by combining this observation with (39)
we obtain that there existsγ3 andγ4 such that for anyt0 ∈ [0, γ1]:

d

dtp

(
∑

x∈X̂ dist(x,L(t))p

N

)∣

∣

∣

∣

t=0

− d

dtp

(
∑

x∈X̂ dist(x,L(t))p

N

)∣

∣

∣

∣

t=t0

<
γ2
6

(40)

w.o.p.
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Differentiating (15) and (26) one more time, we obtain that forx ∈ (X \ X1) \ X̂ ,
the second derivative of dist(x,L(t)) with respect totp is bounded byC(d)/γ33 . Thus
we can chooseγ1 ≡ γ1(γ2, γ3, d) ≡ γ1(α0, α1, µ0, µ1, d,D, p) sufficiently small such
that for anyt0 ∈ [0, γ1]:

d

dtp

∑

x∈(X\X1)\X̂ dist(x,L(t))p

N

∣

∣

∣

∣

∣

t=0

− d

dtp

∑

x∈(X\X1)\X̂ dist(x,L(t))p

N

∣

∣

∣

∣

∣

t=t0

<
γ2
6
.

(41)
Equation (37) and consequently (35) are thus verified by combing (38), (40) and (41).
That is, we showed thatL1 is the globallp subspace inBG(L1, γ1) for sufficiently
smallγ1.

Part II: L1 is a Globallp Subspace inG(D, d)

We will first show that for allL ∈ G(D, d) \ BG(L1, γ1) and any fixedp ≤ 1, there
exists someγ7 > 0 such that

elp(X ,L)− elp(X ,L1) > γ7N, w.o.p. (42)

Indeed, we first conclude from Lemma3.1that

Eµ
(

elp(x,L)
)

− Eµ
(

elp(x,L1)
)

> α0

(

Eµ0

(

elp(x,L)
)

− Eµ0

(

elp(x,L1)
))

(43)

+ α1

(

Eµ1

(

elp(x,L)
)

− Eµ1

(

elp(x,L1)
))

≥ α1(1− µ1({0}))2p−1γp1

(π
√
d)p
(

ψ−1
µ1

(

1+µ1({0})
2

))p .

Settingγ7 =
α1(1−µ1({0}))2pγp

1

(π
√
d)p

(

ψ−1
µ1

(

1+µ1({0})

2

))p and combining (43) with Hoeffding’s inequal-

ity, we obtain (42).
Now, (42) extends for a small neighborhood ofL. That is, for anyL ∈ G(D, d) we

can find a ballBG(L, t) for somet > 0 such that w.o.p. the subspaceL1 is a better
lp subspace than any of the subspaces in that ball. By covering the compact space
G(D, d) \ BG(L1, γ1) with finite number of such balls we obtain that w.o.p.L1 is the
global lp subspace inG(D, d) \ BG(L1, γ1). Combining this observation with part I,
we conclude that w.o.p.L1 is the globallp subspace inG(D, d).

3.4.2. Extension of the Proof toK > 1

Part I: L1 is a Globallp Subspace inBG(L1, γ1)

We maintain the same notation of Section3.4.1, especially for similar constants. We
will show in this part that w.o.p.L1 is a globallp subspace in the ballBG(L1, γ1),
whereγ1 is a sufficiently small constant different than the one of Section 3.4.1.

In order to do so, we arbitrarily fix̂L ∈ G(D, d) such thatdistG(L̂,L1) = 1 (so that
C ∈ NS+(d)) and parameterize a geodesic line fromL1 to L̂ by a functionL: [0,1]
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→ G(D, d), whereL(0) = L1 andL(1) = L̂. We will then estimate the probability
that for any sucĥL the functionelp(X ,L(t)): [0,1] → R has a positive derivative at
anyt ∈ (0, γ1), that is

d

dtp

(
∑

x∈X dist(x,L(t))p

N

)

> 0 for all t ∈ (0, γ1). (44)

First of all, we prove that the LHS of (44) is larger than some constantγ2 > 0 at
t = 0 w.o.p., that is:

d

dtp

(
∑

x∈X dist(x,L(t))p

N

)∣

∣

∣

∣

t=0

> γ2 w.o.p. (45)

When0 < p < 1, it follows from (26) and Hoeffding’s inequality that (45) is valid
w.p.1− exp(−2Nγ22) for γ2 = α1Eµ0 (‖C0V0PL1(x)‖p)/2. Whenp = 1, it follows
from (6) that this probability is the same as the probability of the event

∑

x∈X1
||CVPL1 (x)|| − ||CVBL1,X\X1

||
N

> γ2 (46)

∀C ∈ NS+(d) andV ∈ O(d).

Applying the spherical symmetry ofµ0, we have that for allC ∈ NS+(d) and
V ∈ O(d):

||CVBL1,X\X1
‖∗ = ||CV

∑

x∈X\X1

PL1(x)P
⊥
L1
(x)T /dist(x,L1)‖∗

= ||CV
∑

x∈X\{X1∪X0}
PL1(x)P

⊥
L1
(x)T /dist(x,L1)‖∗

≤
∑

x∈X\{X1∪X0}
||CVPL1 (x)P

⊥
L1
(x)T /‖P⊥

L1
(x)‖ ‖∗ ≤

∑

x∈X\{X1∪X0}
||CVPL1 (x)‖.

Consequently, in order to estimate the probability of (46) it is sufficient to estimate the
probability that

∑

x∈X1
||CVPL1(x)|| −

∑

x∈X\{X1∪X0} ||CVPL1(x)‖
N

> γ2 (47)

∀C ∈ NS+(d) andV ∈ O(d).

We arbitrarily fix C0 ∈ NS+(d), V0 ∈ O(d) and verify (47) by Hoeffding’s
inequality in the following way. We define the random variable J(x) = (2I(x ∈
X1)− 1)||C0V0PL1(x)|| and using the spherical symmetry of{µi}Ki=1, we have

Eµ(J(x)) = EµN

(
∑

x∈X1
||C0V0PL1(x)|| −

∑

x∈X\{X1∪X0} ||C0V0PL1(x)‖
N

)

(48)
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= α1Eµ1 ||C0V0PL1(x)|| −
K
∑

j=2

αjEµj
||C0V0PL1(x)||

≥ α1Eµ1 ||C0V0PL1(x)|| −
K
∑

j=2

αjEµ1 ||C0V0PL1(x)||

= β0Eµ1 ||C0V0PL1(x)||,

whereβ0 = α1 −
∑K

j=2 αj .
Now, let γ2 := β0Eµ1 ||C0V0PL1(x)||/4. We note that the random variableJ(x)

has expectation larger than4γ2 and it takes values in[−1, 1]; thus by Hoeffding’s in-
equality:

∑

x∈X1
||C0V0PL1(x)|| −

∑

x∈X\X1
||C0V0PL1(x)‖

N
> 2γ2 (49)

w.p.≥ 1− exp(−2Nγ22).

We have thus proved that (45) is valid with sufficiently high probability for fixed
matricesC0 ∈ NS+(d) andV0 ∈ O(d). Next we estimate the probability of (45) for
all matricesC ∈ NS+(d) andV ∈ O(d), when restricted to a ball with sufficiently
small radius. We let

dist(NS+(d),O(d))((C1,V1), (C2,V2)) := max(||C1 −C2||2, ||V1 −V2||2) (50)

and note that whenever dist(NS+(d),O(d))((C1,V1), (C2,V2)) < γ2/2 andx ∈ B(0, 1)
we have that

||C1V1PL1(x)|| − ||C2V2PL1(x)||
= (||C1V1PL1(x)|| − ||C2V1PL1(x)||) + (||C2V1PL1(x)|| − ||C2V2PL1(x)||)
≤ ||C1 −C2||2 + ||C2||2||V1 −V2||2 ≤ γ2. (51)

Combining (49) and (51) we obtain that for any ball inG(D, d) of radiusγ2/2 and
center(C0,V0):
∑

x∈X1
||CVPL1 (x)|| −

∑

x∈X\X1
||CVPL1(x)‖

N
> γ2 w.p.≥ 1− exp(−2Nγ22).

(52)
We easily extend (52) for all pairs of matrices(C,V) in the compact spaceNS+(d)×

O(d) (with the distance specified in (50)). Indeed, it follows from [25] together with

some basic estimates that the latter space can be covered byC
d(d+1)/2
1 /(γ2/2)

d(d+1)/2

balls of radiusγ2/2. Therefore,

(45) is valid for anyC ∈ NS+(d) andV ∈ O(d)

w.p. 1− C2d
1 exp(−2Nγ22)/(γ2/2)

2d−1. (53)

Equation (44) follows w.o.p. from (45) in exactly the same way of deriving (35)
from (36) and (37). We remark that (37), which is deterministic, easily extends to the
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current case. While we did not estimate the overwhelming probability for (35), it is easy
to show that in the current case, (45) implies (44) w.p. 1 − exp(−Nγ8)/γ8. Carrying
this analysis, one notices that bothγ1 andγ8 depend ond, K, α0, α1, µ0, µ1, p and
min2≤i≤K(distG(L1,Li)). Combining this with (53), we obtain that

L1 is a globallp subspace inBG(L1, γ1)

w.p.1− C2d
1 exp(−2Nγ22)/(γ2/2)

2d−1 − exp(−Nγ4)/γ4. (54)

Part II: L1 is a Globallp Subspace inG(D, d)

We will first prove thatL1 is a globallp subspace w.o.p. inG(D, d) \ BG(L1, γ1).
Applying Lemma3.3we obtain that for all2 ≤ i ≤ K:

Eµ1 (dist(x,L)p − dist(x,L1)
p) + Eµi

(dist(x,L)p − dist(x,L1)
p) ≥ 0. (55)

Further application of Lemma3.1 with L ∈ G(D, d) \ BG(L1, γ1) results in the in-
equality:

Eµ1(dist(x,L)) >
(1− µ1({0})) · 2p−1 · γp1

(

π
√
d
)p

·
(

ψ−1
µ1 ((1 + µ1({0})) /2)

)p
. (56)

Now, combining (55) and (56) we have that

Eµ(dist(x,L)p − dist(x,L1)
p)

=

K
∑

i=2

αi((Eµ1(dist(x,L)p − dist(x,L1)
p) + Eµi

(dist(x,L)p − dist(x,L1)
p))

+ β0Eµ1(dist(x,L)p − dist(x,L1)
p)

≥ β0 · (1− µ1({0})) · 2p−1 · γp1
(

π
√
d
)p

·
(

ψ−1
µ1 ((1 + µ1({0})) /2)

)p
,

whereγ9 depends ond, K, µ0, µ1, α0, α1 andmin2≤i≤K(distG(L1,Li)). Noting
further that dist(x,L) − dist(x,L1) takes bounded values and applying Hoeffding’s
inequality we obtain that for anyL ∈ G(D, d) \ BG(L1, γ1):

elp(X ,L)− elp(X ,L1) > γ9N/2 w.p. ≥ 1− exp(−Nγ29/8) . (57)

By Lemma3.2 we have that for anyL′ ∈ G(D, d) satisfyingdistG(L,L′) <
(γ9/4)

1/p and anyx ∈ B(0, 1):

|dist(x,L′)p − dist(x,L)p| < γ9/4.

Consequently, for anyL ∈ G(D, d) \ BG(L1, γ1) and allL′ ∈ BG(L, (γ9/4)
1/p):

elp(X ,L′)− elp(X ,L1) > 0 w.p. ≥ 1− exp(−Nγ29/8) . (58)
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Following [24, Remark 8.4] we can coverG(D, d)\BG(L1, γ1) byCd(D−d)
2 /γ

d(D−d)/p
9

balls of radius(γ9/4)1/p. Now, for each such ball we have that (57) is valid for its center
w.p.1−exp(−Nγ29/8) and consequently (58) is valid for subspaces in that ball with the
same probability. We thus conclude that (58) is valid for allL′ ∈ G(D, d)\BG(L1, γ1)

w.p.1− exp(−Nγ29/8)C
d(D−d)/p
2 /γ

d(D−d)
9 . Combining this with (54), we obtain that

the probability thatL1 is a globall1 subspace inG(D, d) is

1−C2d
1 exp(−2Nγ22)/(γ2/2)

2d−1−exp(−Nγ4)/γ4−exp(−Nγ29/8)C
d(D−d)
2 /γ

d(D−d)/p
9 ,

or equivalently,1−C exp(−N/C) for someC depending onD, d,K, µ0, µ1, α0, α1,
p andmin2≤i≤K(distG(L1,Li)).

3.5. Proof of Theorem1.2: Stability Analysis

3.5.1. Reduction of Theorem1.2

We first explain how to reduce the proof of Theorem1.2when0 < p ≤ 1 to the veri-
fication of a simpler statement. We then adapt this idea for proving the same theorem
when bothp > 1 andK = 1.

In order to prove Theorem1.2when0 < p ≤ 1, i.e., prove that the global minimum
of elp(X ,L) is in BG(L1, f) w.o.p., we only need to show that there exists a constant
γ1 > 0 such that for anyL /∈ BG(L1, f):

Eµǫ
(elp(x,L)) > Eµǫ

(elp(x,L1)) + γ1. (59)

Indeed, we cover the compact spaceG(D, d) \ BG(L1, f) by small balls with radius
γ1/2. Then by using (59) and Hoeffding’s inequality, we obtain thatelp(X ,L) >
elp(X ,L1) for anyL in each such ball w.o.p. Therefore,elp(X ,L) > elp(X ,L1) for
L ∈ G(D, d) \ BG(L1, f) w.o.p. Equivalently,G(D, d) \ BG(L1, f) does not contain
the global minimum ofelp(X ,L) w.o.p.

For i = 1, . . . ,K, let µ̃i,ǫ be the measure obtained by projectingµi,ǫ onto its corre-
sponding subspaceLi (that is, for any setE ⊆ B(0, 1)∩Li: µ̃i,ǫ(E) = µi,ǫ(P

−1
Li

(E))).

We also let̃µǫ := α0µ0+
∑K
i=1 αiµ̃i,ǫ(E). By the triangle inequality and the definition

of µǫ:
|Eµǫ

(elp(x,L)) − Eµ̃ǫ
(elp(x,L))| < ǫp.

Hence, in order to prove (59) and thus Theorem1.2 for p ≤ 1, the following equation
is sufficient:

Eµ̃ǫ
(elp(x,L)) > Eµ̃ǫ

(elp(x,L1)) + γ1 + 2ǫp, for anyL ∈ G(D, d) \ BG(L1, f).
(60)

We can similarly reduce Theorem1.2 whenK = 1 andp > 1 to the following
condition:

Eµ̃ǫ
(elp(x,L)) > Eµ̃ǫ

(elp(x,L1)) + γ1 + 2pǫ, for anyL ∈ G(D, d) \ BG(L1, f).
(61)
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This reduction follows the same arguments above combined with the following obser-
vation: For anyx1,x2 ∈ B(0, 1) with dist(x1,x2) < η < 1 and anỹL1, L̃2 ∈ G(D, d)
with distG(L̃1, L̃2) < η:

dist(x1, L̃1)
p − dist(x2, L̃1)

p < 1− (1− η)p < pη, (62)

and
dist(x1, L̃1)

p − dist(x1, L̃2)
p < 1− (1− η)p < pη. (63)

Whenp = 1, (62) follows from the triangle inequality and (63) follows from Lemma3.2,
whereas both equations extend top > 1 by the following property of thep-th power: if
0 ≤ y1, y2 ≤ 1, y1 − y2 < η andp > 1, thenyp1 − yp2 < 1− (1− η)p.

3.5.2. Proof of(60) and(61) and Conclusion of Theorem1.2

We arbitrarily fixL ∈ G(D, d) \BG(L1, f). We assume first that0 < p ≤ 1 and apply
Lemma3.3to obtain that

Eµ̃ǫ−(α1−
∑

K
i=2 αi)µ̃1,ǫ

elp(x,L)− Eµ̃ǫ−(α1−
∑

K
i=2 αi)µ̃1,ǫ

elp(x,L1)

=

K
∑

i=2

αi
(

Eµ̃1,ǫ+µ̃i,ǫ
elp(x,L) − Eµ̃1,ǫ+µ̃i,ǫ

elp(x,L1)
)

≥ 0.

Consequently, we prove (60) with γ1 := 2ǫp as follows:

Eµ̃ǫ
(elp(x,L)) − Eµ̃ǫ

(elp(x,L1)) ≥
(

α1 −
K
∑

i=2

αi

)

Eµ̃1,ǫ(elp(x,L)) (64)

≥

(

α1 −
∑K

i=2 αi

)

(1− µ1({0})) 2p−1fp

(π
√
d)p
(

ψ−1
µ1

(

1+µ1({0})
2

))p = 4ǫp,

where the second inequality applies Lemma3.1.
Equation (61) (with p > 1) follows from the same argument of (64), whereǫp is

now replaced bypǫ.

3.5.3. Remark on The Size ofǫ

If 0 < p ≤ 1 and

ǫ >

(

α1 −
∑K

i=2 αi

)
1
p

(1− µ1({0}))
1
p

2
3
p ψ−1

µ1

(

1+µ1({0})
2

) (65)

or p > 1,K = 1 and

ǫ >
α1 (1− µ1({0})) 2p−3

p πpd
p
2 ψ−1

µ1

(

1+µ1({0})
2

)p , (66)

thenf > π
√
d

2 , which implies thatBG(L1, f) = G(D, d) (since all principle angles
are at mostπ/2). It thus makes sense to restrict the level of noise to be at least lower
than the right hand sides of (65) or (66).
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3.6. Proof of Theorem1.3: Symmetry Arguments

3.6.1. First Reduction of Theorem1.3

We use the same notation of Section3.5.1, in particular,̃µǫ. Theorem1.3states that the
globallp subspace is not inBG(L1, κ0) w.o.p. for almost every{Li}Ki=1 ∈ G(D, d)K .
We claim that it reduces to the following simple equation:

γKD,d
(

{Li}Ki=1 ⊂ G(D, d) : L1 = argminLEµ̃ǫ
(elp(x,L))

)

= 0. (67)

Indeed, if (67) is not satisfied, then for anyK d-subspaces{Li}Ki=1 in a subset of
G(D, d)K with nonzeroγKD,d measure there existsL0 ∈ G(D, d) such that

γ1 := Eµ̃ǫ
(elp(x,L1))− Eµ̃ǫ

(elp(x,L0)) > 0.

Lettingδ0 = κ0 = γ1/4pǫ, we obtain from (62) and (63) that for anyL∗ ∈ BG(L1, κ0):

Eµǫ
(elp(x,L

∗))− Eµǫ
(elp(x,L0)) > Eµ̃ǫ

(elp(x,L
∗))− Eµ̃ǫ

(elp(x,L0))− 2δ0p

> Eµ̃ǫ
(elp(x,L1))− Eµ̃ǫ

(elp(x,L0))− 2δ0p− κ0p =
γ1
4
.

Therefore, by Hoeffding’s inequality:

elp(X ,L∗)− elp(X ,L0) >
γ1N

8
w.o.p.

In order to have

elp(X ,L∗)− elp(X ,L0) > 0 for all L∗ ∈ BG(L1, κ0) w.o.p.,

we coverBG(L1, κ0) by small balls with radiusγ1/16, so thatelp(X ,L) > elp(X ,L0)
for all L in each such ball w.o.p. Therefore,elp(X ,L) > elp(X ,L0) for all L ∈
BG(L1, κ0) w.o.p. Equivalently,BG(L1, κ0) will not contain the global minimum of
elp(X ,L) w.o.p. This contradicts Theorem1.3and therefore (67) implies this theorem.

3.6.2. Second Reduction of Theorem1.3

We define the operator

DL,x,p = PL(x)P
⊥
L (x)Tdist(x,L)(p−2) (68)

and the function
h(L1,Li) = Eµ̃i,ǫ

(DL1,x,p), 2 ≤ i ≤ K.

In view of Proposition2.2, (67) follows from the condition:

γKD,d
(

{Li}Ki=1 ⊂ G(D, d) : Eµ̃ǫ
(DL1,x,p) = 0

)

= 0, (69)

which we rewrite as follows:

γKD,d
(

{Li}Ki=1 ⊂ G(D, d) : Eµ̃ǫ
(DL1,x,p) = 0

)
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=γKD,d

(

{Li}Ki=1 ⊂ G(D, d) : E∑

K
i=2 αiµ̃i,ǫ

(DL1,x,p) = 0
)

=γKD,d

(

{Li}Ki=1 ⊂ G(D, d) :

K
∑

i=2

αi h(L1,Li) = 0

)

= 0. (70)

Since{Li}Ki=1 are identically and independently distributed according toγD,d, Fubini’s
Theorem implies that (70) follows from the equation:

γD,d (L2 ∈ G(D, d) : h(L1,L2) = C(L1,L3, · · · ,LK)) = 0, (71)

whereC(L1,L3, · · · ,LK) = −∑K
i=3 αi h(L1,Li)/α2.

3.6.3. Third Reduction of Theorem1.3

We denote the principal angles betweenL2 andL1 by {θj}dj=1, the principal vectors
of L2 andL1 by {v̂j}dj=1 and{vj}dj=1 respectively and the complementary orthogonal
system forL2 w.r.t. L1 by {uj}dj=1. Note thath(L1,L2), as a function ofx, maps
Sp({ui}di=1) to Sp({vi}di=1). Now, transformingx ∈ L2 ∩ B(0, 1) to {ai}di=1 in a
d-dimensional unit ball byx =

∑d
i=1 aiv̂i, we have that for any1 ≤ i1, i2 ≤ d:

vTi1h(L1,L2)ui2 = Eµ2(v
T
i1PL1(x)P

⊥
L1
(x)Tui2dist(x,L1)

p−2)

=

∫

∑

d
i=1 ai

2≤1

cos θi1ai1 sin θi2ai2

(

d
∑

i=1

a2i sin
2 θi

)

p−2
2

dV,

wheredV denotes the scaled volume element on thed-dimensional ball
∑d

i=1 ai
2 ≤ 1.

For simplicity, we will assume till the rest of the proof thatµ2 is a uniform dis-
tribution onB(0, 1) ∩ L2. Nevertheless, the proof can be easily generalized to any
spherically symmetric distribution onL2 with bounded support. Wheni1 6= i2, the
function

cos θi1ai1 sin θi2ai2

(

d
∑

i=1

a2i sin
2 θi

)

p−2
2

is odd w.r.t.ai1 and consequently

vTi1h(L1,L2)ui2 =

∫

∑

d
i=1 ai

2≤1

cos θi1ai1 sin θi2ai2

(

d
∑

i=1

a2i sin
2 θi

)

p−2
2

dV = 0.

Therefore, when we formV andU as in (17), thed × d matrix Vh(L1,L2)U
T is

diagonal with the elements

∫

∑

d
i=1 ai

2≤1

cos θj sin θja
2
j

(

d
∑

i=1

a2i sin
2 θi

)

p−2
2

dV, j = 1, · · · , d.
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Notice thatVh(L1,L2) = h(L1,L2) = h(L1,L2)U
T , h(L1,L2) has the followingd

singular values:

λj(h(L1,L2)) =

∫

∑

d
i=1 ai2≤1

cos θj sin θjaj2

(

d
∑

i=1

ai2 sin 2θi

)

p−2
2

, j = 1, · · · , d.

We arbitrarily fixL1,L3,L4, · · · ,LK and denote the singular values ofC ≡ C(L1,L3,
L4, · · · ,LK) by {σi}Di=1 and observe that (71) is implied by the following equation:

γD,d
(

L2 ∈ G(D, d) : λ1(h(L1,L2)) ∈ {σi}Di=1

)

= 0, (72)

which we express as:

γD,d





∫

∑

d
i=1 a1

2≤1

cos θ1 sin θ1a
2
1

(

d
∑

i=1

a2i sin
2 θi

)

p−2
2

dV ∈ {σi}Di=1



 (73)

= 0.

3.6.4. Proof of(73) and Conclusion of Theorem1.3

We first conclude (73) whenp = 2. In this case

∫

∑

d
i=1 a1

2≤1

cos θ1 sin θ1a
2
1

(

d
∑

i=1

a2i sin
2 θi

)

p−2
2

dV

≡
∫

∑

d
i=1 a1

2≤1

cos θ1 sin θ1a
2
1 dV (74)

is a monotone function ofθ1 on [0, π/4] as well as[π/4, π/2]. That is, the requirement
thatλ1(h(L1,L2)) ∈ {σi}Di=1 can occur only at discrete values ofθ1 and consequently
hasγD,d measure 0, that is, (73) (and consequently (67)) is verified in this case.

If p 6= 2 and{θi}d−1
i=1 are fixed, then

∫

∑

d
i=1 a1

2≤1

cos θ1 sin θ1a
2
1

(

d
∑

i=1

a2i sin
2 θi

)

p−2
2

dV (75)

is a monotone function ofθd. Following a similar argument, we obtain that

γD,d
(

h(L1,L2) ∈ {σi}Di=1|{θi}d−1
i=1

)

= 0. (76)

Combining (76) and Fubini’s Theorem, we conclude (73).
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3.6.5. Remark on the Size ofδ0 andκ0

The above constantsδ0 andκ0 depend on other parameters of the underlying spheri-
cally symmetric HLM model in particular the underlying subspaces{Li}Ki=1. For ex-
ample, in the case ofp ≥ 2 one can estimate from below bothκ0 andδ0 by the follow-
ing number:

‖∑d
i=2 αiEµ̃i,ǫ

(DL1,x,p)‖22
dD2p+5

,

whereDL1,x,p is defined in (68) and for anyi = 1, . . . ,K, µ̃i,ǫ is obtained by project-
ing µi,ǫ onto the subspaceLi (as in Section3.5.1).

4. Discussion

We studied the effectiveness oflp minimization for recovering and nearly recovering
the most significant subspace w.o.p. Our setting assumed identical and independent
sampling from a spherically symmetric HLM measure with noise levelǫ ≥ 0. A re-
stricted setting like this is necessary and indeed we described some typical cases where
global lp subspaces are different than globall0 subspaces for all0 < p < ∞. Our
analysis has provided some guarantees for the robustness tobounded spherically sym-
metric outliers of the single subspace recovery advocated in [8] as well as sequential
HLM as in [30] (while usinglp minimization with0 < p ≤ 1 in the spirit of [26, 27]).
We conclude with some possible extensions and open directions.

4.1. More General Distributions

The strict spherical symmetry of the distributions{µi}Ki=0 in Theorems1.1 and1.2
can be relaxed. Indeed, one can notice that our proofs extendwith weaker bounds to
approximatelyspherically symmetric distributions (with bounded support). By approx-
imate spherically symmetric we mean that it is absolutely continuous with respect to
a spherically symmetric distribution and with derivative bounded away from0 and∞.
This weaker assumption requires an upper bound onα0, i.e.,

α0 < C⋆(µ0, µ1), (77)

and the condition

C1(µ1)α1 >

K
∑

i=2

Ci(µi)αi + C0(µ0)α0 (78)

instead of (3). We also need to replace the corresponding part of the denominator of (4)
by (C1(µ1)α1 −

∑K
i=2 Ci(µi)αi − C0(µ0)α0)

1
p .

Similarly, one can relax Theorem2.2by assuming that bothµ0 andµ1 are approxi-
mately spherically symmetric (with bounded support) as well conditions (77) and (78).
This will imply though that the globall0 subspace is a locallp subspace only when
N0 = o(N1) (instead ofN0 = o(N2

1 )).
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In Theorem2.2 it is also possible to replace the spherical symmetry assumption on
µ0 by symmetry with respect toL1, without changing the implication of that theorem.
It is even possible to assume a slightly weaker assumption:Eµ0(DL1,x,p) = 0, where
DL1,x,p was defined in (68).

4.2. The Case of Affine Subspaces

The assumption of spherical symmetry is natural in the setting of linear subspaces,
unlike affine subspaces. We can only formulate a weak theory for lp-recovery of a sin-
gle subspace among affine subspaces intersecting a fixed ball. For example, one can
assume that the mixture distributionα0µ0 +

∑K
i=2 αiµi is approximately spherically

symmetric with a bounded support and apply the theory developed in this paper to re-
coverL1 by lp minimization. Strong restrictions on the sampling along affine subspaces
are needed in order to avoid cases in the spirit of of Section2.1. For example, points on
a subspace, which is sufficiently far from the origin and sufficiently dense but not the
globall0 subspace, are outliers that can misguide the recovery of thegloball0 subspace
by lp minimization for allp > 0.

The common strategy of using homogenous coordinates which transformd-dimensional
affine subspaces inRD to (d+ 1)-dimensional linear subspaces inRD+1 is not useful
to us since it distorts the structure of both noise and outliers.

4.3. Implementation and Relation to Other Algorithms

One can approximate the geometricl1 minimizer by gradient descent or stochastic
gradient descent (see e.g., [31]). However, since the underlying minimization is not
convex such approximation will likely converge to a local minimum different than the
global one. It will be interesting to suggest a convex strategy that is closely related to
the geometricl1 minimization without including an additional parameter.

Two convex strategies which include an additional parameter are the principal com-
ponent pursuit [2] and the outlier pursuit [29]. It is possible that by carefully choosing
the tuning parameter of [29], the rows of the low rank matrix obtained by [29] span the
d-subspace that minimizes thel1 energy in (1).
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Appendix A: Supplementary Details

A.1. Upper Bound ofψµ for a Uniform Distribution in B(0, 1) ∩ L1

We establish here the following upper bound onψµ in the special case whereµ is
uniform onB(0, 1) ∩ L1 andL1 is ad-subspace inRD:

ψµ(t) <
2d

π
t. (79)

This implies a lower bound onψ−1
µ , which simplifies some of the estimates of this

paper (involvingψ−1
µ ) in this special case.

Denoting the volume ofd-dimensional unit ball byvd and noticing that

{x = (x1, x2, · · · , xd) ∈ B(0, 1) ∩ L1 : |x1| < t}

⊂
{

x = (x1, x2, · · · , xd) ∈ B(0, 1) ∩ L1 : |x1| < t, |x2| ≤ 1,
d
∑

i=3

x2i ≤ 1

}

,

we have that
Vol {x : x ∈ B(0, 1) ∩ L1, |x1| < t} < 4vd−2t. (80)

Combining (80) with the observation:vd = 2π
d vd−2, we find the upper bound ofψµ(t):

ψµ(t) = Vol {x ∈ B(0, 1) ∩ L1 : |x1| < t)}
/

Vol {x ∈ B(0, 1) ∩ L1}

<
4vd−2t

vd
=

2d

π
t.

A.2. Proof of Lemma3.1

We will use the following inequality, which we verify below in SectionA.2.1:

µ1

(

x ∈ B(0, 1) ∩ L1 : dist(x, L̂1) < β distG(L1, L̂1)
)

≤ ψµ1(
π
√
d

2
β) ∀β > 0.

(81)

We fixβ1 = 2

π
√
d
ψ−1
µ1

(

1+µ1({0})
2

)

and later prove the existence of this constant. Using

the fact thatdistG(L1, L̂1) = ǫ and applying (81), we obtain that

µ1

(

x ∈ B(0, 1) ∩ L1 : dist(x, L̂1) < β1 ǫ
)
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= µ1

(

x ∈ B(0, 1) ∩ L1 : dist(x, L̂1) < β1 distG(L1, L̂1)
)

≤ (1 + µ1({0}))/2.

Consequently, we derive the following estimate

µ1

(

x ∈ B(0, 1) ∩ L1 : dist(x, L̂1) ≥ β1ǫ
)

≥ (1− µ1({0}))/2,

and thus by Chebyshev’s inequality the lemma is concluded asfollows:

Eµ1

(

elp(x, L̂1)
)

≥ βp1ǫ
p/2 =

(1 − µ1({0}))2p−1ǫp

(π
√
d)pψ−1

µ1

(

1+µ1({0})
2

)p .

The existence ofψ−1
µ1

(

1+µ1({0})
π
√
d

)

will follow from the following observation:

µ1(L) = 0 for any affine subspaceL ⊂ L1,

µ1(L) = µ1({0}) for any linear subspaceL ( L1, (82)

We prove it as follows: Assume thatd0 is the smallest dimension for which there
exists a subspaceL0 such that (82) is not true, then we arbitrarily rotateL0 with respect
to the origin large number of times. Each of the rotated subspaces has the same positive
measure asL0, and the measure of the intersection between any such pair is0 (since
the intersection has a lower dimension thand0), therefore the measure of the union
of these rotated subspaces can be arbitrarily large, which contradictsµ1(RD) = 1.
Then we proved (82), and from it we obtain thatψµ1(0) = µ1({0}), ψµ1(1) = 1, and

ψµ1(t) is continuous in the interval[0, 1]. Therefore, the existence ofψ−1
µ1

(

1+µ1({0})
2

)

is concluded.

A.2.1. Proof of(81)

We denote the principal angles betweenL1 and L̂1 by {θi}di=1, the principle vectors
of L1 andL̂1 by {vi}di=1 and{v̂i}di=1 respectively, the interaction dimension byk ≡
k(L1,L2) (see Section3.2.1), the volume of thed-dimensional unit ball byvd and

γi =
sin(θi)

2

∑k
j=1 sin(θj)

2
, i = 1, . . . , k.

Since
∑k

i=1 γi = 1, WLOG we assume thatγ1 ≥ 1/k ≥ 1/d. Expressing every point
x in L1 by x = (x1, x2, · · · , xd) = (vT1 x,v

T
2 x, · · · ,vTd x), we obtain that

{

x ∈ L1 : dist(x, L̂1) < β distG(L1, L̂1)
}

=







x = (x1, x2, · · · , xd) ∈ L1 :

√

√

√

√

d
∑

i=1

x2i sin
2 θi < β

√

√

√

√

d
∑

i=1

θ2i






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⊂







x = (x1, x2, · · · , xd) ∈ L1 :

√

√

√

√

d
∑

i=1

x2i sin
2 θi <

π

2
β

√

√

√

√

d
∑

i=1

sin2 θi







=







x = (x1, x2, · · · , xd) ∈ L1 :

√

√

√

√

k
∑

i=1

γi x2i <
π

2
β







⊂
{

x = (x1, x2, · · · , xd) ∈ L1 : |x1| <
π

2
√
γ1
β

}

⊂
{

x ∈ L1 : |vT1 x| <
π
√
d

2
β

}

.

We prove (81), by combing the equation above and

µ1

({

x ∈ L1 : |vT1 x| <
π
√
d

2
β

})

= ψµ1(
π
√
d

2
β).

A.3. Proof of Lemma3.2

We denote the principal angles between thed-subspacesL1, L2 by θ1 ≥ θ2 ≥ θ3 ≥
· · · ≥ θd. Arbitrarily choosingQ1, Q2 ∈ O(D, d), representingL1, L2 respectively,
we note that

|dist(x,L1)− dist(x,L2)| = | ||x− xQ1Q
T
1 || − ||x− xQ2Q

T
2 || |

≤||x− xQ1Q
T
1 − x+ xQ2Q

T
2 || ≤ ||x||

∥

∥Q1Q
T
1 −Q2Q

T
2

∥

∥

F

=||x||

√

√

√

√

d
∑

i=1

sin(θi)2 ≤ ||x||

√

√

√

√

d
∑

i=1

θ2i = ||x|| distG(L1,L2).

A.4. Proof of Lemma3.3

We assume WLOG thati = 1 in (10). We thus need to prove that for allL̂ ∈ G(D, d):

Ex1∈µ1(dist(x1, L̂)
p) + Ex2∈µ2(dist(x2, L̂)

p)

≥Ex1∈µ1(dist(x1,L1)
p) + Ex2∈µ2(dist(x2,L1)

p). (83)

We denote the principal angles betweenL1 andL2 by {θi}di=1, the principle vectors of
L1 andL2 by {vi}di=1 and{v̂i}di=1 and the complementary orthogonal system forL2

w.r.t.L1 by {ui}di=1.
We notice that we can restrict the set of subspacesL̂ satisfying (83). First of all, we

only need to consider subspaces

L̂ ∈ L1 + L2 . (84)

Indeed, the LHS of (83) is the same if we replacêL by L̂ ∩ (L1 + L2).
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Second of all, we claim that it is sufficient to assume that

Sp(v̂i,vi) * L̂ for all 1 ≤ i ≤ k. (85)

Indeed, WLOG leti = 1 and suppose on the contrary to (85) that v̂1,v1 ∈ L̂. Since
L̂ is d-dimensional, there exists2 ≤ j ≤ d (assume WLOGj = 2) such that it
does not contain botĥvj andvj . For any pair of pointsx =

∑d
i=1 aivi ∈ L1 and

x̂ =
∑d
i=1 aiv̂i ∈ L2:

dist(x, L̂) =
√

sin(θ2)2a22 + ν21 and dist(x̂, L̂) =
√

sin(θ1)2a21 + ν22 ,

where

ν1 = dist

(

d
∑

i=3

aivi, L̂

)

and ν2 = dist

(

d
∑

i=3

aiv̂i, L̂

)

.

Now, for L̃ = Sp(L̂ \ {v1, v̂1},v1,v2), we obtain that

dist(x̂, L̃) =
√

sin(θ1)2a21 + sin(θ2)2a22 + ν22 and dist(x, L̃) = ν1.

Therefore
dist(x, L̃)p + dist(x̂, L̃)p ≤ dist(x, L̂)p + dist(x̂, L̂)p

and by direct integration we have that

Ex1∈µ1(dist(x1, L̃)
p) + Ex2∈µ2(dist(x2, L̃)

p)

≤Ex1∈µ1(dist(x1, L̂)
p) + Ex2∈µ2(dist(x2, L̂)

p).

We can thus replace the subspaceL̂ with the subspacẽL, which satisfies (85) (for i = 1,
but can similarly be changed for all1 < i ≤ K).

It follows from (84) and (85) thatL̂ can be represented as follows:

L̂ = Sp(v∗
1 ,v

∗
2 , · · · ,v∗

d),

where
v∗
i = cos θ∗i vi + sin θ∗i ui.

Thus, for any pair of pointsx =
∑d
i=1 aivi ∈ L1 andx̂ =

∑d
i=1 aiv̂i ∈ L2:

dist(x, L̂) =

√

√

√

√

d
∑

i=1

sin2 θ∗i a
2
i and dist(x̂, L̂) =

√

√

√

√

d
∑

i=1

sin2(θi − θ∗i )a
2
i (86)

and

dist(x,L1) = 0 and dist(x̂,L1) =

√

√

√

√

d
∑

i=1

sin2 θia2i . (87)
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Combining (86), (87), the triangle inequality (for “sine vectors” inRd) and the subad-
ditivity of the sine function, we conclude that

dist(x, L̂) + dist(x̂, L̂) ≥

√

√

√

√

d
∑

i=1

(

sin θ∗i + sin (θi − θ∗i )
)2
a2i

≥

√

√

√

√

d
∑

i=1

sin2 θia2i = dist(x̂,L1) + dist(x,L1).

Sincep ≤ 1, this inequality extends to

dist(x, L̂)p + dist(x̂, L̂)p ≥ dist(x̂,L1)
p = dist(x̂,L1)

p + dist(x,L1)
p. (88)

Integrating (88) w.r.t. the uniform distribution we conclude (83) and thus prove the
lemma.

A.5. Proof of (9)

The fact thatEµ1(PL1 (x)PL1(x)
T ) is a scalar matrix follows from the symmetry ofµ1

onL1 ∪ B(0, 1). We compute the underlying scalar,δ∗, as follows. We arbitrarily fix a
vectorv ∈ Rd as well as a(d− 1)-subspacêL1 ⊆ L1 orthogonal tov and observe that

δ∗ = Eµ1

(

(PL1(x)
T v)2

)

= Eµ1

(

dist(x, L̂)2
)

.

We further note that for any0 < r ≤ 1, the set{x ∈ B(0, 1) ∩ L1 : dist(x, L̂) = r}
consists of two(d−1)-dimensional balls of radius

√
1− r2. We consequently compute

the constantδ∗ using the beta functionB and the Gamma functionΓ in the following
way:

δ∗ = Eµ1

(

dist2(x, L̂)
)

=

∫ 1

r=0
r2(1 − r2)

d−1
2 dt

∫ 1

r=0
(1− r2)

d−1
2 dt

=

∫ π
2

θ=0
sin2(θ) cos

d+1
2 (θ) dθ

∫ π
2

θ=0 cos
d+1
2 (θ) dθ

=
B(32 ,

d+1
2 )

B(12 ,
d+1
2 )

=
Γ(32 ) Γ(

d+1
2 ) Γ(d+2

2 )

Γ(12 ) Γ(
d+1
2 ) Γ(d+4

2 )
=

1

d+ 2
.

A.6. Proof of (32)

For simplicity we denoteB =
∑N1

i=1 PL1(xi)PL1(xi)
T . We note that ifmaxt σt (B− δ∗Id) <

η, then
‖Bv− δ∗v‖

‖v‖ < η for all v ∈ Rd \ {0},

and consequently

δ∗ − η <
‖Bv‖
‖v‖ for all v ∈ Rd \ {0},

that is,mint σt(B) > δ∗ − η.
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