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SUMMARY 

This note discusses briefly the definition of yield surface in hypoplasticity in connection 

with the physical notion of yielding. The relation of yielding with the vanishing of the 

material time derivative of the stress tensor and the vanishing of the corotational stress 

rate is investigated. 
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     INTRODUCTION 

This note deals with the connection between the physical notion of yielding and 

the way the yield surface is determined in hypoplasticity. An inspection of the pertinent 

literature shows that the present state of affairs is not completely clear. 

Let us start the discussion with the general hypoplastic equation: 

),( DThT =
o

,                                                                                                        (1) 

where T is the Cauchy stress, 
o

T  is the corotational stress rate, D is the stretching tensor, 

and h is an isotropic positively homogeneous function of degree one in D (see [1] for 

articles treating several aspects of this theory). 

In hypoplasticity one obtains the yield surface equation by searching pairs (T,D) 

that satisfy h(T,D)=0 (see next section ), as is done in hypoelasticity [2]. The first 

elements of these pairs, i.e., the stresses, form the yield surface. In accordance with this 

definition and in view of Eq. (1), researchers working in this field usually say that in 

order to find the yield surface equation one must impose that the corotational stress rate 

be equal to zero (
o

T =0). On the other hand, in conformity with the physical notion of 

yielding, we say that a material yields when it deforms under constant stress; in this 

sense yielding is associated with the vanishing of the material time derivative of T 

( T& =0). This ambiguous situation led Kolymbas and Herle [3] to write: "States at which 

the material deforms without further stress changes (i.e. where plastic flow occurs) are 



called limit states.[...].Referring to the condition 'stress remains constant', one should 

specify whether 0T =&  or 0T =
o

 is meant". 

The objective of this brief note is to clear the matter. With this purpose Eq. (1) 

will be treated as a differential equation in the unknown function T, so the occurrence of 

yielding can be investigated in a time interval rather than at a single instant, as implied 

in the expression "stress remains constant". This is different from the usual approach of 

employing only algebraic means to study yielding. 

The notation adopted here is standard in contemporary continuum mechanics. 

 

YIELDING AND THE YIELD SURFACE 

Consider the set C of all ordered pairs (T, D), with D≠0, such that h(T, D)=0. 

The set of all first elements T of the pairs of tensors in C is the yield surface S. Due to 

the isotropy of h, for any Q∈Orth, (T, D)∈C if and only if (QTQ
T
, QDQ

T
)∈C; and, 

therefore, T∈S if and only if QTQ
T∈S. In addition, since h is positively homogeneous 

of degree one in D, if (T, D)∈C, then (T, λD)∈C, for any real number λ>0. For the 

representation of critical states it is further required that the tensors D present in the 

pairs of the set C are traceless, but this is not relevant for the purposes of this paper. 

We will now discuss the connection between yielding and the definition of S 

given above. Firstly, it is convenient to introduce TWWTTT +−= &
o

 in Eq. (1) to 

obtain: 

TWWTDThT −+= ),(&  ,                                                                                  (2) 

where W is the spin tensor. It is interesting to note in passing that S can be seen as 

formed by equilibrium points of Eq. (2) in certain motions [4], [5].  

The results presented below (propositions A and B) are related to the following 

initial value problem, from now on referred to as problem H: given D:I→Sym, 

W:I→Skw, continuous functions of time t (I is an open interval of real numbers 

containing 0), find the solution T(t) of the differential equation (2), with the initial 

condition T(0)=T0. We assume that the function h has smoothness properties that 

ensure existence and uniqueness of solution of problem H. 

A) Let (T*,D*) belong to C. For any continuously differentiable Q:I→Orth, with 

Q(0)=1 (1 is the second-order identity tensor), consider problem H with 

D(t)=Q(t)D*Q
T
(t), )()()( T ttt QQW &=  and T0=T*. Then the solution of problem H is 



T(t)=Q(t)T*Q
T
(t), and so 0T =)(t

o

 for all t in I. 

The proof is simple; it involves the isotropy of h. 

Thus, to each function Q in (A) there corresponds a motion in which )(t
o

T  is 

permanently zero and therefore T(t) remains on S. In particular, if we choose for Q the 

constant function with value Q(t)=1, the solution of problem H is the constant function 

with value T(t)=T*. This result means that it is possible to deform with zero spin a 

material whose initial stress is on S in such a way that the stress does not change, that is, 

in such a way that the material yields. But, since the motions considered in (A), each 

one produced by a choice of Q, differ from each other simply by a change in observer 

[6], it is reasonable to say that yielding occurs in all of them. 

Note that, as h is positively homogeneous of degree one in D, (A) remains valid 

if we put α(t)D*, with α(t)>0, instead of the constant stretching D*. 

It is important to remark, on the other hand, that, depending on the function h, 

there may be motions in which the stress point remains on S but no yielding occurs. The 

next result is an example of this fact. 

(B) Let (T*,D*)∈C, with T*≠0, and assume that: 1) h is homogeneous of degree one in 

T; 2) there is a non-zero real β and a symmetric tensor D
+ 

such that h(T*,D
+
)=βT* (and 

hence, although T*∈S, (T*,D
+
)∉C). Then the solution of problem H, with D(t)=D

+
, 

W(t)=0 and T0=T*, is T(t)=exp(βt)T*, whose corotational rate, )(t
o

T =βexp(βt)T*, does 

not vanish. But, since h(T(t),D*)=exp(βt)h(T*,D*)=0, T(t)∈S for all t in I. 

The proof is simple too. 

Hypotheses 1 and 2 in (B) are satisfied in many hypoplastic models , e.g., [7], 

[1], [4]. In the CLoE model [8], however, hypothesis 2 is not satisfied. 

We saw in (A) how to produce motions with 0T =)(t
o

. We could now ask: does 

the stress change necessarily as in (A) whenever 0T =)(t
o

 in a certain interval? The 

answer is in the affirmative, since the solution of TWWTT −=& , with T(0)=T0, is 

T(t)=Q(t)T0Q
T
(t), Q(t) being the solution of WQQ =& , with Q(0)=1. This conclusion is 

independent of the constitutive equation. 

 

 

 



FINAL REMARKS 

The intention of this note was to review more precisely some statements about 

yielding. We have seen that, if the stress point is initially on the yield surface S, it is 

possible to deform the material in such a way that 0T =)(t
o

 in a time interval (and so the 

stress remains on S); in particular, if the spin is zero, the material can be deformed at 

constant stress ( 0T =)(t& ). On the other hand, we have also seen that in many 

hypoplastic models the stress point can move on S with 0T ≠)(t
o

 (no yielding). 

The results remain essentially the same in models that include the void ratio e as 

an argument of h (e.g., [9], [10]).  During yielding, as trD=0 (critical states), e remains 

constant. 

Finally, it is interesting to observe that proposition A and the conclusions 

associated to it apply to hypoelasticity as well. Proposition B may apply to particular 

hypoelastic models. 
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