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Abstract

The supersymmetric standard model (SSM) appears to be firmly grounded in superspace.

For example, it would be natural to assume that all the physically important composite

operators can be made by combining superfields and superspace derivatives. But even for

the simplest possible, free, massless and unbroken SUSY theory in 3+1 dimensions, this is

not true.

This paper shows that there is a large set of physically important composite operators in the

SSM that require explicit factors of the Grassmann odd ‘θ’ parameters of superspace. These

explicitly break superspace invariance. These composite operators will be called ‘Outfields’

here, because they are intrinsically ‘outside’ of superspace. It is not possible to write the

Outfields using only superfields and superspace derivatives.

These Outfields are present, and physically important, in all chiral SUSY theories in 3+1
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dimensions. However they are very well hidden. They arise from a tricky mechanism involv-

ing the field equations. The superspace violating part of the SUSY variation of an Outfield

is proportional to the field equations. The field equations are ‘equivalent to zero’, but they

are not equal to zero, and that is why the Outfields have gone unnoticed for a long time.

This ‘field equation’ property of the Outfields means that the Outfields can be found by

computing the local BRST cohomology of chiral SUSY in 3+1 dimensions. An Outfield then

(typically) consists of the sum of two terms. The first term is a field part which violates

the symmetry. But the violation of the symmetry is very special: it is proportional to the

field equations. The second term contains a Zinn source times a ghost. The variation of the

second term then cancels the variation of the first term, so that the combination is invariant

under the BRST operator.

This explicit breaking of the initial symmetry, linked to a dependence on the Zinn sources

through the field equations, is a feature that is quite rare in the BRST cohomology of non-

SUSY theories such as gauge theories and gravity. However, for the rigid chiral SUSY theory

in 3+1 dimensions, it is an essential ingredient of the cohomology.

In this paper, the masses are assumed to arise from the spontaneous breaking of internal

symmetry with a Vacuum Expectation Value (VEV) for some scalar field. In accord with the

usual case for most chiral actions, it is assumed that SUSY itself is not spontaneously broken

by this VEV. So the present results can be utilized, for example, for the supersymmetric

standard model (SSM), where internal symmetry is spontaneously broken from SU(2)×U(1)

down to U(1), although SUSY itself is not spontaneously broken.

The calculation of the BRST cohomology space for these theories is performed in this paper

using a spectral sequence analysis, starting with the free massless theory, and then adding

interactions, and then masses. There are nine nested differentials, with ten nested cohomol-

ogy spaces. The first three differentials relate to the free massless theory, and they establish

the basic Outfields. The next two differentials come from the coupling terms. They give

rise to many constraint equations, and the result is that SUSY picks out various physical

composite operators in remarkable ways that depend crucially on the details of the particle

content and the couplings. The last four differentials come from the mass terms, and these

impose further constraints, but they also give rise to new terms because the mass parameter

is now present.

The constraints give rise to a remarkable contrast between the cohomology of SUSY and the

cohomology of gauge theories. The cohomology of gauge theories and SUSY both start with

the cohomology of the free massless theories. Because the gauge theory cohomology does not

involve the Zinn sources, the constraints that arise for the interacting or massive theories

relate to the gauged Lie algebra that one starts with. However, for the SUSY Outfields, the

constraints come from the symmetries of the superpotential alone, not the whole action. The

most interesting solutions arise when the relevant symmetries do not extend to the whole

action. These have nothing to do with the usual gauge-type symmetries of the action. These
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constraints give rise to a new kind of mingling between the interactions and SUSY itself.

These general cohomology results are illustrated with some examples from a special version

of the SSM, which we call the CSSM. The CSSM requires right handed neutrinos and a

Higgs singlet in addition to the usual SSM. One can see that the CSSM appears to have a

raison d′être that is related to these SUSY constraints. For the Leptons, there is one SU(2)

doublet and two SU(2) singlets. For the Higgs, the field content is reversed. There are two

Higgs SU(2) doublets and one Higgs singlet. This structure gives rise to simple Outfields in

the cohomology space for each of the Leptons. The Quarks work the same way.

The symmetry that creates the Outfields is softly broken by the development of the VEV

when spontaneous gauge symmetry breaking occurs. This causes the Quark and Lepton

Outfields to mix with the corresponding elementary Quark and Lepton superfields. This

means that these Outfields leave the cohomology space when the VEV turns on.

1. Introduction: Composite Operators and BRST Cohomology

The composite operators of a quantum field theory contain a great deal of information

about the theory. A list of the physically important composite operators would be expected

to satisfy the following guidelines:

1. Physically important composite operators should be invariant, or covariant, under the

symmetries of the action, and

2. Two physically important composite operators that differ by the field equations should

be equivalent, because the field equations should be equivalent to zero, in some sense.

At the start, it is not obvious how to put these two properties together in a sensible way.

Fortunately, it has been discovered [1,30,25] that the set of physically important composite

operators can be naturally organized by the construction of a nilpotent BRST operator.

Then the BRST cohomology of the theory yields a complete and unique list of the local

operators which incorporate the invariance, or the covariance, modulo the field equations.

All quantum field theories have invariances, including invariance under the transformations

of special relativity. For any given choice of such invariances, one can construct the related

nilpotent BRST operator. The BRST operator always has two parts, which match the

guidelines above:

1. A symmetry variation part, and

2. A field equation part.
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1.1. A Minimal BRST operator can point the way to New Directions in a

Theory

When a theory has a set of symmetries, it is frequently possible to write down a number

of different BRST operators for it. Some have more, and some fewer, of the total set of

symmetries. For example, one might decide not to include the Lorentz transformations in a

given BRST operator, even though the theory has Lorentz invariance. Such a BRST operator

for a theory would typically yield a cohomology space which contains Lorentz covariant

operators, whereas inclusion of Lorentz transformations in the BRST operator would be

expected to restrict the cohomology space to operators which are Lorentz invariant.

In this way, a minimal BRST operator which has a minimal subset of the invariances of the

starting action, is likely to result in a cohomology space with operators which are covariant,

rather than invariant, under the symmetries that are not included in the BRST operator.

The resulting cohomology space is likely to be larger, and more interesting, than the more

restricted cohomology space that would result from a BRST operator which incorporates all

possible symmetries.

For this reason, the BRST operator examined in the present paper is quite minimal. Al-

though the symmetries of interest do include invariance under some gauge group, and under

Lorentz transformations, we do not include the gauge group, or the Lorentz transformations,

in the BRST operator whose cohomology we will examine here. The result is that we find

a host of ‘covariant’ composite operators in the cohomology space. If we had imposed in-

variance under Lorentz transformations, or an internal Lie algebra, these covariant objects

in the cohomology space would have been excluded.

So, in this paper, we work out the BRST cohomology for the simplest possible BRST operator

for chiral rigid SUSY in 3+1 dimensions. The result is fairly complicated, and we find objects

which are covariant under the Lorentz group (they have spinor indices) and under the internal

Lie algebra (they have internal indices).

The calculation of the cohomology is accomplished using the mathematical machinery of

spectral sequences. This very detailed task constitutes the bulk of the technical part of this

paper, and it is mostly contained in the Appendices. The main body of the paper explains

the results with as little technical detail as possible. The results do suggest possible further

developments, but in this paper, which is already very long, we restrict the analysis to the

cohomology, leaving interpretation and related issues for other papers.

1.2. Plan of this Paper

This is a long paper, and it is hard to make it much shorter, because there are ten spaces

in the spectral sequence, and it makes no sense to cut related matters up into different

papers. Even at this length, the paper only touches on many subjects that require a fuller
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treatment. The hope is that this paper introduces techniques of general applicability. The

paper is divided into eight sections and nine Appendices.

Section 1 introduces the paper with remarks about the relation between composite operators

and BRST cohomology, and then introduces the Sections and Appendices.

Section 2 introduces BRST cohomology in a simple general way, and explains how the field

equations, through the Zinn sources, can lead to a violation of the initial symmetry in certain

cases.

In Section 3, we write down the BRST operator and action for the SUSY theory. There are

two ways to do this (integrating the auxiliary or not), and we use them both as a check on

each other.

In Section 4, we write down the Outfield solutions for chiral SUSY, and compare them

with results known from past work. These Outfields are defined by equation (58), and they

constitute one of the major results of this paper. To understand the composite Outfields,

we need to use the fundamental Outfields in subsection 4.2.

Section 5 summarizes the result of the spectral sequence calculation in a summary way. This

leads to the Appendices which contain the details of the spectral sequence machinery.

Section 6 contains a discussion of the mapping from the spectral sequence to the Cohomology

space, and also has a summary of the space E∞ and a detailed summary of the spectral

sequence space for the free massless case.

Section 7 contains some specific examples of solutions of the constraint equations for a specific

version of the SSM, which we call the CSSM.

Section 8 is the conclusion. It comments on the examples from the SSM which are worked

out in sections 6 and 7. The paper concludes with a discussion of possible extensions of the

results.

Appendix A reviews some preliminary matters, including Counting operators.

Appendix B is a treatment of the Differentials d0 and the Space E1 for the Massless Free

Chiral SUSY Theory.

Appendix C is a treatment of the Differentials d1 and the Space E2 for the Massless Free

Chiral SUSY Theory.

Appendix D is a treatment of the Differentials d2 and the Space E3 for the Massless Free

Chiral SUSY Theory.

Appendix E discusses the generation and solution of the separated irregular equations for

Chiral SUSY Theory.

Appendix F summarizes what is known and not known about the cohomology space of the

free massless theory.
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Appendix G is a treatment of the Differentials dr, r = 3, 4 and Spaces Er, r = 4, 5 for the

Interacting Massless Chiral SUSY Theory

Appendix H is a treatment of the Differentials dr, r = 5, 6, 7, 8 and Spaces Er, r = 6, 7, 8, 9

for the Massive Interacting Chiral SUSY Theory.

Appendix I summarizes the situation relating to the collapse of the three spectral sequences

for the free massless, interacting and massive cases considered here.

Finally, there is a Table of Contents.

2. A Simple Introduction to BRST Cohomology with Emphasis

on Three Kinds of Cohomology Terms

In this section we shall review the BRST formalism [1,25] in a simple general way. Our

purpose here is to indicate how the equations of motion fit into the BRST formalism through

the Zinn sources, and how this can result in a violation of the original symmetry. This

explanation is very important for the SUSY theory that we will look at next.

2.1. A Simple Introduction to the BRST Operator

Any quantum field theory that possesses some kind of invariance can be analyzed using

BRST cohomology. Here is how this works in the simplest case. Suppose we have an action

depending on some bosonic fields Ai:

AInvariant =

∫
d4x LInvariant (1)

where LInvariant = LInvariant[A] is a local Lagrangian. Suppose that the action is invariant

under some transformation

δField VariationAInvariant =

∫
d4x {δField VariationLInvariant} = 0 (2)

where δField Variation acts on the fields locally:

Ai → Ai + ǫδField VariationA
i (3)

We can always arrange for the parameter ǫ to be Grassmann odd, and for the transformation

δField Variation to be Grassmann odd and nilpotent[1,25]:

δ2Field Variation = 0 (4)

The procedure now is to add the following new terms to the action:

AZinn =

∫
d4x

{
ΛiδField VariationA

i
}

(5)
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Here Λi is a Grassmann odd ‘Zinn Justin source’ coupled [30] to the variation in (3). So now

we have a new action:

ATotal = AInvariant +AZinn (6)

Then the following identity follows from (2) for this new action:

∫
d4x

{
δATotal

δAi
δATotal

δΛi

}
= 0 (7)

It can be shown using the Feynman path integral formulation of the field theory that (7) is

the lowest term of the following identity:

∫
d4x

{
δG

δAi
δG

δΛi

}
= 0 (8)

In the above, G[A,Λ] is the one particle irreducible generating functional for the full quantum

field theory. It has a loop expansion in powers of ~:

G[A,Λ] = ATotal + ~G1 + ~
2G2 · · · (9)

The one loop2 functional G1 is governed by the cohomology3 of the BRST operator δBRST,

which is defined by the ‘square root’ of (7):

δBRST =

∫
d4x

{
δATotal

δAi
δ

δΛi
+
δATotal

δΛi

δ

δAi

}
(10)

As a result of (7), the BRS operator in (10) is nilpotent

δ2BRST = 0 (11)

and this also carries through to more complicated4 examples.

2.2. Three Kinds of Terms in δBRST and the definition of the BRST

cohomology space H

Given our assumption that δBRST has the simple form (10), we can write

δBRST = δField Variation + δZinn Variation + δField Equation (12)

2Higher loops Gn are related to δBRST also through ‘canonical transformations’ [5].
3The cohomology of δBRST is defined below in equation (20)
4 If there are Grassmann odd fermions ψi

α as well as the bosons Ai, as happens in SUSY, the above carries

through with appropriate changes. All the formulae get to be twice as big. Frequently one also needs some

Zinn sources for variation of the ghosts to complete the nilpotence, which again increases the formulae in

size. For this introductory discussion we shall imagine that we are dealing with the simplest case where the

identity is simply (7). It is easy, but cumbersome, to give this explanation for the full SUSY theory below,

but that interferes with the simplicity of the exposition of this part.
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where

δField Variation =

∫
d4x

δAZinn

δΛi

δ

δAi
(13)

δZinn Variation =

∫
d4x

δAZinn

δAi
δ

δΛi
(14)

δField Equation =

∫
d4x

δAInvariant

δAi
δ

δΛi
(15)

The two invariance transformations can be put together to define:

δTotal Variation = δField Variation + δZinn Variation (16)

and then we have

δBRST = δTotal Variation + δField Equation (17)

The above division of δBRST in (17) is quite general, and it applies to all kinds of δBRST,

including the one for SUSY5.

The local BRST cohomology space of δBRST is defined by

H =
ker δBRST

Im δBRST
(20)

in the space P of local integrated polynomials in the fields Ai , sources Λi, the ‘ghost’

parameters in δField Variation and the derivative operator. In the above we define

ker δBRST = {P such that δBRSTP = 0} (21)

Im δBRST = {P such that P = δBRSTP
′ for some local P ′} (22)

The space P is the space of terms which are of the form

P =

∫
d4x PLocal (23)

where PLocal is a local polynomial in the fields, Zinns, ghosts and their derivatives. So the

Lagrangian in (1) is an example of PLocal and the Actions in (1) and (5) are examples of P.

The space H is a factor space, which means that for each class of elements {Pi} which

satisfy δBRSTPi = 0, we choose one representative P1 to be in H. Two elements P1 and P2

are defined to be in the same class if there exists a P3 such that:

P1 = P2 + δBRSTP3 (24)

5In general we might have the following instead of the form (12):

δBRST = δField Variation + δZinn Variation + δOther Variations + δField Equation (18)

together with

δTotal Variation = δField Variation + δZinn Variation + δOther Variations (19)

instead of (16). For example, there might be ghosts which transform, and these could form part of

δOther Variations. For our purposes here we do not need to use this more general form.
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2.3. Three Kinds of Possible Terms in the Cohomology

There are three kinds of terms P that can arise in the cohomology. These three kinds of

terms depend on the division of the equations into the three parts in (12). This division is

the same when one includes the complications of fermions properly.

1. Invariant Terms of Type I that do not use the Zinn sources: The simplest

situation occurs when we have invariants I which satisfy:

δField VariationI = 0 (25)

Since I is assumed to be in the cohomology space, it also satisfies:

δBRSTI = 0 (26)

Hence, because of (12), it must also satisfy

{δZinn Variation + δField Equation} I = 0 (27)

This equation can be satisfied in a trivial way by having I independent of Λi and any

other quantities than the fields, and then we have:

δZinn VariationI = 0 (28)

and

δField EquationI = 0 (29)

2. Non-invariant Terms of Type N that use the field equations:

Suppose that we have a term which is not invariant under the field variation operator:

δField VariationN 6= 0. (30)

Since N is assumed to be in the cohomology space, it satisfies:

δBRSTN = 0, (31)

This N cannot be independent of Λi. Using (12), we see that it must also satisfy

δField VariationN = − (δZinn Variation + δField Equation)N 6= 0 (32)

The most common way for this to happen is

δTotal VariationN = (δField Variation + δZinn Variation)N

= −δField EquationN 6= 0 (33)
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3. Non-invariant Terms of Type N that do not use the field equations:

It is also possible for an non-invariant term in the cohomology space that satisfies (30)

and (32), to satisfy:

δTotal VariationN = δField EquationN = 0, (34)

instead of (33).

It might appear that the above distinctions are not real, because the cohomology is defined

only up to classes, as mentioned above. One can often add a boundary term δBRSTB to an

invariant term I that makes it look like a non-invariant term N . However the distinction is

real, because the inverse statement is not always true:

1. Invariant Terms of Type I that do not use the Zinn sources: If it is possible

to find a boundary term δBRSTB that can be added to a given non-invariant term N

to make it into an invariant I, then the relevant term in the cohomology is a genuine

invariant term I. This is the usual case for gauge theories or gravity where SUSY is

not present.

2. Non-invariant Terms of Type N that use the field equations: If it is impossible

to find any boundary δBRSTB that can be added to a given non-invariant term N

(a) to make it into an invariant I,

(b) or a non-invariant term N satisfying equation (34),

then the relevant term in the cohomology is a genuine non-invariant term N of the

type of the type that uses the field equations. These satisfy (33). SUSY has many

examples of this.

3. Non-invariant Terms of Type N that do not use the field equations: If it is

(a) impossible to find a boundary term δBRSTB that can be added to a given non-

invariant term N to make it into an invariant I, but

(b) possible to find a boundary term δBRSTB that can be added to a given non-

invariant term N to make it into a non-invariant term N satisfying the equation

(34),

then it is a genuine non-invariant term N of the type that does not use the field

equations. This happens in several examples for SUSY, for operators that have ghost

charge NGhost = −1.

We will see that SUSY has all three of these kinds of terms. The second type of term,

the Non-invariant Terms of Type N that use the field equations, are the ones that

generate the Outfields. These non-invariant terms N have explicit factors of the parameters

θ, θ of superspace in them.
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3. The Action and the δBRST operators for Chiral SUSY with

spontaneous breaking of internal symmetry

There are two possible δBRST operators for chiral SUSY in 3+1 dimensions, depending on

whether one functionally integrates the auxiliary, or not.

The formulation of δBRST where the auxiliary is not integrated we will call δSup (short

for δSuperfield). This formulation where the auxiliary is not integrated can be written in the

usual superfield formulation, but we will need to write it out in components to solve the

cohomology. Then we can write the result again in terms of superfields, except that we

will find there is some tricky business in doing that, so that manifest supersymmetry is not

present for the cohomology.

The formulation of δBRST where the auxiliary is integrated we will call δPhys (short for

δPhysical). This formulation uses only the physical scalar and spinor particles. However, the

superfields are lost at the beginning, because they require auxiliary fields. We will see that

the cohomology of δPhys generates its own set of objects that behave much like superfields.

But again manifest supersymmetry is not present for the cohomology.

We will find that the two versions δPhys and δSup have isomophic cohomology spaces:

HSup ≈ HPhys (35)

This is easy to prove in fact, because they yield exactly the same spectral sequence Er, and

so, as we shall explain later,

E∞ Sup = E∞ Phys ≈ HSup ≈ HPhys (36)

Now we shall set out the two operators and the corresponding actions.

3.1. The Superfield Formulation

3.1.1. Superfield Version of the Superfield Formulation

We start with the superfield approach [26,14,28], which has the following action:

ASuperspace =

∫
d4x d4θ

{
ÂiÂi

}

+

∫
d4x d2θ

{
1

3
gijkÂ

iÂjÂk +m2gkÂ
k + Λ̂kδSSÂ

k

}

+

∫
d4x d2θ

{
1

3
gijkÂiÂjÂk +m2gkÂk + Λ̂

k

δSSÂk

}
+ Zαβ̇C

αC
β̇

(37)
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The Matter superfields have the component forms:

Âi = Ai + θαψiα +
1

2
θγθγF

i (38)

and the Zinn-Justin superfields have the component forms:

Λ̂i = Λi + θαYiα +
1

2
θγθγΓi (39)

Here the supersymmety variation δSSÂk = (CQ + CQ + ξ∂)Âk. Using standard methods6

we can derive the BRST operator in superspace form:

δSup =

∫
d4x d2θ

{
(CQ+ CQ + ξ∂)Λ̂i +D

2
Âi + gijkÂ

jÂk +m2gk

} δ

δΛ̂i

+

∫
d4x d2θ(CQ+ CQ + ξ∂)Âi

δ

δÂi
+ ∗ − CαC

β̇
ξ
†

αβ̇
(40)

The action and the BRST operator δSup satisfy:

δ2Sup = δSupASuperspace = 0 (41)

In this paper, it will be assumed [23] that there is a vacuum expectation value

< Ai >= mvi (42)

which satisfies:

gijkv
jvk + gi = 0 (43)

Then the shift:

Ai → mvi + Ai (44)

serves to remove the m2gkÂ
k terms from the action and the operator δSup.

3.1.2. Component Version of the Superfield Formulation

After this shift, the action can be written in components as:

ASuperspace =

∫
d4x

{
F iF i + gijkF

i
(
2mvjAk + AjAk

)

+gijkF i

(
2mvjAk + AjAk

)

+gijkψ
iαψjα

(
mvk + Ak

)
+ gijkψ

α̇

i ψjα̇
(
mvk + Ak

)

6We drop a term
{∫

d4xd2θΛ̂i∂αβ̇Â
i
}

∂
∂Z

αβ̇

+ ∗ in this operator, and its analogues. This causes no

problems.
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−ψiα∂
αβ̇ψiβ̇ +

1

2
∂αβ̇A

i∂αβ̇Ak + Λi∂αβ̇ψ
iαC

β̇
+ Λ

i
∂αβ̇ψiβ̇C

α

+Γiψ
i
βC

β + Γ
i
ψiβ̇C

β̇
+ Y α

i

(
∂αβ̇A

jC
β̇
+ F iCα

)
+ Y

iβ̇ (
∂αβ̇AjC

α + F iC β̇

)}
+ Zαβ̇C

αC
β̇

(45)

The operator in components, using the language above in subsection (2.3) is:

δSup = δField Variation + δOther Variation + δZinn Variation + δField Equations (46)

where

δField Variation =

∫
d4x ψiβC

β δ

δAi
+

∫
d4x

{
∂αβ̇A

iC
β̇
+ CαF

i
} δ

δψiα
+

∫
d4x ∂αβ̇ψ

iαC
β̇ δ

δF i

(47)

+ξαβ̇∂
αβ̇ (48)

and

δOther Variation = −CαC
β̇
ξ
†

αβ̇
(49)

δZinn Variation + δField Equations

=

∫
d4x

{
−
1

2
∂αβ̇∂

αβ̇Ai − ∂αβ̇Y
α
i C

β̇
+ gijk

[
2AjF k − ψjαψkα

]
+ 2mgijkv

jF k

}
δ

δΓi

+

∫
d4x

(
−∂αβ̇ψiβ̇ + ∂αβ̇ΛiC

β̇
+ 2gijkψ

jαAk + 2mgijkψ
jαvk − ΓiC

α
) δ

δY α
i

+ ∗

+

∫
d4x

(
F i −Gi

) δ

δΛi
+ ∗ (50)

where we use the abbreviation:

Gi = −
(
gijkA

jAk + 2mgijkv
jAk + Y

β
i Cβ

)
. (51)

It would be natural to add rigid internal symmetry transformations, or local internal sym-

metry transformations coupled to Yang-Mills supersymmetry, to the above. Those additions

will not be considered in this paper because we already have enough complexity for the time

being. Also it should be noted that one can miss interesting developments if one is too

restrictive in choosing the δBRST that one is looking at.

3.2. The Physical Formulation

3.2.1. Integration of the auxiliary fields

The auxiliary fields in a supersymmetric theory are not physical. They appear in linear and

quadratic terms in the action. They do not propagate, because there are no derivatives in
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the quadratic terms
∫
d4xF iF i containing them in the action. As a result, it is possible to

integrate them out of the theory in an exact non-perturbative way, by simply completing the

square, performing a shift F i+Gi ⇒ F i in the F i variable, and then performing the Gaussian

integration of F i in the Feynman path integral. The F dependent terms disappear into a

multiplicative constant and we are left with a new quadratic term made of the propagating

fields (and sources). In the above case this new quadratic term is
∫
d4x

{(
F i +Gi

) (
F i +Gi

)
−
(
Gi
) (
Gi

)}
⇒ −

∫
d4xGiGi (52)

where Gi is defined by (55). This new term is the square of the term that multiplied the linear

term in the auxiliary. When this integration is done, supersymmetry ceases to be manifest.

For example, superfields like (38) cease to be applicable, because they use the auxiliary field

F i. The supersymmetry is still in the theory however, and one way to understand it is by

constructing the nilpotent BRST operator δPhys below in (54), and then solving for its local

BRST cohomology.

Since for this case we do not have the auxiliary fields in the generating functionals, we do

not include the source Λi for the variation of the auxiliary either.

3.2.2. Component Version of the Physical Formulation

This results in the following action

APhys

=

∫
d4x

{
−Gi Gi − ψ

i
α∂

αβ̇ψiβ̇ − gijkψ
iαψjα

(
mvk + Ak

)
− gijkψ

α̇

i ψjα̇
(
mvk + Ak

)

+
1

2
∂αβ̇A

i∂αβ̇Ak + Γiψ
i
βc
β + Γ

i
ψiβ̇C

β̇
+Y α

i ∂αβ̇A
jC

β̇
+ Y

iβ̇
∂αβ̇AjC

α
}
+ CαC

β̇
Zαβ̇ (53)

and the derived operator is

δPhys =

∫
d4x ψiβC

β δ

δAi
+

∫
d4x

{
∂αβ̇A

iC
β̇
+ CαG

i
} δ

δψiα
+

∫
d4x

{
−
1

2
∂αβ̇∂

αβ̇Ai − ∂αβ̇Y
α
i C

β̇
+ gijk

[
2AjGk − ψjαψkα

]
+ 2mgijkv

jGk

}
δ

δΓi

+

∫
d4x

(
−∂αβ̇ψiβ̇ + 2gijkψ

jαAk + 2mgijkψ
jαvk − ΓiC

α
) δ

δY α
i

+∗−CαC
β̇
ξ
†

αβ̇
+ξαβ̇∂αβ̇ (54)

The composite field Gi is the same as the value of the equation of motion above in (51), with

complex conjugate:

Gi = −
(
gijkAjAk + 2mgijkAjvk + Y

iβ̇
C β̇

)
. (55)

and we have

δ2Phys = δPhysAPhys = 0 (56)
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4. Quick Summary of the Old and New Results for the

Cohomology Space H for Chiral SUSY in 3+1 Dimensions

4.1. Some Old Results and Some New Results

In other papers [6,11,12], it was shown that the BRS cohomology of the chiral superfield,

without the Zinn terms, contained terms7 that look like

∫
d4xd2θ R̂(α1···αp) =

∫
d4x d2θT (j1···jm) Âj1 · · · ÂjmCα1

· · ·Cαp
∈ H (57)

The antichiral superspace integral in (57) just picks out supersymmetric invariant F type

terms. In this paper, we find that the generalization8 of the result (57) to the case where

the Zinn sources are included takes the very similar form:
∫
d4xd2θ R̂(α1···αn+p) =

∫
d4xd2θ T

(j1···jm)
[i1···in]

Âj1 · · · Âjmψ̂
i1
(α1
· · · ψ̂inαn

Cαn+1
· · ·Cαn+p) (58)

The only difference from (57) is the addition of the terms ψ̂i1(α1
· · · ψ̂inαn

in the middle of (58).

These are the terms which make (58) into an Outfield, because they contain explicit factors

of θα. These are examples of the Non-invariant Terms of Type N that use the field

equations referred to in section (2.3). This is one of the fundamental results of the present

paper. It is established by using spectral sequences, as will be explained below.

Our first task will be to explain what is meant by the ψ̂iα in (58). These are antichiral

pseudosuperfields, and sometimes we call them dotspinors or fundamental Outfields too.

They will be explained in subsection 4.2. The expression inside the integral in (58) transforms

under the appropriate δBRST like an antichiral superfield:

δPhysR̂(α1···αn+p) = (CQ+ CQ+ ξ∂)R̂(α1···αn+p) (59)

DαR̂(α1···αn+p) = 0 (60)

The superspace integral in (58) just picks out pseudosupersymmetric invariant F type terms.

The highest component transforms as a total derivative, and the integral of that highest

component generates a class of the integrated cohomology space H.
∫
d4x d2θ R̂(α1···αn+p) ≡

∫
d4x

(
D

2
R̂(α1···αn+p)

)
|
∈ H (61)

The ghost number of these terms in the action ranges from zero to positive infinity. The

complex conjugate terms are also in H for both (57) and (58).

7There are also terms with derivatives described in those papers, and the spin must be maximized, as

shown in those papers. In addition there are non-chiral terms that we will discuss briefly later.
8Again there are also terms with derivatives, and the spin must be maximized, as proved below.
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The general form (58) is only true for the free massless theory. For the case where there are

interactions, there are constraints which remove some of the terms in (58), or else combine

them together. When masses are added in addition, there are new terms here proportional

to masses, and there are new constraints too. The details of the constraints will be derived

using the spectral sequence.

4.2. The Fundamental Pseudosuperfields

In the next subsubsections we explain what is meant by these expressions when used in (58).

It should be mentioned that this is one of the tricky steps when using the spectral sequence.

The forms given in the next subsections are not easy to find, and the best way to find them

seems to be to simply guess what they have to be, given the information that one has about

them from the spectral sequence, which will be explained below.

4.2.1. Fundamental Expressions in the superfield approach, with δSup

In the superfield approach, the fundamental expressions to be used in (58), for construction

of H are made from the superfields that we start with:

Âi −→ ÂiSup = Âi (62)

ψ̂ iα̇ −→ ψ̂Sup iα̇ = Λ̂iC α̇ +D
2
(
Âiθα̇

)
≡ Λ̂iC α̇ +

(
D

2
Âi

)
θα̇ + 2Dα̇Âi (63)

Both of these are chiral:

Dβ̇Â
i = 0 (64)

Dβ̇ψ̂Sup iα̇ = 0 (65)

The first expression Âi is the usual superfield. The second pseudosuperfield (63) is new. It

is constructed out of the Zinn field and a rather strange combination of the chiral projector

on Âi with an explicit factor of the superspace coordinate θα̇. It is natural to wonder why an

explicit factor of θα̇ arises here. This happens because the combination of the variation of

Λ̂i, which brings in the equation of motion term D
2
Âi is accompanied by an explicit factor of

the ghost Cα̇, and this gets compensated by the factor of θα̇, as we shall see in detail below.

It is remarkable however that the cohomology is giving rise to these explicit factors of θα̇,

because they do remove the manifest superspace invariance of the theory, even in this ap-

proach that strives to keep the superspace invariance by keeping the superfields, and not

integrating the auxiliary field. Of course, this explicit superspace breaking does not affect

the action that we started with, because these objects ψ̂Sup iα̇ do not occur in the action.

That raises a question of course–can we put them into a new action of some kind? That

question will be dealt with in another paper.
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The transformations induced by δSup are summarized9 by the following equations:

δSupÂ
i
Sup(x) = δSSÂ

i
Sup(x) (66)

δSupψ̂Sup iα̇(x) = δSSψ̂Sup iα̇(x) (67)

The latter equation is easy to verify explicitly, and this is important. One gets

δSupψ̂Sup iα̇(x) = (CQ+ CQ+ ξ∂)Λ̂iC α̇ +D
2
ÂiC α̇ +D

2
{[

(CQ + CQ + ξ∂)Âi

]
θα̇

}

= (CQ+ CQ+ ξ∂)Λ̂iC α̇ +D
2
ÂiC α̇ +D

2
{
(CQ+ CQ + ξ∂)

(
Âiθα̇

)
− ÂiC α̇

}

= (CQ+ CQ+ ξ∂)
{
Λ̂iCα̇ +D

2
(
Âiθα̇

)}
= (CQ + CQ+ ξ∂)ψ̂Sup iα̇(x) (68)

The chiral derivatives Dα and Dα̇ both anticommute with both the Q and Q superspace

translations. This property is used in going from D
2
(CQ+CQ+ ξ∂) to (CQ+CQ+ ξ∂)D

2

in the above derivation (68). So this form is a simple example of a Non-invariant Term

of Type N that uses the field equations referred to in section (2.3). It generates the

others by multiplication.

4.2.2. Superspace translation operator

We use the superspace translation operator in the previous section. It is

δSS = CαQα + C
α̇
Qα̇ + ξαα̇∂αα̇ (69)

The supertranslations are:

Qα =
∂

∂θα
−

1

2
∂αβ̇θ

β̇
, Qα̇ =

∂

∂θ
α̇
−

1

2
∂βα̇θ

β (70)

The chiral derivatives in this notation are:

Dα =
∂

∂θα
+

1

2
∂αβ̇θ

β̇
, Dα̇ =

∂

∂θ
α̇
+

1

2
∂βα̇θ

β (71)

The relations (66) and (67) mean that the effect of δSup on either of these particular combi-

nations is the same as the effect of the superspace operator δSS. Of course ÂiSup(x) here is

simply a superfield. But ψ̂Sup iα̇(x) is not a superfield in the conventional sense, though it

acts like one for some purposes.

9The equation (67) is valid only for the free massless theory. The more general case is a little more

complicated. See equation (83).

17



4.2.3. Fundamental Pseudosuperfields in the physical approach, with δPhys

In the physical approach, the fundamental pseudosuperfields for construction of H are made

from:

Âi(x) −→ ÂiPhys(x) (72)

ψ̂iα̇(x) −→ ψ̂Phys iα̇(x) (73)

As in the superfield approach, both of these are chiral:

Dβ̇Â
i
Phys(x) = 0 (74)

Dβ̇ψ̂Phys iα̇(x) = 0 (75)

Recall that in the physical approach, both the auxiliary F i and the Zinn source for its

variation Λi are gone. However the theory constructs new superfields out of the remaining

fields and Zinns as follows:

The first is the Physical chiral scalar pseudosuperfield. It has the form:

ÂiPhys(x) = Ai(y) + θαψiα(y) +
1

2
θγθγG

i(x) (76)

where the translated spacetime variable is yαβ̇ = xαβ̇ +
1
2
θαθβ̇ . The only difference between

this and the superfield that appears in the superfield approach is the replacement of Gi → F i:

Âi(x) = Ai(y) + θαψiα(y) +
1

2
θγθγF

i(x) (77)

The second is the Physical chiral dotted spinor pseudosuperfield:

ψ̂Phys iα̇(x) = ψiα̇(y) + θβ∂βα̇Ai(y) + θβYiβ(y)Cα̇ −
1

2
θγθγΓi(x)C α̇ (78)

This should be compared to the related but rather different superfield that appears in the

superfield approach in equation (63):

ψ̂Sup iα̇ = Λ̂iC α̇ +D
2
(
Âiθα̇

)
(79)

=

{
Λi(y) + θβYiβ(y)−

1

2
θγθγΓi(x)

}
C α̇ +D

2
(
Âiθα̇

)
(80)

The expressions (78) and (80) perform the same role for the two different formulations with

δPhys and δSup, but they are quite different in appearance because the two formulations are

related in a complicated way.
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The transformations induced by δPhys are summarized10 by the following equations:

δPhysÂ
i
Phys(x) = δSSÂ

i
Phys(x) (81)

δPhysψ̂Phys iα̇(x) = δSSψ̂Phys iα̇(x) (82)

where the superspace operator is δSS = CαQα + C
α̇
Qα̇ + ξαα̇∂αα̇ with the usual definitions

above in subsubsection 4.2.1. These relations mean that the effect of δPhys on either of these

particular combinations is the same as the effect of the superspace operator δSS. So they act

like superfields for some purposes.

It is not so obvious in this notation that the superspace symmetry is being violated, since

we have already lost superspace by integrating the auxiliary field. This formulation does not

seem so useful as the superspace formulation, but it does help to confirm the results.

4.3. Interactions and Masses in the Chiral SUSY Theory

In this subsection we want to briefly discuss what happens when we go beyond the free

massless case to the case where the theory is interacting and massive.

The following formulae can be derived from the above forms in subsection 4.2, and they are

useful for writing down the transformation of the full form of the Outfields when there are

masses and interactions in the theory:

1. In general, the transformation of ψ̂Sup iα̇(x) under the action of δPhys is:

δSupψ̂Sup iα̇(x) = δSSψ̂Sup iα̇(x)− gijkÂ
j
SupÂ

k
SupC α̇ − 2mgijkv

jÂkSupC α̇ (83)

This is quite easy to see from the transformation of Λ̂i and the form of ψ̂Sup iα̇(x).

2. In general, the transformation of ψ̂Phys iα̇(x) under the action of δPhys is:

δPhysψ̂Phys iα̇(x) = δSSψ̂Phys iα̇(x)− gijkÂ
j
PhysÂ

k
PhysC α̇ − 2mgijkv

jÂkPhysC α̇ (84)

Deriving this is not so simple, and requires some work.

3. These transformations make it clear that the above expression (58), for construction of

H will not yield objects that transform simply as pseudosuperfields for the interacting

or massive cases. The extra terms in (83) and (84) are the origin of constraints that

we will analyze later.

10The equation (82) is valid only for the free massless theory. The more general case is a little more

complicated. See equation (84).

19



4. The necessary restrictions to accomplish that are the subject of the next sections.

These restrictions will intertwine the internal symmetry with the supersymmetry to

yield physically interesting restrictions, which show up in the SSM or the CSSM for

example.

5. Introduction to the Spectral Sequence for Chiral SUSY in

3+1 Dimensions

5.1. Why do we use the Spectral Sequence Method?

In section 4, we recorded some results for the old theory without Zinns and for the new

theory with Zinns. We explained how to construct a certain sector of the cohomology space

using the fundamental pseudosuperfields, but we have not explained where these come from,

and we have not proved that they are really in the cohomology space. Now, we need to

explain how the fundamental pseudosuperfields arise, by introducing the spectral sequence

methods needed to solve the problem in a general way.

Spectral sequences allow us to reduce a complicated cohomology problem to a set of simpler

ones. It is evident for example that the theory without mass or interactions is a simpler

problem than the one with mass or interactions. It is also evident that even for the massless

free theory, it is possible to divide up δBRST into sets of coupled operators some of which are

nilpotent by themselves. The method of spectral sequences makes this into a rigorous math-

ematical technique. Without the spectral sequences, the problem of finding the cohomology

of δBRST is terrifically hard. It is not easy even using spectral sequences.

5.2. Quick Review of the Spectral Sequence Method

The spectral sequence method [18], as used here [8], requires us to choose a counting operator

NGrading that splits up any operator δ (such as δBRST) into some finite set of sub-operators

that satisfy the equations (87) and (88) below.

Then the machinery of the spectral sequence generates a series of nested subspaces Er, each

with a differential dr, and an adjoint differential d†r, satisfying

d2r = d†2r = 0; drEr ⊂ Er; d
†
rEr ⊂ Er (85)

Then we must solve the cohomology Er+1 = ker dr
Im dr

≈ Er ∩ ker dr ∩ ker d†r for each of the

operators dr in turn for r = 0, 1, 2 · · · . Each new cohomology problem for dr+1 is evaluated

in the space Er+1 defined by the cohomology of the previous operator. For our method [8],

which combines the spectral sequence with a Fock space, the orthogonal projection operators

Πr+1 at each stage project onto the space Er+1 = ker dr ∩ ker d†r ∩ Er. If there are no more
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dr for r ≥ rfinal in some particular spectral sequence, then the spectral sequence is said

to collapse at r = rfinal. In that case the space Erfinal = E∞ ≈ H is isomorphic to the

cohomology space H of the original δ that we are interested in.

5.3. Grading for the spectral sequence

The spectral sequence is entirely determined by the Grading chosen. The following Grading11

is used for this paper:

NGrading = NC +NC + 2Nξ + 2NFields + 2NZinn + 4Nm (86)

How does one choose a grading? The desirable qualities are:

1. The grading should ensure that the equations

δ =

n∑

r=0

δr (87)

and

[NGrading, δr] = rδr. (88)

are satisfied. In particular, there must not be any negative r in the sum.

2. A good grading should give rise to dr for low values of r, for which the Er are fully and

easily solved.

3. A good grading should generate easily solved equations, or alternately a simple Eliza-

bethan Drama, for the higher Er.

A search for a good grading is a form of art, as far as I know. It depends on the details of the

δBRST that one starts with. Trial and error seems to be the only way to proceed. Different

gradings for the same problem make different parts of the problem easier or harder, or

downright impossible. For example, if one uses a grading that simply commutes with δBRST,

then the spectral sequence reduces to using δBRST = d0, with no other dr at all. In other

words d0 is the whole problem, and that looks impossible to do with one step.

The grading we use here is pretty good. However it might be possible to find a grading

that makes the unsolved problems in this paper easier, while making the solved ones harder.

The unsolved problems in this paper involve negative and zero ghost number, but they do

not affect the results we quote. If there is a grading that helps to solve these, then the

combination of the two gradings would solve the problem entirely.

11These are counting operators. More detail and other useful formulae can be found in subsection A.1.
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It is not obvious what the differentials dr are, and this question becomes more difficult as

r increases. This is a question which requires one to look at various possibilities and test

the results, all as set out in [8]. If the results are looking wrong, then it is likely that one

has missed a differential. So the process can take a long time. For example, finding d7 in

the present case took a long time. It is quite possible that there are other, so far unknown,

differentials that affect the unsolved problems here for negative and zero ghost number.

Errors have a way of showing up as one tries to map the space E∞ −→ H.

5.4. Results for this Grading

It turns out that the same grading is useful for both the superfield operator δSup and the

physical operator δPhys, and that the spectral sequence generated is the same for these two

cases, although it arises a bit differently for the two cases. So what we are going to find is

that

E∞ Phys = E∞ Sup ≈ HPhys ≈ HSup (89)

The above grading (86) generates nine differentials dr, r = 0, · · ·8 and ten cohomology spaces

Er, r = 0, 1, · · ·9 for the chiral supersymmetry theory in 3 +1 dimensions. The final space

E9 = E∞ is isomorphic to the cohomology space12 that we are looking for.

5.5. Three Different Theories: Free Massless, Interacting Massless, and

Interacting Massive

We will analyze the cohomology here in three stages, which are the free and massless

theory, the interacting massless theory and the interacting massive theory. The

grading (86) ensures that the massive stage comes after the interacting stage, and that they

both come after the free massless theory. It also means that the ‘structure constant operator’

and the ‘kinetic terms’ appear in δ0 and that the ‘exterior derivative operator’ appears later

in δ2. These are all important features that allow progress at the various stages of Er.

The following table summarizes the form of the dr as recited above. These operators will all

be discussed and used in the following Sections and Appendices.

12As will be seen later, there are some unsolved issues here, but they do not affect the main results of this

paper.
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Table 90: Summary of Differentials dr from δPhys or δSup
dr Form of Operator theory

d0 CCξ† + δKinetic

d1 Π1

{
Cα∇α + C

β̇
∇β̇

}
Π1

free

massless

d2 Π2

{
ξ∂ −

(
C∇ + C∇

) δ
†
Str

∆Str

(
C∇+ C∇

)}
Π2

d3 Π3

{
Cα
(
gijkAjAk

)
ψi†α
}
Π3 + ∗ interacting

d4 Π4

{
(CξC

†
)gijkAjAkA

i†
}
Π4 + ∗ massless

d5 Π5

{
Cα
(
gijkmvjAk

)
ψi†α
}
Π5 + ∗

d6 Π6(CξC
†
)
{
gijkmvjAk

}
Ai†Π6 + ∗ interacting

d7 Π7

{
Cα
(
eijkls m2vivjAk

)
A

†

sψ
l†
α

}
Π7 + ∗ massive

d8 Π8

{
(CξC

†
)
(
eijkls m2vivjAk

)
A

†

sA
l†
}
Π8 + ∗

(90)

5.6. Elizabethan Drama

Essentially, the higher differentials13 dr, r = 3, 4, 5, 6, 7, 8 perform an Elizabethan Drama,

using the results for the free massless case. Here is an amusing and insightful quote from

one of the pioneers of the spectral sequence (F. J. Adams ), as recited in one of the classic

texts on the spectral sequence[20]:

...the behavior of this spectral sequence... is a bit like an Elizabethan drama, full of action,

in which the business of each character is to kill at least one other character, so that at the

end of the play one has the stage strewn with corpses and only one actor left alive (namely

the one who has to speak the last few lines)...

The remaining actors form the cohomology space. For the present formulation of the spectral

sequence, whenever one has the equations:

drU = V (91)

and

d†rV = U (92)

the actors U and V kill each other, and neither of them survives to live in the space Er+1.

In the present case there are lots of actors left alive, but there are plenty of corpses too.

13The tensor eijkls in d7 and d8 is made from the other tensors gijk, gi, g
ijk, gi in the theory, and it will

be discussed in subsection H.3 and other subsections referred to there. These operators dr, r = 3 · · · 8, as

written here, are really only the lowest terms of expressions that contain arbitrary numbers of derivatives.
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5.7. Nice Clean Research

Here is another relevant quote from Adams[18]:

Whenever a chance has arisen to show that a differential dr is non-zero, the experts have

fallen on it with shouts of joy–‘Here is an interesting phenomenon! Here is a chance to do

some nice clean research!–and they have solved the problem in short order.

The present problem is a very complicated one, because there are many differentials doing

different things, and the cohomology space is large and has a lot of structure, which depends

on the details of the interaction and mass terms. There are still lots of differentials to

examine in SUSY theories14.

However the above quote is still on point, because the higher differentials dr really do simplify

the problem immensely. A glance at Table (90) shows that all of the dr for r = 3 · · ·8 depend

on the interaction coefficients gijk. These result in a host of quite simple, and similar,

equations by way of the Elizabethan drama.

The equations from the differentials are so simple in fact that we can solve them for the SSM

quite easily, and this is done in section 7. In that context it is even obvious that the SSM

could use some improvement, resulting in the CSSM. Part of that improvement is to put in

right handed neutrinos. Fortunately these are also experimentally viable and useful [22].

6. Some Examples of the Mappings E∞ → H

6.1. An introduction to the practical use of the Spectral Sequence

In section 5, we introduced the spectral sequence in a general way. In the next section, we

will apply these results to the specific case of the SSM. Here we will discuss some general

notions, and summarize the normal space E3 = E∞ for the free massless theory, and relate

it back to the cohomology described earlier.

The following quantum numbers are preserved by the grading NGrading and by the operators

δPhys and δSup, and therefore also by the isomorphism Map that takes e ∈ E∞ to its image

h ∈ HPhys or h ∈ HSup. We shall write H ≡ HIntegrated to indicate either HPhys or HSup when

14 Experts (and Novices too) in the area of spectral sequences are invited to do some nice clean research

here! The happy remarks of Adams have not yet been put into effect for this case. The present paper is

still somewhat incomplete, as is explained below. Supersymmetric gauge theories have a similar structure

to the present chiral theories, but there are plenty of differences too, and that paper is in very rough draft

form with lots of unsolved issues. Then there is the whole panoply of other supersymmetric theories, both

rigid and local, in various dimensions. Exercises for the student: Are the 10 dimensional supersymmetric

gauge and gravitational theories actually consistent? Or are there subtle hidden supersymmetry anomalies

in them? What about the superstring?
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we do not want to specify which one we mean (the two are isomorphic but not identical):

e ∈ E∞
Map
−→ h ∈ H (93)

1. The mass dimension of the expressions e and h must be the same.

2. The spin types J(n,m) of the expressions e and h must be the same. If we write the

indices explicitly, this means that:

e(α1···αn),(β̇1···β̇m) ∈ E∞ → h(α1···αn),(β̇1···β̇m) ∈ H (94)

3. Any other conserved quantum number, such as Lepton number or Baryon number or

Charge or Ghost number of the expressions e and h must be the same.

4. For the free massless theory, the number of fields plus the number of ZinnsNField+NZinn

is conserved too, and so, for the free massless theory, this is also preserved by the

mapping. Moreover, since the interacting and massive theories are built from the free

massless theory, this conservation is useful for those Mappings also.

Now we will turn to the solutions for E∞ and the mapping E∞ → H for the three stages.

The form of E∞ for the free massless theory will be summarized below in subsection 6.2.

6.2. Brief Summary of the Results from the Spectral Sequence: The Normal

Solutions

The spectral sequence calculations are done in detail in the Appendices. The plan of this

paper is to try to make the main body of the new results accessible without referring very

much to the Appendices. So most of the application to actual superspace is in the body of

the paper, and the spectral sequence spaces are mostly discussed in the Appendices.

Here is a very brief summary of the results from the spectral sequence. For the free massless

theory we will find that an important part of the result of the spectral sequence has the

following form. We call these the Normal Solutions:

E3 Normal = (CξC)S0 Normal (95)

⊕
∞∑

n=0

{
(Cξ2C)Rn Normal + (Cξ2C)Rn Normal

}
(96)

where

Rp Normal = R(α1···αn+p) = T
(j1···jm)
[i1···in]

Aj1 · · ·Ajmψ
i1
(α1
· · ·ψinαn

Cαn+1
· · ·Cαn+p) (97)

The complex conjugate of (97) is:

Rp Normal = R(α̇1···α̇n+p) = T
[i1···in]

(j1···jm)A
j1 · · ·Ajmψi1(α̇1

· · ·ψinα̇n
C α̇n+1

· · ·C α̇n+p) (98)
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and

S0 Normal =
{
fiA

i + f
i
Ai + f ijA

jAi + f i2,j

(
AiAjγδ̇ − A

i

γδ̇
Aj − ψ

i
γψjδ̇

)
+ · · ·

}
(99)

There are also terms with more derivatives, and there is also another sector (the exceptional

sector) but the above gives a good idea of an important part of what is present, including

the large ‘Outfield’ sector. Note the close resemblance between (97) and (98) and the form

(58) and its complex conjugate. The form (58) is in fact deduced using the spectral sequence

result above.

This result is taken from Appendix F.2 below. The development of the spectral sequence

takes place in Appendices A to G, with further material in all the Appendices up to I, with

commentary found there.

For the interacting and massive theories, there are constraints on the above. These are

explained in Appendices G and H. Now we shall apply these results to a specific variant of

the SSM in section 7.

7. Some Examples of E∞ and H from the CSSM

Sometimes in this section we will refer to the various dr. Their forms can be found in Table

(90) and in the various Appendices, where they are discussed at length.

7.1. Trilinear Symmetric Interaction Terms

The superpotential P for a chiral theory has the general form (for a renormalizable theory):

P =

∫
d4xd2θ

{
m2giÂ

i +mgijÂ
iÂj + gijkÂ

iÂjÂk
}

(100)

This appears to have symmetric mass and interaction terms:

gij = g(ij); gijk = g(ijk) (101)

In the foregoing analysis, we have assumed that the superpotential P has a symmetric

interaction term gijk = g(ijk):

P =

∫
d4xd2θ

{
m2giÂ

i + gijkÂ
iÂjÂk

}
(102)

In the present paper we started with gij = 0, but the mass term gij 6= 0 arises after symmetry

breaking, and at that time we have assumed that we can and do choose a VEV such that

m2giÂ
i disappears.
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These symmetric forms (101) are generally not a good way to try to solve the equations that

arise from the spectral sequence operators dr, r = 3 · · ·8. It is better to use several differ-

ent representations Âip, and then the matrices and tensors gpqij , g
pqr
ijk have more complicated

symmetries. In the SSM there are, of course, several indices (colour, flavour, weak isospin,

hypercharge, Lepton number, Baryon number), not just two. The natural notation uses

irreducible representations of the symmetries, which depends on the quantum numbers, and

it contains no artificial symmetrization, which arises if we try to write all the representations

in one reducible way like the above using just one superfield index Âi. What this means in

practice is that one should regard the operators dr, r = 3 · · ·8, as given above, as a shorthand

version, but we need to write down their non-symmetric versions for any given theory.

These symmetrization issues are more subtle than they appear to be. There is a folkloric

tendency to believe that the unified theory of everything must be based on an irreducible

model with one huge representation of some huge group. This results from an aesthetic

notion that irreducibility is equivalent to simplicity. However, it turns out that certain

combinations of irreducible representations can mingle with each other in a remarkable way

through the constraint equations for SUSY. We shall see how this works below. One could

get the impression that SUSY and internal symmetries are linked in some non-group-like way

here that gets around various no-go theorems, and a careful study on that would be worth

trying. The next section summarizes this situation for the simplest interesting example.

7.2. An Important Simple Example

At this point we must look at the example examined in section G.1.2.

Let us first consider the constraint equation which looks like this

LfP3 = 0 (103)

where Lf is a Lie algebra generator, made of scalars, of the form

Lf = f
j
i A

i ∂

∂Aj
(104)

and P3 is the unintegrated trilinear scalar part of the superpotential, extracted from (100):

P3 = gpqrA
pAqAr (105)

These equations are written in the symmetric form, and they typically involve redundant and

artificial symmetrization, as discussed above. So at this point, we look at a non-symmetric

and interesting example–the supersymmetric standard model (SSM).

7.3. Introduction to the CSSM and the Quark and Lepton Outfields

Some curious solutions of this equation arise when one writes these equations in the non-

symmetric form, using the non-symmetric form of the superpotential for the SSM, as follows.
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We will augment this to the CSSM which has right neutrinos and a singlet Higgs in addition

to the usual minimal SSM. The scalar version of the trilinear term of the superpotential

for the CSSM has the following non-symmetric form (here we mean it does not have the

symmetry g(ijk) discussed above, because it is expressed in terms of irreducible multiplets):

PCSSM = gεijH
iKjJ + ppqεijL

piHjP q + rpqεijL
piKjRq

+tpqεijQ
cpiKjT qc + bpqεijQ

cpiHjBq
c (106)

Here the fields J,H i, Ki are Higgs/Goldstone scalar fields from the respective supermulti-

plets, with hypercharge Y = 0,−1,+1 respectively. Qcpi is the scalar from the Left Quark

supermultiplet with hypercharge Y = 1
3
. T qc and Bq

c are the scalars from the right handed

up and down antiQuark supermultiplets with hypercharge Y = −4
3
, 2
3
respectively. Lpi is

the scalar from the Left Lepton supermultiplet with hypercharge Y = −1. P q and Rq

are the scalars from the right handed antipositron and antineutrino supermultiplets, with

hypercharge Y = 2, 0 respectively. The indices i, j = 1, 2 are weak SU(2) indices.

CSSM is an acronym for ‘Cybersusy Supersymmetric Standard Model’. The non-minimal

terms that we add are the right handed neutrinos Rp, and the singlet Higgs field J. The

latter is designed to spontaneously break SU(2)× U(1) down to U(1), when one includes a

term +m2J in the potential. Note that this J singlet also plays an important role in the Lie

algebra generators for the Outfields below. The reason for the choice of the CSSM is that

the Rp makes the Leptons behave similarly to the Quarks, and the J allows construction of

the Quark and Lepton Outfields, as shown below.

One could examine a great number of objects here, but we will concentrate on objects with

non-zero quantum numbers for Baryon and Lepton number. There are two reasons for this.

The first is that these sectors do not mix with the gauge sector, because the gauge theory

does not have Baryon or Lepton number. So we can validly examine these sectors without

worrying about the gauge theory. The second reason is that there are interesting things

happening in these sectors.

The following physically interesting Lie algebra operators exist for the Leptons (provided

that the term −gJm2J is absent):

LpiL = g−1Lpi
∂

∂J
+ (p−1)qpKi ∂

∂P q
− (r−1)qpH i ∂

∂Rq
(107)

LpP = g−1P p ∂

∂J
+ (p−1)pqKi ∂

∂Liq
(108)

LpR = g−1Rp ∂

∂J
− (r−1)pqH i ∂

∂Liq
(109)

where the inverse matrices are defined in the following way:

psq(p
−1)qp = (p−1)pqpqs = δps ; (110)
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rsq(r
−1)qp = (r−1)pqrqs = δps . (111)

Similarly, the following curious Lie algebra operators exist for the Quarks:

LcpiQ = g−1Qcpi ∂

∂J
− (t−1)qpH i ∂

∂T
q
c

+ (b−1)qpKi ∂

∂B
q
c

(112)

LpTc = g−1T pc
∂

∂J
− (t−1)pqH i ∂

∂Qicq
(113)

LpBc = g−1Bp
c

∂

∂J
+ (b−1)pqKi ∂

∂Qicq
(114)

where the inverse matrices are defined in the following way:

(t−1)pqtqs = tsq(t
−1)qp = δps (115)

(b−1)pqbqs = bsq(b
−1)qp = δps (116)

Using the above forms (106) and (107), for example, it is easy to verify that:

LpiLPCSSM = 0 (117)

as follows:

LpiLPCSSM =
{
g−1LpigǫjkH

jKk + (p−1)qpKipsqǫjkL
sjHk − (r−1)qpH irsqǫjkL

sjKk
}

=
{
LpiǫjkH

jKk + ǫjkL
pj
(
KiHk −H iKk

)}
(118)

Now use

KiHk −H iKk = εik
(
εlmK

lHm
)

(119)

and we get

LpiLPCSSM =
{
LpiǫjkH

jKk + ǫjkL
pjεik

(
εlmK

lHm
)}

= 0 (120)

We also have, using (106) and (108),

LpPPCSSM = (121)

g−1P pgǫijH
iKj + (p−1)pqKi

(
pqsǫijH

jP s + rqsǫijK
jRs
)

(122)

Now observe that

KiǫijK
j = 0 (123)

So we get

LpPPCSSM = (124)

P pǫijH
iKj +KiǫijH

jP p = 0 (125)
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The other four Lie algebra operators work in a similar way. Observe the intertwining of

the left doublets and right singlets here, and the crucial role of the singlet and the two

SU(2) Higgs doublets. This all seems quite specific to the CSSM. In the CSSM, each of

these six Lie algebra invariance generators has a Lepton (Quark) scalar multiplied by ∂
∂J
,

added to terms made from the Higgs H i, Ki multiplied by the derivative of an AntiLepton

(AntiQuark) scalar (or vice versa). Each of them is in a representation of the gauge groups

U(1), SU(2) and SU(3). Each of them is in an eigenstate of Quark and Lepton number.

These six operators form an invariant Abelian subalgebra of the invariances of the term

(106). This invariance algebra includes the generators of SU(3) × SU(2) × U(1) as well as

Baryon and Lepton number.

These invariances would not exist if the standard model did not have its peculiar left-right

asymmetry, which is also carried through to the Higgs sector in this supersymmetric version

of the SM. Also note that this invariance is far from obvious if one writes the superpotential

in an artificially symmetrized and reducible way.

In accord with the analysis above, and the discussion in section G.1.2, we can write the

following solutions for the d3 constraints:

Lepton Outfields: Chiral Dotted Spinor Pseudosuperfields with Quantum Numbers of the

Leptons:

ω̂
pi
Lα̇ = g−1L̂piψ̂Jα̇ + (p−1)qpK̂iψ̂Pqα̇ − (r−1)qpĤ iψ̂Rqα̇ (126)

ω̂
p
P α̇ = g−1P̂ pψ̂Jα̇ + (p−1)pqK̂iψ̂Liqα̇ (127)

ω̂
p
Rα̇ = g−1R̂pψ̂Jα̇ − (r−1)pqĤ iψ̂Liqα̇ (128)

Quark Outfields: Chiral Dotted Spinor Pseudosuperfields with Quantum Numbers of the

Quarks:

ω̂
cpi
Qα̇ = g−1Q̂cpiψ̂Jα̇ − (t−1)qpĤ iψ̂

c

Tqα̇ + (b−1)qpK̂iψ̂
c

Bqα̇ (129)

ω̂
p
Tcα̇ = g−1T̂ pc ψ̂Jα̇ − (t−1)pqĤ iψ̂Qicqα̇ (130)

ω̂
p
Bcα̇ = g−1B̂p

c ψ̂Jα̇ + (b−1)pqK̂iψ̂Qicqα̇ (131)

7.4. The Constraints from d3 in the CSSM

We need the form of d3 in the spectral sequence here:

δ3 = C α̇

∂PCSSM

∂Ai
ψ

†

iα̇ + ∗

= gεijH
iKjC α̇ψ

†

Jα̇ +
(
ppqεijL

piHj
)
C α̇ψ

†

Pqα̇ +
(
rpqεijL

piKj
)
C α̇ψ

†

Rqα̇ (132)
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+
(
tpqεijQ

cpiKj
)
C α̇ψ

c†

Tqα̇ +
(
bpqεijQ

cpiHj
)
C α̇ψ

c†

Bqα̇ (133)

+
(
tpqεijK

jT qc + bpqεijH
jBq

c

)
C α̇ψ

†

Qcpiα̇ (134)

+
(
ppqεijH

jP q + rpqεijK
jRq
)
C α̇ψ

†

Lpiα̇ (135)

+
(
gεijK

jJ + ppqεjiL
pjP q + bpqεjiQ

cpjBq
c

)
C α̇ψ

†

Hiα̇ (136)

+
(
gεjiH

jJ + rpqεjiL
pjRq + tpqεjiQ

cpjT qc
)
C α̇ψ

†

Kiα̇ + ∗ (137)

The constraint equation for (126), which is:

d3ω̂
pi
Lα̇ = 0 (138)

is a direct consequence of the equations (118) above. The others work in exactly the same

way.

7.5. The Constraints from d4 in the CSSM

In the context of the regular and unseparated irregular equations, d4 takes a form that is

closely related to the above d3:

d4 = (CξC†)
∂PCSSM

∂Ai
A

†

i + ∗

= (CξC†)
{
gεijH

iKjJ
†
+
(
ppqεijL

piHj
)
P

†

q +
(
rpqεijL

piKj
)
R

†

q

+
(
tpqεijQ

cpiKj
)
T
c†

q +
(
bpqεijQ

cpiHj
)
B
c†

q

+
(
tpqεijK

jT qc + bpqεijH
jBq

c

)
Q

†

cpi

+
(
ppqεijH

jP q + rpqεijK
jRq
)
L
†

pi

+
(
gεijK

jJ + ppqεjiL
pjP q + bpqεjiQ

cpjBq
c

)
H

†

i

+
(
gεjiH

jJ + rpqεjiL
pjRq + tpqεjiQ

cpjT qc
)
K

†

i

}
+ ∗ (139)

The adjoint of this is

d
†
4 = (Cξ†C

†
)
{
gJεijH i†Kj† + ppqP qε

ijLpi†Hj† + rpqRqε
ijLpi†Kj†

+t
pq
T
c

qε
ijQcpi†Kj† + b

pq
B
c

qε
ijQcpi†Hj†

+Qcpi

(
t
pq
εijKj†T q†c + b

pq
εijHj†Bq†

c

)

+Lpi
(
ppqεijH

jP q + rpqεijK
jRq
)†

+H i

(
gεijK

jJ + ppqεjiL
pjP q + bpqεjiQ

cpjBq
c

)†

+Ki

(
gεjiH

jJ + rpqεjiL
pjRq + tpqεjiQ

cpjT qc
)†}

+ ∗ (140)

This plays a role for the ghost charge zero and minus one sectors, as do d6 and d8. Application

of these differentials will not be discussed here.
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7.6. Differentials d5 and d6 involving the mass in the SSM

To get Gauge Symmetry Breaking from SU(3)× SU(2)×U(1) to SU(3)×U(1) we need to

add a term to the superpotential of the form m2gJJ , and then shift the fields by

H i −→ (mhi +H i) (141)

and

Ki −→ (mki +Ki) (142)

where

gεijh
ikj +m2gJ = 0 (143)

The new differentials d5 and d6 arise from the term in the following that is linear in m:

PCSSM m = gεij(mh
i +H i)(mkj +Kj)J +m2gJJ

+ppqεijL
pi(mhj +Hj)P q + rpqεijL

pi(mkj +Kj)Rq

+tpqεijQ
cpi(mkj +Kj)T qc + bpqεijQ

cpi(mhj +Hj)Bq
c (144)

7.6.1. The operator d5 for the CSSM

So we get, using δ3 as a template:

δ5 = mgεij(h
iKj +H ikj)C α̇ψ

†

Jα̇

+mppqεijL
pihjC α̇ψ

†

Pqα̇ +
(
rpqεijL

pikj
)
C α̇ψ

†

Rqα̇

+mtpqεijQ
cpikjC α̇ψ

c†

Tqα̇ +mbpqεijQ
cpihjC α̇ψ

c†

Bqα̇ (145)

+m
(
tpqεijk

jT qc + bpqεijh
jBq

c

)
C α̇ψ

†

Qcpiα̇ (146)

+m
(
ppqεijh

jP q + rpqεijk
jRq
)
C α̇ψ

†

Lpiα̇ (147)

+m
(
gεijk

jJ
)
C α̇ψ

†

Hiα̇ (148)

+m
(
gεjih

jJ
)
C α̇ψ

†

Kiα̇ + ∗ (149)

Now let us use this on one of our solutions at level E4. Take for example (127). First we

revert to the form in E4 without the superfields:

ω
p
P α̇ = (Cξ2C)

{
g−1P pψJα̇ + (p−1)pqKiψLiqα̇

}
(150)

We can ignore the factor (Cξ2C) here. Now we have

d5 = Π5δ5Π5 (151)
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and so

d5ω
p
P α̇ = Π5

{
g−1P pgεijm(hiKj +H ikj)C α̇ (152)

+(p−1)pqKim
(
ppqεijh

jP q + rpqεijk
jRq
)
C α̇

}
(153)

= Π5

{
mH iεijk

jP pC α̇ +mKiεijk
j(p−1)pqrqrR

rC α̇

}
(154)

Now consider

d3mk
i(p−1)pqψLiqα̇ = (p−1)pqmki

(
pqrεijH

jP r + rqrεijK
jRr
)
C α̇ (155)

=
{
mkiεijH

jP pCα̇ +mkiεijK
j(p−1)pqrqrR

rC α̇

}
(156)

So we see that the image of ωpP α̇ under the action of d5 is the same as the image of

mki(p−1)pqψLiqα̇ under the action of d3. Now anything which is a boundary of an object

in E3 using the differential d3 does not survive to E4. So

d3mk
i(p−1)pqψLiqα̇ ∩ E4 = 0 (157)

so such a term certainly does not survive to E5 ⊂ E4. So it follows that

Π5d5ω
p
P α̇ ∩ E5 = 0 (158)

which implies that

Π5d5ω
p
P α̇ = 0 (159)

So this imposes no new condition and we have

ω
p
P α̇ ∈ E6 (160)

7.7. Differential d6 involving the mass in the CSSM

The differential d6 affects the ghost charge minus one sector and the chiral ghost charge zero

solutions without spinor indices, and we shall not analyze it here. This is better considered

when one also has the gauge theory present.

7.8. The operator d7 for the CSSM

The reader should refer to Appendix H.3 in connection with this section.

We will see that d7 kills the chiral dotted spinor superfield Lepton and Quark Outfields set

out above. Here is the detailed form of the adjoint of δ3 in the physical formulation for the

CSSM:

δ
†
3 = ψJα̇

(
gεijH

iKjC α̇

)†
(161)

+ψPqα̇
(
ppqεijL

piHjC α̇

)†
+ ψRqα̇

(
rpqεijL

piKjC α̇

)†
(162)
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+ψ
c

Tqα̇

(
tpqεijQ

cpiKjC α̇

)†
+ ψ

c

Bqα̇

(
bpqεijQ

cpiHjC α̇

)†
(163)

+ψQcpiα̇
(
tpqεijK

jT qcC α̇ + bpqεijH
jBq

cC α̇

)†
(164)

+ψLpiα̇
(
ppqεijH

jP qC α̇ + rpqεijK
jRqC α̇

)†
(165)

+ψHiα̇
(
gεijK

jJC α̇ + ppqεjiL
pjP qC α̇ + bpqεjiQ

cpjBq
cC α̇

)†
(166)

+ψKiα̇
(
gεjiH

jJC α̇ + rpqεjiL
pjRqC α̇ + tpqεjiQ

cpjT qc C α̇

)†
+ ∗ (167)

The differential d7 in the CSSM has a lot of terms. We will pick out the terms that affect

one particular example here, so that we can see how this works. Let us continue with the

example of (150)

ω
p
P α̇ = (Cξ2C)

{
g−1P pψJα̇ + (p−1)pqKiψLiqα̇

}
(168)

Again, we can ignore the factor (Cξ2C) here. We need to collect the relevant terms in

δ5δ
†
3δ5ω

p
P α̇ (169)

This yields (using identities like kiki = 0)

δ5δ
†
3δ5ω

s
P α̇ = m

(
ppqεijh

jP q
)
C δ̇ψ

†

Lpiδ̇ψLrkγ̇
(
pruεklH

lP uC γ̇

)†
(170)

mgεmn(H
mkn)C β̇ψ

†

Jβ̇g
−1P sψJα̇ (171)

+m
(
ppqεijh

jP q
)
C δ̇ψ

†

Lpiδ̇ψLrkγ̇
(
rruεklK

lRuC γ̇

)†
(172)

m
(
rvwεi1i2k

i2Rw
)
C ǫ̇ψ

†

Lvi1 ǫ̇
(p−1)stKi3ψLti3α̇ (173)

which reduces to

δ5δ
†
3δ5ω

s
P α̇ = m2C α̇p

rsprqP
q(hjεjnk

n)

−m2C α̇(p
−1)strtur

ruprqP
qkiεijh

j

= m2C α̇

{
prs + (p−1)strtur

ru
}
prqP

q(hjεjnk
n) (174)

Consider the matrix {prs + (p−1)strtur
ru} in (174) and multiply it by pzs. We get:

pzs
{
prs + (p−1)strtur

ru
}
= {pzsp

rs + rzsr
rs} (175)

This is a sum of two positive definite matrices, assuming that the matrices r and p are

non-singular, so it is also positive definite, and so this implies that

d7ω
r
P α̇ 6= 0 (176)

Since this is not zero, we get

ωrP α̇ 6∈ E8 (177)

and this operator is removed from E∞ and the corresponding superfield integral expression

is removed from H.

We have assumed here that the target in (174) is actually in the space E7. In the next

subsubsection we show that this is so.

34



7.8.1. An Important Example with ghost charge NGhost = 1

Here we will verify that the target in (174) is actually in the space E7.

This target has the form

(Cξ2C)m2qkA
kC α̇ (178)

How can we see that

(Cξ2C)m2qkA
kC α̇ ∈ E7? (179)

Note that if f igijk 6= 0, then (Cξ2C)mf iψiα̇ would be missing from E4, because:

(Cξ2C)mf iψiα̇
d3→ (Cξ2C)f igijkmA

jAkC α̇ 6= 0 (180)

In other words, then

(Cξ2C)mf iψiα̇ 6∈ E4 (181)

If this were not true, then one could have had

(Cξ2C)mf iψiα̇
d5→ (Cξ2C)gijkf

im2vjAkC α̇ (182)

and one would need to worry whether

qk = gijkf
ivj (183)

but since f igijk 6= 0, this latter equation (182) can never arise. It follows that

(Cξ2C)m2qkA
kC α̇ ∈ E7 (184)

for any vector qk. Of course the consequence of equation (174) is that there are some vectors

qk for which this does not survive to E8 or E9 = E∞. We have

(Cξ2C)m2qkA
kC α̇ 6∈ E∞ (185)

for some vectors qk, namely those which correspond to the Quarks and Leptons.

7.9. Superfield Version

The Quark and Lepton Outfields are quite viable before the VEV appears, and then they

mix with the elementary Quarks and Leptons when the VEV appears. The reason why this

takes place is easy to see in superfield language. If we define a slightly improved15 version

as follows:

15This redefinition avoids some complications that are reflected in the discussion of d5 above in subsub-

section 7.6.1
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ω̂
p
P α̇ = g−1P̂ pψ̂Jα̇ + (p−1)pq

(
mki + K̂i

)
ψ̂Liqα̇ (186)

then the resulting superfield satisfies the simple relation:

δBRSTω̂
p
P α̇ = (CQ+ CQ)ω̂pP α̇ +m2h·kC α̇P̂

p (187)

The last term ensures that this is not a superfield, and so

∫
d4x d2θ ω

p
P α̇ 6∈ H (188)

for the massive interacting CSSM, although this is in H for the massless interacting CSSM.

In other words, this is removed from the cohomology space by the spontaneous breaking

of the internal symmetry, which is what generates the mass. The other Quark and Lepton

composite chiral dotted spinor superfields mentioned above work the same way.

7.10. The operator d8 for the CSSM

We will not attempt to find examples for d8 in this paper. In particular, this calls for a

treatment of the gauge theory.

8. Conclusion

We summarized our general result for the cohomology space H for the free massless theory

in section 4. One needs to substitute into that formula the expressions in section 4.2 for

the Outfields and the scalar Superfields. Since the superfield formalism and the physical

formalism have isomorphic cohomology spaces, one can do this with either set of expressions

in section 4.2.

We noted that this result was derived and proved in the Appendices, which lead up to the

E∞ space for the free massless theory in section 6.2.

When interactions or masses are present, one needs to subject the E∞ space in section 6.2 to

the Elizabethan Drama, which kills various expressions according to the dr summarized in

Table 90. The details of how these work, and how they are derived, are in the Appendices.

Our most interesting results so far are in section 7. In that section we wrote down the

Outfields that correspond to Leptons and Quarks in the CSSM, and showed that they were

in the Cohomology space for the interacting massless theory, by satisfying the d3 constraint,

and how they were removed from that space by the d7 constraint when the VEV arises.

These methods can be used to do much more cohomology work for all sorts of examples, both

in the CSSM and in other theories. It is not at all simple to summarize the results for the

36



interacting or massive theories, since they are very tied to the details of the superpotential,

through the constraints in Table 90. We have not attempted any sort of summary, but for

any given case one can apply the constraints by applying the differentials and working out

the solutions, as we have done for the examples in section 7.

We have not attempted to solve the unseparated irregular parts of the cohomology, even for

the free massless theory, in this paper. That is not an easy task. It may well have interesting

implications.

We have learned a few things of a general nature:

1. The transition from E∞ to H can be quite strange. One is given the dimension and

spin and other quantum numbers, and then there is a leap involved to deduce a form

for H , given the results for E∞. In the present case that leap results in a jump out of

superspace.

2. The derivation of the dr, given the form of the grading, is another task that requires

some serious labour. Even when one has found the dr, and they become more hard to

find as r increases, one has the puzzle of what they mean. This search can be helped

by finding the meaning of the expressions back in the starting space P to some extent.

3. In the present case, the dr, r = 3, 4...8 involve the coefficients in the superpotential.

Solving the resulting constraints has brought us into contact with Outfields that look

like the Quarks and Leptons, except that they are composite chiral dotted spinor pseu-

dosuperfields. Again, the meaning, or usefulness, of these expressions is not obvious.

We will not try to discuss those possibilities here.

4. These Quark and Lepton Outfields point to a number of remarkable things that are

happening:

(a) The constraint equations from d3 allow one to contruct Outfields from any invari-

ance of the superpotential. For the case of the Quark and Lepton Outfields, this

invariance does not survive the introduction of the term m2J into the superpo-

tential. Indeed it is not even a symmetry of the rest of the action, even before

the introduction of m2J .

(b) This means that the Quark and Lepton Outfields do not survive when the VEV

develops, so there is some sort of a transition that takes place at that time.

(c) For that matter there is the question of what the meaning of the peculiar in-

variances are that allow the Quark and Lepton Outfields to exist for the free

interacting theory. These have nothing to do with gauge invariance, but a great

deal to do with the structure of the CSSM.
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8.1. Envoi

The methods used here can be used with advantage for other problems, such as the super-

symmetric gauge theories. Preliminary results there are rather similar to those here, and it is

clear that the Higgs sector mixes with the gauge sector through various constraint equations.

Supergravity for 3+1 dimensions would be interesting to analyze in this way. There are a

number of papers that deal with chiral supersymmetry and the gauge theory and supergravity

[3]. Those papers do not use the present methods, and they do not appear to include the

parts of the cohomology space that has Lorentz or internal indices, so none of the present

results about Outfields appear in those papers. It is not a simple task to compare the results

of those papers and the present paper, and I will not attempt to do so.

Higher dimension supersymmetric theories, and supersymmetric theories with N ≥ 2 provide

an interesting arena also. It is clear that the results in this paper depend crucially on the

Weyl spinor formulation of this 3 + 1 dimensional supersymmetric theory. It is not at all

obvious what happens in other dimensions, or for supergravity. Clearly one could try to

analyze D=10 Yang-Mills theory or supergravity. Absence of auxiliary fields is no problem,

because the analog of the operator (54) still exists for those theories.

The interpretation of the results in this paper is another difficult issue that requires attention.

For example, it is an interesting and peculiar fact that chiral dotted spinor superfield cannot

be coupled to supergravity [29], and yet, as we have seen, the BRST cohomology of the rigid

chiral theory contains a complicated set of these.

The lesson to be learned from the spectral sequence here is that it is very easy to make errors

and leave things out, but gradually the problem solves itself, if one looks at the machinery

long enough. Even the mathematicians find the spectral sequence obscure and tricky to work

with. So it is a gradual process to get the entire result correct, especially for something as

complicated as the present problem. Spectral sequences have a lot of power, but they are

not at all obvious or easy to see through. Consider the example of d7 in equation 601. There

are a great many possible ways to construct such operators, most of which yield nothing.

As Samuel Johnson might have said, if he had the opportunity to live in a more enlightened

age, and to study spectral sequences [17]:

Sir, [it] is like a dog’s walking on his hinder legs. It is not done well; but you are surprised

to see it done at all.

Spectral Sequences have an interesting history. See for example [4,2]. To conclude, here is a

quote from G. W. Whitehead (taken from [19]):

”The machinery of spectral sequences, stemming from the algebraic work of Lyndon and

Koszul, seemed complicated and obscure to many topologists. Nevertheless it was success-

ful...”
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A. Preliminary Matters

A.1. Counting Operators

We define the Dimension so that the Action has dimension zero and the Lagrangian has

dimension four:

NDim = N∂ −
1

2
NC −

1

2
NC −Nξ (189)

+
3

2
Nψ +

3

2
Nψ +NA +NA + 2NF + 2NF (190)

+
5

2
NY +

5

2
NY + 3NΓ + 3NΓ + 2NΛ + 2NΛ +Nm (191)

The Zinn counting operator is

NZinn = NY +NY +NΓ +NΓ +NΛ +NΛ (192)

We define the ghost number so that the action has ghost number zero. This means that the

Lagrangian has ghost number −4, because it gets integrated with the 4-form
∫
d4x which

has ghost number 4:

NGhost = −4 + 4Ndx +NC +NC +Nξ −NZinn (193)

It is also useful to define Form number to be

NForm = NGhost + 4 (194)
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The Grading is defined by (86), which we repeat here for convenience:

NGrading = NC +NC + 2Nξ + 2NFields + 2NZinn + 4Nm (195)

The grading satisfies the following:

[NGrading, δr] = rδr (196)

[NGrading, dr] = rdr (197)

Most relevant operators commute with the dimension:

[NDim, δ] = 0 (198)

[NDim, δr] = 0 (199)

[NDim, dr] = 0 (200)

Many relevant operators have ghost charge one:

[NGhost, δ] = δ (201)

[NGhost, δr] = δr (202)

[NGhost, dr] = dr (203)

There is a mapping

Map : E∞ ⇒H (204)

This mapping conserves all the quantum numbers that are not violated by the grading, such

as Baryon number, Lepton number, spin etc. So this mapping satisfies

[NGhost,Map] = 0 (205)

[NDim,Map] = 0 (206)

for example.

A.2. Conversion to spinor indices

It is very helpful to convert from Lorentz indices to Spinor Indices by the transformation:

∂µ1 · · ·∂µnA
i ≡ Aiµ1···µn → Ai

α1β̇1,···αnβ̇n
= Aiµ1···µnσ

µ1

α1β̇1
· · ·σµn

αnβ̇n
(207)

and the symmetry

Aiµ1µ2···µn = Aiµ2µ1···µn (208)
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becomes

Ai
α1β̇1,α2β̇2,···αnβ̇n

= Ai
α2β̇2,α1β̇1,···αnβ̇n

(209)

Then for example the equation

[gµ1µ2Aiµ1µ2···µn ]
†E1 = 0 for n ≥ 2 (210)

is equivalent to

[ǫα1α2ǫβ̇1β̇2Ai
α1β̇1,···αnβ̇n

]†E1 = 0 for n ≥ 2 (211)

but because of the symmetry above this is equivalent to

[ǫα1α2Ai
α1β̇1,···αnβ̇n

]†E1 = 0 for n ≥ 2 (212)

and it is also equivalent to

[ǫβ̇1β̇2Ai
α1β̇1,···αnβ̇n

]†E1 = 0 for n ≥ 2 (213)

Define

Ai
(α1...αn),(β̇1...β̇n)

=
1

n!
ΣPermutations(1···n)→(j1···jn)A

i

αj1
β̇1,αj2

β̇2,···αjn β̇n
(214)

Then evidently we have

ǫγ1γ2Ai
(γ1...γn),(δ̇1...δ̇n)

= 0 for n ≥ 2 (215)

Denote the set of all such symmetrized variables like Ai
(α1...αn),(β̇1...β̇n)

by ASym.

ASym = Ai, Ai
α1,β̇1
· · ·Ai

(α1...αn),(β̇1...β̇n)
· · · (216)

Then the general solution of equation (213) or (212) is

E1 = E1 [ASym] (217)

These symmetrized variables will be used frequently.

B. The Operator d0 and the Space E1 = ker d0 ∩ ker d†0 ∩ E0

This first operator contains the structure constants of supersymmetry and the kinetic terms

for the fields.

d0 ≡ δ0 = δStructure + δ0 Matter (218)

where

δStructure = −CαC β̇

∂

∂ξαβ̇
≡ −CαC β̇ξ

αβ̇† (219)

δ0 Matter = −

∫
d4x

(
1

2
∂αβ̇∂

αβ̇Ai
δ

δΓi
+ ∂αβ̇ψiβ̇

δ

δY α
i

+ F i

δ

δΛi
+ ∗

)
(220)

The various kinetic terms help to define the physically meaningful parts of the various fields.

The above form is for the superfield operator. For the physical operator the last term +F i
δ
δΛi

is not present.
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B.1. The form of ∆0 and the form of E1

First we note that the operator

δ =

∫
d4x F i

δ

δΛi
(221)

has trivial cohomology. The adjoint is

δ† =

∫
d4x Λi

δ

δF i

(222)

and the Laplacian is

∆ = (δ + δ†)2 =

∫
d4x

{
F i

δ

δF i

+ Λi
δ

δΛi

}
= NF +NΛ (223)

The kernel of this Laplacian is independent of F i and Λi, so the kernel is trivial and the

cohomology is trivial. The complex conjugates work the same way, of course.

This operator
∫
d4x F i

δ
δΛi

only appears for the superfield approach, but one sees that the

superfield approach is quickly reduced to the physical approach from the above elimination

of the auxiliary fields and their Zinn sources from the space E1.

We need to do more work for the physical fields.

The Laplacian ∆Kinetic has a simple structure when it is expressed in terms of the variables

∂α1β̇1
· · ·∂αnβ̇n

Ai ≡ Ai
α1β̇1,···αnβ̇n

, etc. (224)

Then we have

δ0 = δ0 Matter + δ0 Structure (225)

where

δ0 Matter =
∞∑

n=0

ψ
β̇

iαβ̇α1β̇1···αnβ̇n
Y

†

iα,α1β̇1···αnβ̇n
+ c.c. (226)

+
∞∑

n=2

εα1α2εβ̇1β̇2Aiα1β̇1α2β̇2α3β̇3···αnβ̇n
Γ†

iα3β̇3···αnβ̇n
+ c.c. (227)

and

δStructure = CαC β̇ξ
†

αβ̇
(228)

B.2. First form of δ
†
0

The adjoint of the above is

δ
†
0 = δ

†
0 Matter + δ

†
Structure (229)
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where

δ
†
0 Matter =

∞∑

n=0

Y
iα,α1β̇1···αnβ̇n

ψ
β̇†

iαβ̇α1β̇1···αnβ̇n
+ c.c. (230)

+
∞∑

n=2

Γiα3β̇3···αnβ̇n
εα1α2

εβ̇1β̇2A
†

iα1β̇1α2β̇2α3β̇3···αnβ̇n
+ c.c. (231)

and

δ
†
Structure = ξαβ̇C

†
αC

†

β̇ (232)

Note that the operators δ0 Matter and δStructure anticommute with each other and with the

adjoint of each other, because they are made from completely different fields: Thus:

{δ0 Matter, δStructure} =
{
δ0 Matter, δ

†
Structure

}
= 0 (233)

Define the Laplacians

∆0 Matter =
{
δ0 Matter, δ

†
0 Matter

}
(234)

∆Structure =
{
δStructure, δ

†
Structure

}
(235)

The anticommutation rules above in (233) mean that the Laplacians commute

[∆0 Matter,∆Structure] = 0 (236)

This implies that the Laplacian of the operator (225) is the direct sum of these two Lapla-

cians:

∆0 = ∆0 Matter +∆Structure (237)

This means that the space E1 is the intersection of the kernels of these two operators:

E1 = ker∆0 = ker∆0 Matter ∩ ker∆Structure (238)

B.3. The form of the Laplacian ∆0 Matter

From

δ0 Matter =

∞∑

n=0

ψ
β̇

iαβ̇α1β̇1···αnβ̇n
Y

†

iα,α1β̇1···αnβ̇n
+ c.c. (239)

+

∞∑

n=2

εα1α2εβ̇1β̇2Aiα1β̇1α2β̇2α3β̇3···αnβ̇n
Γ†

iα3β̇3···αnβ̇n
+ c.c. (240)

and

δ
†
0 Matter =

∞∑

n=0

Y
iα,α1β̇1···αnβ̇n

ψ
β̇†

iαβ̇α1β̇1···αnβ̇n
+ c.c. (241)

Consider the following terms in {
δ0 Matter, δ

†
0 Matter

}
(242)
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namely {
ψ
β̇

iαβ̇α1β̇1···αnβ̇n
Y

†

iα,α1β̇1···αnβ̇n
, Y

jγ,γ1δ̇1···γn δ̇n
ψ
δ̇†

jγδ̇γ1δ̇1···γn δ̇n

}
(243)

The ψψ
†
term is the sum of terms like:

ψ
β̇

iαβ̇α1β̇1···αnβ̇n
ψ
δ̇†

jγδ̇γ1δ̇1···γn δ̇n

(
δijδ

α
γ δ

α1β̇1,···αnβ̇n

γ1 δ̇1,···γn δ̇n

)
(244)

= ψ
β̇

iαβ̇α1β̇1···αnβ̇n
ψ
δ̇†

iαδ̇α1β̇1···αnβ̇n
(245)

This is a sum of terms each of which is positive definite, with the result shown for the kernel

of the Laplacian shown in subsection B.4.

The Y Y † term is the sum of terms like:

Y
jγ,γ1δ̇1···γnδ̇n

Y
†

iα,α1β̇1···αnβ̇n
δ
β̇

δ̇
δ
j
i (246)

(
δ
γδ̇

αβ̇
δ
γ1δ̇1,···γn δ̇n
α1β̇1,···αnβ̇n

+ nδ
γδ̇

α1β̇1
δ
γ1δ̇1,···γn δ̇n
αβ̇,α2β̇2···αnβ̇n

)
(247)

= Y
iγ,γ1δ̇1···γn δ̇n

Y
†

iα,α1β̇1···αnβ̇n
(248)

(
2δγαδ

γ1δ̇1,···γn δ̇n
α1β̇1,···αnβ̇n

+ nδγα1
δ
γ1δ̇1,···γn δ̇n
αβ̇1,α2β̇2···αnβ̇n

)
(249)

= 2Y
iα,α1β̇1···αnβ̇n

Y
†

iα,α1β̇1···αnβ̇n
(250)

+nY
iα1,αβ̇1···αnβ̇n

Y
†

iα,α1β̇1···αnβ̇n
(251)

This is not so obviously a sum of terms each of which is positive definite. However it can be

rewritten so that we get the result shown for the kernel of the Laplacian shown in subsection

B.4.

This is done by examining each term by itself. For example for n = 0 we have:

2YiαY
†
iα (252)

For n = 1 we need to do some careful symmetrization:

2Y
iα,α1β̇1

Y
†

iα,α1β̇1
(253)

+Y
iα1,αβ̇1

Y
†

iα,α1β̇1
(254)

=
(
2Y

iα,α1β̇1
+ Y

iα1,αβ̇1

)
Y

†

iα,α1β̇1
(255)

= Y
iα,α1β̇1

Y
†

iα,α1β̇1
+
(
Y
iα,α1β̇1

+ Y
iα1,αβ̇1

)
Y

†

iα,α1β̇1
(256)

= Y
iα,α1β̇1

Y
†

iα,α1β̇1
(257)

+
1

2

(
Y
iα,α1β̇1

+ Y
iα1,αβ̇1

)(
Y

†

iα,α1β̇1
+ Y

†

iα1,αβ̇1

)
(258)

and now it can be seen that this is a sum of positive terms with the result in subsection B.4.

The rest of the demonstration is similar.
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B.4. Equations from ∆0 MatterE1 = 0 and the symmetrized fields FSym = F ∪ F

The form of the Laplacian ∆0 Matter is discussed in Appendix B.3, where we outline a method

to show that the resulting equations are of the form:

Y
†

iα,α1β̇1,···αnβ̇n
E1 = 0 for n ≥ 0 (and c.c.) (259)

Γ†

iα1β̇1,···αnβ̇n
E1 = 0 for n ≥ 0 (and c.c.) (260)

(εβ̇β̇1ψj,β̇,α1β̇1,···αnβ̇n
)†E1 = 0 for n ≥ 0 (and c.c.) (261)

(εα1α2εβ̇1β̇2Aj,α1β̇1···αnβ̇n
)†E1 = 0 for n ≥ 0 (and c.c.) (262)

These equations have the form discussed in subsection A.2 and consequently the solution is

that one must define the symmetrized fields, and then E1 is a function of those symmetrized

fields.

Ai
α1β̇1,···αnβ̇n

→ Ai
α1···αn,β̇1···β̇n

≡ Ai
(α1···αn),(β̇1···β̇n)

(263)

In other words, contractions such as

Ai
aβ̇,γδ̇

ǫβ̇δ̇ (264)

are not permitted in E1. This makes the work after E1 much easier. Similar considerations

apply to the other fields. We shall denote the following collection of variables by the notation

F and we shall call them the chiral physical fields:

F : Ai
(α1...αn),(β̇1...β̇n)

for n ≥ 0 (265)

ψi,(α̇α̇1...α̇n),(β1...βn) for n ≥ 0 (266)

We shall denote the following collection of variables by the notation F and we shall call

them the antichiral physical fields:

F : Ai,(α̇1...α̇n),(β1...βn) for n ≥ 0 (267)

ψi
(αα1...αn),(β̇1...β̇n)

for n ≥ 0 (268)

The reason for these peculiar definitions will appear when we study the regular equations

for the subspace E2 below.

The auxiliary fields and all the Zinns are eliminated by the Laplacian. The spinor fields and

the scalar fields survive into E1, but only when totally symmetrized as explained above.

This holds for both the physical and the superfield approach, and it is a good start on

understanding why these both have the same spectral sequence.
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We define the symmetric fields FSym as the combination of the fields defined above:

FSym = F ∪ F (269)

B.5. Structure of E1

The cohomology of δStructure was worked out in detail in [11], and those results are used to

write the following forms. We can write the form of E1 as follows:

E1 = P +Q+R+ P +Q+R+ S3 (270)

where

P =

∞∑

n=0

Pn (271)

Q =
∞∑

n=0

Q2+n (272)

R =
∞∑

n=0

R4+n (273)

In this notation, the subscripts refer to the ghost charge of the object. Thus for example

Q2+n has ghost charge 2 + n.

R4+n etc. have the following more explicit forms in terms of the Ghosts:

Table 274: Terms in E1

Subscripts as in Pn are Ghost Number

Symbol Form with Explicit Ghosts

Pn;n = 0, 1, · · · Pα1···αn
Cα1 · · ·Cαn

Pn;n = 0, 1, · · · P α̇1···α̇n
C
α̇1
· · ·C

α̇n

Qn+2;n = 0, 1, · · · Qβ̇α1···αn
(ξ · C)β̇Cα1 · · ·Cαn

Qn+2;n = 0, 1, · · · Qβα̇1···α̇n
(ξ · C)βC

α̇1
· · ·C

α̇n

Rn+4;n = 0, 1, · · · (Cξ2C)Rα1···αn
Cα1 · · ·Cαn

Rn+4;n = 0, 1, · · · (Cξ2C)Rα̇1···α̇n
C
α̇1
· · ·C

α̇n

S3 (CξC)S0

(274)

Another, more explicit, way to write the space E1 is:

E1 = P0 [FSym] + (CξC)S0 [FSym]

+P [FSym, C] + (ξC)β̇Qβ̇ [FSym, C] + (Cξ2C)R [FSym, C]

+P
[
FSym, C

]
+ (ξC)βQβ

[
FSym, C

]
+ (Cξ2C) R

[
FSym, C

]
(275)
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From the above discussion it follows that the various terms are the most general arbitrary

local functions of FSym and C or C as shown.

Note that the space E1 has the following properties:

1. There are no Zinn sources or auxiliary fields in E1.

2. All the dependence on the fields in E1 is through the symmetric variables FSym defined

in subsection B.4.

3. The ξ dependence of E1 is restricted to zero, one or two ξ.

4. The C and C and ξ dependence are tied together in a detailed way by contracting

indices, as in the example (Cξ)β̇ ≡ Cαξ
αβ̇.

C. The Operator d1 and the Space

E2Normal = ker d1 ∩ ker d†1 ∩ E1 ∩ Normal

C.1. Regular and Irregular Equations from d1 in the space E1

The operator d1 arises from the supersymmetry translations:

δ1 =

∫
d4x

(
ψiβC

β δ

δAi
+ ∂αβ̇A

iC
β̇ δ

δψiα
+ · · ·+ ∗

}
(276)

Since we know that E1 is independent of the Zinn sources and the auxiliary, the Π1 orthogonal

projection operator eliminates the auxiliary and Zinn terms in (276), and so the d1 operator

simplifies to

d1 = Π1

{
Cα∇α + C

β̇
∇β̇

}
Π1 (277)

where

∇α ≡

∫
d4x

{
ψiα

δ

δAi
+ ∂αβ̇Ai

δ

δψiβ̇

}
(278)

This is true for both the physical and the superfield approach. We can write the operator

∇α in terms of the symmetrized physical variables as follows:

∇α =

∞∑

n=0

ψi
αα1···αn,β̇1···β̇n

A
i†

α1···αn,β̇1···β̇n
(279)

+
∞∑

n=0

Aiαα1···αn,β̇β̇1···β̇n
ψ

†

iα1···αn,β̇β̇1···β̇n
(280)

where symmetrization of the dotted and undotted indices is understood. Because of the

detailed structure of the cohomology of CCξ†, the application of d1 to E1 breaks down to a
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number of different problems. First we have a set of equations which we call regular. These

take over for large values of the ghost number:

Table 281: Regular equations for E2

Subscripts as in Pn+1 are Ghost Number

Equation Mapping to:

Π1(C∇)Pn = 0;n = 0, 1, · · · Π1Pn+1

Π1(C∇)Q2+n = 0;n = 0, 1, · · · Π1Q3+n

Π1(C∇)R4+n = 0;n = 0, 1, · · · Π1R5+n

Π1(C∇)†Pn = 0;n = 2, 3, · · · Π1Pn−1

Π1(C∇)
†Q4+n = 0;n = 0, 1, 2, · · · Π1Q3+n

Π1(C∇)†R4+n = 0;n = 1, 2 · · · Π1R3+n

(281)

These are simple because the structure of E1 is simple for the relevant sectors.

Then we have a set of equations which we call irregular. These occur for low values of the

ghost number where the structure of E1 has a lot of detail:

Table 282: Irregular equations for E2

Subscripts as in Pn+1 are Ghost Number

Equation Mapping to:

Π1

{
(C∇)Q2 + (C∇)Q2

}
= 0 Π1S3

Π1

{
(C∇)†P1 + (C∇)†P1

}
= 0 Π1P0

Π1

{
(C∇)†Q3 + (C∇)†S3

}
= 0 Π1Q2

Π1

{
(C∇)†S3 + (C∇)†Q3

}
= 0 Π1Q2

(282)

Sometimes it is useful to redefine some of the above as follows:

Q2+n = (ξC)β̇Q
β̇
n n = 0, 1, 2 · · · (283)

S3 = (CξC)S0 (284)

R4+n = (Cξ2C)Rn n = 0, 1, 2 · · · (285)

If we do this then we can usually remove the Π1 above, so long as we remember to use the

symmetrized variables.

We call a term T regular if it has two equations that apply to it:

(C∇)T = 0 (286)

(C∇)†T = 0 (287)

and irregular if either of these is missing or changed. So in summary, the following are

regular:

Pn for n ≥ 2; Qβ̇
n for n ≥ 2; Rn for n ≥ 1 (288)

48



and the following are irregular:

P0 P1 Q
β̇
0 Q

β̇
1 S0 R0 (289)

The regular equations can be solved in detail. However this does require a detailed analysis.

That analysis follows in the rest of this section, and the results are given below in subsection

C.9, starting with equation (417). The irregular equations tend to be more difficult, and

they must be treated one by one. Some solutions for them are contained in Appendix E.

They are done later, because the solution uses results from the intervening work.

C.2. The operator ∇α expressed in terms of the multispinor variables

C.2.1. Normalization of Physical Variables

There is some freedom in choosing the coefficients an and xn in the following:

[
A
q†

α1α2···αn,β̇1···β̇n
, A

p

γ1γ2···γn,δ̇1···δ̇n

]
= anδ

p
qδ
α1α2···αn

γ1γ2···γn δ
β̇1···β̇n
δ̇1···δ̇n

(290)

and [
ψ
q†

αα1α2···αn,β̇1···β̇n
, ψ

p

γγ1γ2···γn,δ̇1···δ̇n

]
= xnδ

p
qδ
αα1α2···αn

γγ1γ2···γn
δ
β̇1···β̇n
δ̇1···δ̇n

(291)

Here we define the delta tensors to be totally symmetric

δα1α2···αn

γ1γ2···γn
= δ

(α1α2···αn)
(γ1γ2···γn)

(292)

with unit weight, which means that:

δα1α2···αn

γ1γ2···γn
δ
γ1γ2···γn
δ1δ2···δn

= δα1α2···αn

δ1δ2···δn
(293)

There are n! different kinds of terms δα1
γn
dα2
γm
dα3
γp

to completely symmetrize each of these

tensors, and there is a factor of 1
n!

in front of the sum. For example

δα1α2
γ1γ2

=
1

2!

{
δα1
γ1
δα2
γ2

+ δα1
γ2
δα2
γ1

}
(294)

The equation (293) means that this tensor is idempotent, and so it plays a role in the

projection operator:

Π1A
p

γ1δ̇1,γ2δ̇2,··· ,γn δ̇n
= A

p

γ1γ2···γn,δ̇1···δ̇n
(295)

= δα1α2···αn

γ1γ2···γn δ
β̇1β̇2···β̇n
δ̇1δ̇2···δ̇n

A
p

α1β̇1,α2β̇2,··· ,αnβ̇n
(296)

The following is a good choice for the normalization in (290) and (291), because it simplifies

the algebra immensely:

an = n!n! (297)

xn = n!(n + 1)! (298)
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This means that we are removing the 1
n!

for the unit weight tensors. For example this results

in [
A
q†

α1α2,β̇1β̇2
, A

p

γ1γ2,δ̇1δ̇2

]
= (299)

(
δα1

γ1
δα2

γ2
+ δα1

γ2
δα2

γ1

) (
δ
β̇1

δ̇1
δ
β̇2

δ̇2
+ δ

β̇1

δ̇2
δ
β̇2

δ̇1

)
(300)

We shall see how this choice simplifies the algebra below.

C.2.2. The operator ∇α

We have defined the operator ∇α by:

Π1C
α∇αΠ1 (301)

= Π1

∫
d4x

{
Cαψiα

δ

δAi
+ Cα∂αβ̇Ai

δ

δψiβ̇

}
Π1 (302)

Then we have

d1 = Cα∇α + C
α̇
∇α̇ (303)

Given our choice of normalization in subsection C.2.1, we have the multi-index form:

∇α =

∞∑

n=0

{
1

n!n!
ψi
αα1···αn,β̇1···β̇n

A
i†

α1···αn,β̇1···β̇n

+
1

(n + 1)!n!
Ai,β̇1···β̇n+1,αα1···αn

ψ
†

i,β̇1···β̇n+1,α1···αn
(304)

This choice of normalization, together with the normalization chosen in subsection (C.2.1),

ensures that the operator (304) has the same effect as the functional derivative form (302).

The hermitian conjugate is:

∇†
α =

∞∑

n=0

{
1

n!n!
Ai
α1···αn,β̇1···β̇n

ψ
i†

αα1···αn,β̇1···β̇n
(305)

+
1

(n + 1)!n!
ψi,β̇1···β̇n+1,α1···αn

A
†

i,β̇1···β̇n+1,αα1···αn
(306)

and the complex conjugate is

∇α̇ =
∞∑

n=0

{
1

n!n!
ψiα̇α̇1···α̇n,β1···βn

A
†

iα̇1···α̇n,β1···βn
(307)

+
1

(n+ 1)!n!
Aiβ1···βn+1,α̇α̇1···α̇n

ψ
i†
β1···βn+1,α̇1···α̇n

(308)
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with hermitian conjugate

∇
†

α̇ =
∞∑

n=0

{
1

n!n!
Aiα̇1···α̇n,β1···βn

ψ
†

iα̇α̇1···α̇n,β1···βn
(309)

+
1

(n+ 1)!n!
ψiβ1···βn+1,α̇1···α̇n

A
i†
β1···βn+1,α̇α̇1···α̇n

(310)

C.2.3. Explicit First Terms

Sometimes insight is gained by looking at the first few terms, which are

∇α =
1

0!0!
ψiαA

i† +
1

1!1!
ψiαβγ̇A

i†
βγ̇ (311)

+
1

1!0!
Aiβ̇αψ

†

iβ̇ +
1

2!1!
Aiβ̇1β̇2αα1

ψ
†

iβ̇1β̇2α1
+ · · · (312)

∇α̇ =
1

0!0!
ψiα̇A

†

i +
1

1!0!
Aiβα̇ψ

i†
β + · · · (313)

For actual calculations it is less confusing if one divides this up in a form like this:

∇α = ∇α(ψA†) +∇α(Aψ
†
)

(314)

where

∇α(ψA†) =

∞∑

n=0

1

n!n!
∇α,n(ψA†) (315)

∇
α(Aψ

†
)
=

∞∑

n=0

1

(n+ 1)!n!
∇
α,n(Aψ

†
)

(316)

and we define the terms like this:

∇α,n(ψA†) = ψi
αα1···αn,β̇1···β̇n

A
i†

α1···αn,β̇1···β̇n
(317)

∇
α,n(Aψ

†
)
= Ai,β̇1···β̇n+1,αα1···αn

ψ
†

i,β̇1···β̇n+1,α1···αn
(318)

The hermitian conjugates are

∇†
β,n(Aψ†)

= Ai
γ1···γn,δ̇1···δ̇n

ψ
i†

βγ1···γn,δ̇1···δ̇n
(319)

∇†

β,n(ψA
†
)
= ψi,δ̇1···δ̇n+1,γ1···γn

A
†

i,δ̇1···δ̇n+1,βγ1···γn
(320)
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C.3. Algebra of ∇α,∇β̇ and ∂αβ̇

Since the multi-index form mimics the behaviour of the functional derivative form, one

anticipates that they will have the same algebra, and they do. Using methods similar to the

above, we can derive the following relations:

∂γδ̇ =
∞∑

n=0

(
1

n!n!
∂γδ̇,n,A +

1

n!(n + 1)!
∂γδ̇,n,ψ

)
+ ∗ (321)

where we define:

∂γδ̇,n,A = Aa
γγ1···γn,δ̇δ̇1···δ̇n

A
a†

γ1···γn,δ̇1···δ̇n
(322)

∂γδ̇,n,ψ = ψa
γγ1···γn+1,δ̇δ̇1···δ̇n

ψ
a†

γ1···γn+1,δ̇1···δ̇n
(323)

Then we find that:

{
∇α,∇α̇

}
= ∂αα̇ (324)

and

[∇α, ∂βγ̇ ] =
[
∇α̇, ∂βγ̇

]
= 0 (325)

Note that

∇α∇β = −
1

2
ǫαβ∇

γ∇γ = −
1

2
ǫαβ(∇)

2 (326)

Then [
(∇)2,∇β̇

]
=
{
∇α,

{
∇α,∇β̇

}}
= 2∇α∂αβ̇ (327)

The complex conjugate is

[
∇β, (∇)

2
]
= −2∇

α̇
∂βα̇ = 2∇α̇∂

α̇
β (328)

A more complicated relation is

[
(∇)2, (∇)2

]
= ∇α

[
∇α, (∇)

2
]
+
[
∇α, (∇)2

]
∇α (329)

= ∇α
[
∇α, (∇)

2
]
−
[
∇α, (∇)

2
]
∇α =

[
∇α,

[
∇α, (∇)

2
]]

(330)

=
[
∇α,−2∇

α̇
∂αα̇

]
= −2∂αα̇∂

αα̇ + 4∂αα̇∇
α̇
∇α (331)

= 2∂αα̇∂
αα̇ − 4∂αα̇∇

α∇
α̇

(332)
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C.4. Physical Anticommutator
{
∇α,∇

†
β

}
= δβαN − σ

iβ
α R

i

The difference between the functional derivative form and the multi-index form is of course

that the latter has an adjoint form. We will use this in the formula

∆1 =
(
d1 + d

†
1

)2
(333)

to find the space E2. First we need to derive the following important relation:

{
∇α,∇

†
β

}
= δβαN − σ

iβ
α R

i (334)

The operators on the right are defined in subsection C.5.

We can start this calculation as follows:
{
∇α,∇

†
β

}
=
{
∇α(ψA†),∇

†
β(Aψ†)

}
+
{
∇
α(Aψ

†
)
,∇†

β(ψA
†
)

}
(335)

The first term in (335) is: {
∇α(ψA†),∇

†
β(Aψ†)

}
(336)

=

∞∑

n=0

1

n!n!

1

n!n!
(337)

{
ψi
αα1···αn,β̇1···β̇n

A
i†

α1···αn,β̇1···β̇n
, Ai

γ1···γn,δ̇1···δ̇n
ψ
i†

βγ1···γn,δ̇1···δ̇n

}
(338)

Now we can use the following inside the expression above

{
ψ
i†

βγ1···γn,δ̇1···δ̇n
, ψi

αα1···αn,β̇1···β̇n

}
(339)

= n!n!δβαδ
γ1···γn
α1···αn

δδ̇1···δ̇n
β̇1···β̇n

+ nn!n!δγ1α δ
βγ2···γn
α1···αn

δδ̇1···δ̇n
β̇1···β̇n

(340)

to get

=

∞∑

n=0

1

n!n!

1

n!n!
(341)

{
n!n!ψi

αα1···αn,β̇1···β̇n
ψ
i†

βα1···αn,β̇1···β̇n
(342)

+
(
n!n!δβαδ

γ1···γn
α1···αn

δδ̇1···δ̇n
β̇1···β̇n

+ nn!n!δγ1α δ
βγ2···γn
α1···αn

δδ̇1···δ̇n
β̇1···β̇n

)
(343)

Ai
γ1···γn,δ̇1···δ̇n

A
i†

α1···αn,β̇1···β̇n

}
(344)

and this is

=

∞∑

n=0

1

n!n!

1

n!n!
(345)
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{
n!n!ψi

αα1···αn,β̇1···β̇n
ψ
i†

βα1···αn,β̇1···β̇n
(346)

+n!n!δβαA
i

γ1···γn,δ̇1···δ̇n
A
i†

γ1···γn,δ̇1···δ̇n
(347)

+nn!n!Ai
αγ2···γn,δ̇1···δ̇n

A
i†

βγ2···γn,δ̇1···δ̇n

}
(348)

or

=
∞∑

n=0

(349)

{
1

n!n!
ψi
αα1···αn,β̇1···β̇n

ψ
i†

βα1···αn,β̇1···β̇n
(350)

+
1

n!n!
δβαA

i

γ1···γn,δ̇1···δ̇n
A
i†

γ1···γn,δ̇1···δ̇n
(351)

+
1

(n− 1)!n!
Ai
αγ2···γn,δ̇1···δ̇n

A
i†

βγ2···γn,δ̇1···δ̇n

}
(352)

Performing the same exercise for the second term on the right side of (335) results in the

following total expression: {
∇α,∇

†
β

}
= δβαNF +Rβ

α (353)

where:

NF =

∞∑

n=1

{
1

n!n!
Ai
α1α2···αn,β̇1···β̇n

A
i†

α1α2···αn,β̇1···β̇n

+
1

(n+ 1)!n!
ψi,β̇1···β̇n+1,α1α2···αn

ψ
†

i,β̇1···β̇n+1,α1α2···αn
(354)

NF =

∞∑

n=1

{
1

n!n!
Ai,α1α2···αn,β̇1···β̇n

A
†

i,α1α2···αn,β̇1···β̇n

+
1

(n + 1)!n!
ψi
β̇1···β̇n+1,α1α2···αn

ψ
i†

β̇1···β̇n+1,α1α2···αn
(355)

and

R β
α =

∞∑

n=1

{
1

(n− 1)!n!
Ai
αα2···αn,β̇1···β̇n

A
i†

βα2···αn,β̇1···β̇n

+
1

n!(n− 1)!
Ai,β̇1···β̇n,αα2···αn

A
†

i,β̇1···β̇n,βα2···αn

+
1

n!n!
ψi
αα1···αn,β̇1···β̇n

ψ
i†

iβα1···αn,β̇1···β̇n

+
1

(n+ 1)!(n− 1)!
ψi,β̇1···β̇n+1,αα2···αn

ψ
†

i,β̇1···β̇n+1,βα2···αn
(356)
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C.5. Definitions of N,NF , N
′ and Ri

.

As noted and derived above, we have the important relation (353):

{
∇α,∇

†
β

}
= δβαNF +Rβ

α (357)

The operator NF counts the number of A and ψ fields, but Rβ
α is more obscure. To make

this more comprehensible we define the following operators:

N ′ = δαβR
β

α (358)

and

Ri = −
1

2
σiβα R

α
β (359)

The inverse is

R β
α =

1

2
N ′δαβ − R

iσiβα (360)

and so we have {
∇α,∇

†
β

}
= δβα

(
NF +

1

2
N ′

)
− σiβα R

i

= δβαN − σ
iβ
α R

i (361)

Here we define the counting operator

N =

(
NF +

1

2
N ′

)
(362)

So now we have arrived at the expression (361), which is the same as (334). A look at

equation (356) and the definitions (358) and (359) shows that:

1. The operator N ′ counts the number of undotted spinor indices in an expression made

of the fields Aj
γ1γ2···γn,δ̇1···δ̇n

, Aj,γ1γ2···γn,δ̇1···δ̇n , ψ
j

γγ1γ2···γn,δ̇1···δ̇n
and ψj,γγ1γ2···γn,δ̇1···δ̇n , for all

values of n.

2. The operator Ri is the properly normalized rotation operator that rotates each un-

dotted spinor index on the fields Aj
γ1γ2···γn,δ̇1···δ̇n

, Aj,γ1γ2···γn,δ̇1···δ̇n , ψ
j

γγ1γ2···γn,δ̇1···δ̇n
and

ψj,γγ1γ2···γn,δ̇1···δ̇n , for all values of n, as a spinor under SU(2).

C.6. Angular Momentum and Counting Operators

Now it is easy to derive the following relations:

[
Ri, ψβ

]
=

1

2
ψγσiβγ (363)
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Also [
Ri,∇β

]
=

1

2
σiβγ ∇

γ (364)

Since by inspection we can see that:

∇α ≈ FαF
†;∇†

α ≈ FF
†

α (365)

∇α̇ ≈ Fα̇F
†
;∇

†

α̇ ≈ FF
†
α̇ (366)

we can easily derive relations like [
NF ,∇

β
]
= ∇β (367)

and [
NF ,∇

β
]
= −∇β (368)

The operator that counts undotted indices also has a simple commutator with ∇α:

[
N ′,∇β

]
= ∇β (369)

Putting these together yields

[
N,∇β

]
=

[
NF +

1

2
N ′,∇β

]
= −

1

2
∇β (370)

C.7. The Expressions Z+ and Z−

Next we note the important identity:

{
δβα (N + 1) + σiβα R

i
}{

δ
γ
β (N)− σiγβ R

i
}

(371)

= δγαN (N + 1)− σiγα R
i − σiβα σ

jγ
β R

iRj = δγαZ+ (372)

and also the identity: {
δβα (N − 1)− σiβα R

i
}{

δ
γ
β (N) + σ

iγ
β R

i
}

(373)

= δγαN (N − 1)− σiγα R
i − σiβα σ

jγ
β R

iRj = δγαZ− (374)

where

Z+ = N (N + 1)−RiRi (375)

Z− = N (N − 1)− RiRi (376)
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C.8. Solution of the regular equations in E2

Now we will solve the regular equations for the regular part of E2.

The equations

Cα∇αE = 0 (377)

Cα†∇†
αE = 0 (378)

are equivalent to the Laplacian form

∆1,regularE = 0 (379)

where the Laplacian is

∆1,regular =
{
Cα∇α, C

β†∇†
β

}
(380)

In order for this to be true, we have to be careful that the Π1 that is implicit in the operator

∇α is taken care of properly, by expressing it in terms of the physical variables that are used

to construct E1.

Now we note that

∆1,regular = CαCβ†
{
∇α,∇

†
β

}
+∇†

α∇α (381)

We calculated this anticommutator in Appendix C.4, and the result is

{
∇α,∇

†
β

}
= δβαN − σ

iβ
α R

i (382)

where we use the shorthand

N = NF +
1

2
N ′ (383)

Then the Laplacian is

∆1,regular = ∇
†
α∇α +Nc

(
NF +

1

2
N ′

)
− 2J iRi (384)

where J i is the properly normalized rotation operator that rotates the undotted spinor index

of the ghost Cα as a spinor under SU(2):

J i =
1

2
σiβα CβC

†
α = −

1

2
σiβα C

αCβ† (385)

We claim that this is a sum of three positive semi-definite hermitian operators, with the

following consequences:

∆1,regularE = 0⇒ (386)

NcNFE = 0 (387)
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∇†
α∇αE = 0 (388)

(
1

2
NcN

′ − 2J iRi

)
E = 0 (389)

In order to demonstrate that this split makes sense, we must show that

(
1

2
NcN

′ − 2J iRi

)
(390)

is a positive operator. Here is the demonstration of this fact. First note that we can write:

(
1

2
NcN

′ − 2J iRi

)
=

1

2
NcN

′ − (J i +Ri)(J i +Ri) + J iJ i +RiRi (391)

= Z[J +R]− Z[J ]− Z[R] (392)

where

Z [J +R] =

[
(N ′ +Nc)

2

(N ′ +Nc + 2)

2
− (J +R)i(J +R)i

]
(393)

Z [J ] =

[
Nc

2

Nc + 2

2
− J iJ i

]
(394)

Z [R] =

[
N ′

2

N ′ + 2

2
−RiRi

]
(395)

Now we note the following:

1. Firstly, the following equation really implies that the relevant undotted indices are all

symmetrized:

Z [J ] E = 0 (396)

≡

[
(NC)

2

(NC + 2)

2
− (J)i(J)i

]
E = 0 (397)

This is automatically satisfied because the indices involved here are the indices on

Cα1
· · ·Cαn

and they are always symmetric.

2. Secondly, the following equation really implies that the relevant undotted indices are

all symmetrized:

Z [R] E = 0 (398)

≡

[
(N ′)

2

(N ′ + 2)

2
− (R)i(R)i

]
E = 0 (399)

This is not automatically satisfied because the indices involved here are all the un-

dotted indices on all the variables Aj
γ1γ2···γn,δ̇1···δ̇n

, Aj,γ1γ2···γn,δ̇1···δ̇n , ψ
j

γγ1γ2···γn,δ̇1···δ̇n
and

ψj,γγ1γ2···γn,δ̇1···δ̇n , for all values of n, and they can be contracted between different fields,

so they are not always automatically symmetric.
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3. Thirdly, the equation

Z [J +R] E = (400)
[
(N ′ +Nc)

2

(N ′ +Nc + 2)

2
− (J +R)i(J +R)i

]
E = 0 (401)

says that all the undotted indices in any homogeneous part of E , both those on Cα and

those on all the variables A,ψ,A, ψ with any number of indices, are symmetrized.

Now we need to show that

Z[J +R]− Z[J ]− Z[R] (402)

is a positive operator. Suppose then that we have some expression E which is an eigenvector

of the hermitian matrices above in (402), and that

Z[J ] = 0 (403)

(since this is always true) and

Z [R] E =

[
(N ′)

2

(N ′ + 2)

2
−

(r)

2

(r + 2)

2

]
E (404)

and that

Z [J +R] E =

[
(N ′ +Nc)

2

(N ′ +Nc + 2)

2
−

(l)

2

(l + 2)

2

]
E (405)

From the theory of the addition of angular momentum in three dimensions we know that

N ′ ≥ r ≥ 0 (406)

and

r +Nc ≥ l ≥ |r −Nc| (407)

So we have

Z[J +R]− Z[J ]− Z[R] (408)

=

[
(N ′ +Nc)

2

(N ′ +Nc + 2)

2
−

(l)

2

(l + 2)

2

]
E (409)

−

[
(N ′)

2

(N ′ + 2)

2
−

(r)

2

(r + 2)

2

]
E (410)

=
(N ′ +Nc)

2

(N ′ +Nc + 2)

2
E −

(N ′)

2

(N ′ + 2)

2
E (411)

+
(r)

2

(r + 2)

2
E −

(l)

2

(l + 2)

2
E (412)

The smallest value of this occurs when l is largest, so we see from (407) that:

Min Value of [Z[J +R]− Z[J ]− Z[R]] E (413)
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=
2N ′

2

NC

2
E +

NC

2

(Nc + 2)

2
E (414)

+
(r)

2

(r + 2)

2
E −

(r +Nc)

2

(r +Nc + 2)

2
E (415)

=
2N ′

2

NC

2
E −

2r

2

Nc

2
E (416)

and it is clear from (406) that this is greater than zero, except in the case where r = N ′,

when it is zero.

So we have shown that this is a positive operator, except in the case where all the undotted

indices, both on Cα and on all the variables Aj
γ1γ2···γn,δ̇1···δ̇n

, Aj,γ1γ2···γn,δ̇1···δ̇n , ψ
j

γγ1γ2···γn,δ̇1···δ̇n

and ψj,γγ1γ2···γn,δ̇1···δ̇n , for all values of n, are totally symmetrized. then the operator has its

lowest possible value, which is zero. So it is a positive semi-definite operator.

C.9. Summary of the regular part of E2 assuming that NC 6= 0

So here are the equations that govern the solutions for the regular part of E2, assuming that

NC 6= 0, collected together and explained:

1. Firstly, we have from (387) that

NcNFE = 0 (417)

and assuming that NC 6= 0, this implies that

NFE = 0 (418)

and that means that we have

E = E [F , C] (419)

2. Secondly, we have from (388) that

∇αE = 0 (420)

but this adds nothing since any polynomial which satisfies equation (419) automatically

solves this equation too, because ∇ has the form ∇ ≈ FF †.

3. Thirdly we have from (389) and (392) and the discussion after that:

Z[J +R]E = 0 (421)

Z[J ]E = 0 (422)

Z[R]E = 0 (423)
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and these equations mean that all the undotted indices, both on Cα and on the an-

tichiral physical symmetrized variables

F ≡ Aj,γ1γ2···γn,δ̇1···δ̇n
, ψ

j

γγ1γ2···γn,δ̇1···δ̇n
, (424)

for all values of n, are totally symmetrized.

As noted above, these solutions apply to the following regular parts, all of which haveNC 6= 0:

Pn for n ≥ 2;Qn for n ≥ 4;Rn for n ≥ 5 (425)

but not to the following irregular parts:

P0,P1,Q2,Q3,S3,R4 (426)

It can be verified that these, combined with the results for d3 below, and the results for the

separated irregular parts of R0 and S0 in subsection E.4.1 and E.3.1, yield the descriptions

given in subsection 6.2.

D. The Operator d2 and the Space

E3Normal = ker d2 ∩ ker d†2 ∩ E2 ∩ Normal

D.1. Regular and Irregular Equations from d2 in the space E2

In general

d2 = Π2

{
δ2 − δ1

δ
†
0

∆0
δ1

}
Π2 (427)

So it has the form:

dTrans = Π2

{
ξ∂ −

(
C∇+ C∇

) ξαβ̇C†
αC

†

β̇

∆0

(
C∇+ C∇

)
}
Π2 (428)

which immediately reduces to

dTrans = Π2

{
ξ∂ −

(
C∇+ C∇

) 1

∆0
(429)

(
ξαβ̇C

†

β̇∇
α + ξαβ̇∇

β̇
C†
α

)}
Π2 (430)
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and its adjoint is

d
†
2 = Π2

{
ξ†∂† − (C†∇† + C

†
∇

†
)
CαC β̇ξ

†

αβ̇

∆0
(C†∇† + C

†
∇

†
)

}
Π2 (431)

Again it is easy to see that there is no difference between the physical and the superfield

approach at this stage. As promised, it is evident that an understanding of the ∇α operators

is essential to understand d2, because ∇α occurs in it as well as in d1. Again there is a useful

distinction to be made between the regular equations and those which are irregular.

Table 432: Regular equations for E3

Subscripts as in Pn signify Form Number n

Equation Mapping to:

Π2(ξ∂)
†Rn+4;n = 0, 1, 2 · · · = 0 Π2Qn+3

Π2(ξ∂)
†Qn+3;n = 0, 1, 2 · · · = 0 Π2Pn+2

Π2(ξ∂)Pn+2;n = 0, 1, 2 · · · = 0 Π2Qn+2

Π2(ξ∂)Qn+4;n = 0, 1, 2 · · · = 0 Π2Rn+5

(432)

and

Table 433: Irregular equations for E3

Subscripts as in Pn signify Form Number n

Equation Mapping to:

Π2

{
(ξ∂)P1 + (C · ξ · C

†
)∇2P1

}
= 0 Π2Q2

Π2

{
(ξ∂)P1 + (C† · ξ · C)∇

2
P1

}
= 0 Π2Q2

Π2

{
(ξ∂)†Q2 + (C · ξ† · C

†
)(∇

†
)2Q2

}
= 0 Π2P1

Π2

{
(ξ∂)†Q2 + (C† · ξ† · C)(∇†)2Q2

}
= 0 Π2P1

Π2

{
(ξ∂)Q3 + (C · ξ · C

†
)∇2S3

}
= 0 Π2R4

Π2

{
(ξ∂)Q3 + (C† · ξ · C)∇

2
S3
}
= 0 Π2R4

Π2

{
(∇

†
)2(C · ξ† · C

†
)R4 + (∇†)2(C† · ξ† · C)R4

}
= 0 Π2S3

(433)

We call a term T regular for this d2 operator if it was regular for the d1 operator, and if it

also satisfies equations of the form

Π2ξ
αβ̇∂αβ̇T ≡ Π2(ξ∂)T = 0 (434)

or the form

Π2(ξ∂)
†T = 0 (435)

or both of these. According to this definition, the following forms are regular for this d2
operator:
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Pn for n ≥ 2;Qn for n ≥ 4;Rn for n ≥ 5 (436)

All others are irregular. These are16:

P1,Q2,Q3,S3,R4 (437)

This spectral sequence ends with d2, as we show in Appendix I.1. Consequently E3 = E∞

for this case of the free massless theory.

Again, it is possible to solve the regular equations in detail. Again this requires a detailed

analysis. That analysis follows in the rest of this section, and the results are given below in

subsection D.5, starting with equation (477).

As noted above, the irregular equations must be treated one by one. Some solutions for

them are contained in Appendix E.

D.2. The Simple Commutator
[
∇α, ∂

†

ββ̇

]
= −δβα∇

†

β̇

Using the above we have: [
∇α, ∂

†

ββ̇

]
(438)

=
[
∇α,

{
∇†
β,∇

†

β̇

}]
(439)

=
[
∇α,∇

†
β∇

†

β̇

]
+
[
∇α,∇

†

β̇∇
†
β

]
(440)

=
{
∇α,∇

†
β

}
∇

†

β̇ −∇
†
β

{
∇α,∇

†

β̇

}

+
{
∇α,∇

†

β̇

}
∇†
β −∇

†

β̇

{
∇α,∇

†
β

}
(441)

Now it is easy to see from the expressions (365) and (366) that

{
∇α,∇

†

β̇

}
= 0 (442)

So (441) reduces to [{
∇α,∇

†
β

}
,∇

†

β̇

]
=
[
δβαN − σ

iβ
α R

i,∇
†

β̇

]
(443)

= δβα

[
NF ,∇

†

β̇

]
= −δβα∇

†

β̇ (444)

because ∇
†

β̇ does not change the number of undotted indices, and it has no free undotted

indices. Thus we have derived the simple and important identity:
[
∇α, ∂

†

ββ̇

]
= −δβα∇

†

β̇ (445)

16The terms P0 are gone because we can show they are zero in E2. This is done in subsection E.2
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D.3. Evaluation and discussion of
[
∂
†

aβ̇
, ∂γδ̇

]

This important commutator can be simply derived using the above information:

[
∂
†

αβ̇
, ∂γδ̇

]
=
[{
∇†
α,∇

†

β̇

}
, ∂γδ̇

]
(446)

= ∇†
α

[
∇

†

β̇, ∂γδ̇

]
+∇

†

β̇

[
∇†
α, ∂γδ̇

]
+
[
∇†
α, ∂γδ̇

]
∇

†

β̇ +
[
∇

†

β̇ , ∂γδ̇

]
∇†
α (447)

= ∇†
α

[
δ
β̇

δ̇
∇γ

]
+∇

†

β̇

[
δαγ∇δ̇

]
+
[
δαγ∇δ̇

]
∇

†

β̇ +
[
δ
β̇

δ̇
∇γ

]
∇†
α (448)

= δ
β̇

δ̇

{
∇†
α,∇γ

}
+ δαγ

{
∇

†

β̇,∇δ̇

}
(449)

= δ
β̇

δ̇

{
δαγN − σ

iα
γ R

i
}
+ δαγ

{
δ
β̇

δ̇
N − σiβ̇

δ̇
R
i
}

(450)

This can be written in the form:
[
∂
†

γδ̇
, ∂αβ̇

]
= δγαδ

δ̇

β̇
D − δδ̇

β̇
σiβα R

i − σiδ̇
β̇
δβαR

i
(451)

where the dimension operator (for the fields) is

DPhys = NF +NF +
1

2
N ′ +

1

2
Ṅ ′ (452)

So if we contract the indices, we get

[
∂
†

αβ̇
, ∂αβ̇

]
= 4DPhys (453)

Note also the useful relations: [
Ri, ∂αβ̇

]
= −

1

2
σiβα ∂αβ̇ (454)

[
DPhys, ∂αβ̇

]
= ∂αβ̇ (455)

D.4. Solution of the regular part of E3

The proof here is analogous to that in subsection (E.2) below. If we can show that

∂αβ̇T = 0 (456)

then it follows that

T = 0. (457)

On the other hand

∂
†

αβ̇
T = 0 (458)

has plenty of non-trivial solutions.
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Here is how we do this. To be specific, let us start with the example:

dTransP2 = Π2

{
ξ∂ −

(
C∇+ C∇

) ξαβ̇C†
αC

†

β̇

∆0

(
C∇+ C∇

)
}
Π2P

αβ
2 CαCβ (459)

which immediately reduces to

dTrans = Π2

{
ξ∂ −

(
C∇+ C∇

) 1

∆0

(460)

(
ξαβ̇C

†

β̇∇
α + ξαβ̇∇

β̇
C†
α

)}
Π2P

γδ
2 CγCδ (461)

= (ξC)β̇∂αβ̇P
γα
2 Cγ (462)

where we have used the information that

Pγα2 = Pγα2 (F) (463)

At first glance one might think that there was a contribution here from

dTrans = Π2

{
C∇ξαβ̇∇

β̇
C†
α

}
Π2P

γδ
2 CγCδ (464)

= (ξC)βΠ2∇
2
Pγα2 Cγ (465)

= (CξC)Π2∇
2
Pγα2 εαγ ≡ 0 (466)

but that is identically zero as shown.

So the big operator above is really equivalent to simply

dTransP2 = Π2ξ∂P
αβ
2 CαCβ = 0 (467)

and this amounts to

Π2∂αβ̇P
αγ
2 = 0 (468)

The indices make this look more complicated than it is. Judicious use of the form of E2

makes the argument simple here. Let us consider an example to show how this works:

Suppose we start with say

p2 = aiC(αCβψ
i
γ) ∈ P2 ∩ E2 (469)

This is explicitly in the form required for it to be in P2 ∩ E2.

Then

Π2(ξ∂)p2 = Π2aiξ
δζ̇C(αCβψ

i

γδζ̇
= ai(ξC)

ζ̇C(αψ
i

βγ)ζ̇
∈ Q3 ∩ E2 (470)

where we have performed the projection for this to be in E2 again.
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Now it is clear that for this to be zero, we require that

ai = 0 (471)

Adding more fields changes nothing essential. The requirement that d2 yields zero kills all

possible expressions that belong to P2 here. This is easily generalized to the other stages Pn
for n ≥ 2.

Analysis of the equations like (458) leaves plenty of room for non-zero objects in the coho-

mology space however. For example if one starts with a set of fields with no derivatives, it

is automatically zero from the start.

Here is another example that is a little different from the above. We could start with

q4 = ai(ξC)ζ̇C(αCβψ
i
γ) ∈ E2 ∩Q4 (472)

This is explicitly in the form required for it to be in E2. Then

d2q4 = biΠ2ξ∂(ξC)ζ̇C(αCβψ
i
γ) (473)

= bi(Cξ
2C)C(αψ

i

γβ)ζ̇
∈ E2 ∩R5 (474)

and for this to be zero we require that bi = 0. This is easily generalized to all possible stages

Qn for n ≥ 4 with any number of fields.

So we see that for the regular equations, starting with (436), only the following survive to

live in E3:

Rn for n ≥ 5 (475)

and they are subject to

Π2∂
†

αβ̇
Rn = 0 for n ≥ 5 (476)

as well as the equations that qualify them to be in E2, which can be found in subsection C.9.

D.5. The Space Rn ∩ E3 for n ≥ 5 for the free massless theory

So, in summary, we have the following results for the regular part of the space E3 for the

free massless theory:

We have shown how to prove that

Pn ∩ E3 = 0 for n ≥ 2 (477)

and

Qn ∩ E3 = 0 for n ≥ 4 (478)

We define

Rn+4 = (Cξ2C)Rn for n ≥ 0 (479)
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where

NCRn = nRn (480)

Then, for n ≥ 1 we have shown that:

NF {Rn ∩ E3} = 0 (481)

and we also have the results

{Rn ∩ E3} = {Rn ∩ E3} [F , C] (482)

Π2∂
†

αβ̇
{Rn ∩ E3} = 0 (483)

Z[J +R] {Rn ∩ E3} = 0 (484)

Z[J ] {Rn ∩ E3} = 0 (485)

Z[R] {Rn ∩ E3} = 0 (486)

The equation (483) has lots of solutions. It means that {Rn ∩ E3} is not a total derivative.

The last three equations mean that all the undotted indices, both on Cα and on the antichiral

physical symmetrized variables

F ≡ Aj,γ1γ2···γn,δ̇1···δ̇n , ψ
j

γγ1γ2···γn,δ̇1···δ̇n
, (487)

for all values of n, are totally symmetrized.

So at this point we have done very little with the irregular part of E3, which consists of:

E3Irregular = P1 ⊕ P1 ⊕Q2 ⊕Q2 ⊕Q3 ⊕Q3 ⊕ (CξC)S0 ⊕⊕(Cξ
2C)R0 ⊕ (Cξ2C)R0 (488)

but we have completely solved the problem for the regular part of E3, which consists of:

E3Regular =

∞∑

n=1

{
(Cξ2C)Rn ⊕ (Cξ2C)Rn

}
(489)

subject to the above conditions. We have not written {Rn ∩ E3} above in equation (489)

because it makes the formulae cluttered, but it should be understood here that we are talking

about the part of Rn that survives to E3. Recall that Rn in the above has n ghosts C in it.

We are going to proceed to analyze the effect of interactions on this Regular part (489) first

in Appendix F.1.
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E. Solutions to the Simple Separated Equations arising from the

Irregular Equations, and the Normal Sector E3 Normal

E.1. Overview of the irregular equations

From the previous two sections, we know that the remaining unsolved equations for E2 and

E3 involve the following pieces of E1:

E3Irregular =
{
(Cξ2C)R0 ⊕ (Cξ2C)R0

}
Class 1

⊕
{
(CξC)S0 ⊕Q3 ⊕Q3

}
Class 2

(490)

⊕
{
Q2 ⊕Q2

}
Class 3

⊕
{
P1 ⊕ P1

}
Class 4

⊕ {P0}Class 5 (491)

This section starts the treatment of these irregular equations that arise for the free mass-

less chiral SUSY theory in 3+1 dimensions. In this section we write down these irregular

equations in full form.

The fifth class of equations is easily solved and shown to be empty.

Then as a start, we separate all the irregular equations for the other four classes and consider

the solutions for these separated irregular equations. These problems are easily solved using

our results for the regular equations.

In this paper we shall not attempt to describe the solutions for the more difficult problems

that arise for the unseparated irregular equations.

We shall now discuss the relevant equations, starting with the easiest one, which is P0:

E.2. Fifth Class of irregular equations : P0

In this subsection we solve the equations for P0 and show that:

P0 = 0 (492)

These equations are:
Table 493: All equations for P0

equations for E2 Mapping to:

Π1(C∇)P0 = 0 Π1P1

Π1(C∇)P0 = 0 Π1P1

(493)

The Π1 does nothing here, and so we can immediately deduce that:

{
∇α,∇α̇

}
P0 = 0 (494)

This implies that

∂αα̇P0[F ,F ] = 0 (495)
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which means that {[
∂
†

aβ̇
, ∂αβ̇

]
+ ∂αβ̇∂

†

αβ̇

}
P0 = 0 (496)

This can be written in the form:{
4

(
NF +NF +

1

2
N ′ +

1

2
Ṅ ′

)
+ ∂αβ̇∂

†

αβ̇

}
P0 = 0 (497)

See Appendix D.3 for a derivation of equation (497) from equation (496). Since these are

positive operators, equation (497) separates into the following equations

∂αβ̇∂
†

αβ̇
P0 = 0 (498)

NFP0 = 0 (499)

NFP0 = 0 (500)

N ′P0 = 0 (501)

Ṅ ′P0 = 0 (502)

equations (499) and (500) imply that P0 is independent of the fields. Then equations (498),

(501) and (502) are automatically satisfied. So

P0[F ,F ] = constant independent of F and F (503)

and we can set it to zero for our purposes here.

P0[F ,F ] = 0 (504)

Now we shall jump to the First class:

E.3. First Class of irregular equations : R4 and R4

The expressions R4 and R4 yield zero ghost charge expressions when they are matched to

the corresponding integrated terms in the cohomology space H. So we define zero ghost

charge expressions R0 as follows:

(Cξ2C)R0 = R4 (505)

(Cξ2C)R0 = R4 (506)

The equations that govern this sector are as follows:

Table 507: All equations for R4 and R4 for the free massless case

equations for E2 Mapping to:

Π1(C∇)R4 = 0 Π1R5

Π1(C∇)R4 = 0 Π1R5

equations for E3 Mapping to:

Π2(ξ∂)
†R4 = 0 Π2Q3

Π2(ξ∂)
†R4 = 0 Π2Q3

Π2

{
(C · ξ† · C

†
)(∇

†
)2R4 + (C · ξ† · C†)(∇†)2R4

}
= 0 Π2S3

(507)
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E.3.1. The separated Solutions for R4 = (Cξ2C)R0

It is generally a good idea to try to solve the ‘separated’ equations first, because it is easier.

So we do that here. The separated equations are as above except that we ‘separate’ the

equation

Π2

{
(C · ξ† · C

†
)(∇

†
)2R4 + (C · ξ† · C†)(∇†)2R4

}
= 0 (508)

into two equations, as follows:

(∇†)2R0 = 0 (509)

(∇
†
)2R0 = 0 (510)

Note that we have also removed the projection operators Π2 from these.

Clearly all solutions of (509) and (510) are solutions of (508). However there could be (and

there are) solutions of (508) that are not solutions of either (509) or (510).

We start work on the separated equations by noting that

∇αR0 = 0 (511)

and we can derive from (511) and (509) that:

∇α
[
∇α, (∇

†)2
]
R0 = 0⇒ Z+R0 = 0 (512)

where Z+ is defined by (375). To get this we need to be careful of the Π2 and use the

formulae in subsubsection C.7.

Similarly the complex conjugate also follows:

Z+R0 = 0 (513)

It is simple to show that (512) implies that

NFR0 = 0 (514)

and that

ZRR0 = 0 (515)

The equation (514) implies that

R0 = R0

[
F
]

(516)

and the second equation (515) implies that all the undotted indices in R0 are symmetrized.

So this implies that this part is of the form claimed in (546). The remaining equation is

Π2∂
†

αβ̇
R0 = 0 (517)

Equation (517) affects only terms with derivatives, and the purpose of (517), put simply, is

to ensure that the no term in R0 is a total derivative. There are plenty of such solutions.

This describes the separated irregular part of the cohomology in this sector, and justifies the

description in subsection 6.2.
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E.4. Second Class of irregular equations : Q3 ⊕Q3 ⊕ S3

The following are the general equations for these three sectors for the free massless case:

Table 518: All equations for Q3, Q3 and S3 for the free massless case

equations for E2 Mapping to:

Π1(C∇)Q3 = 0 Π1Q4

Π1(C∇)Q3 = 0 Π1Q4

Π1

{
(C∇)†Q3 + (C∇)†S3

}
= 0 Π1Q2

Π1

{
(C∇)†S3 + (C∇)†Q3

}
= 0 Π1Q2

equations for E3 Mapping to:

Π2

{
(ξ∂)Q3 + (C · ξ · C

†
)∇2S3

}
= 0 Π2R4

Π2

{
(ξ∂)Q3 + (C† · ξ · C)∇

2
S3
}
= 0 Π2R4

Π2

{
(ξ∂)†Q3

}
= 0 Π2P2

Π2

{
(ξ∂)†Q3

}
= 0 Π2P2

(518)

E.4.1. Separated equations for S3 = (CξC)S0

First we note that a naive derivation of these equations would include the following terms

in the final two rows of table (518).

Π2(C · ξ
† · C

†
)(∇

†
)2S3 (519)

and

Π2(C · ξ
† · C†)(∇†)2S3 (520)

but these terms are identically zero because of the identity

(C · ξ† · C
†
)(CξC) = CαCα = 0 (521)

and its complex conjugate.

To start with we will look for ‘separated solutions’ for these equations. For the Q3 this

means that Q3 = 0, using arguments identical to those for Qn in the analysis of the regular

equations. We can write

S3 = (CξC)S0 (522)

For the S0 we then get the following ‘simple and separated equations’:

∇
†

β̇S0 = ∇
†
αS0 (523)

= Π2∂
†

αβ̇
S0 = ∇

2S0 = ∇
2
S0 = 0 (524)
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Using a similar derivation to the one in subsection E.3.1, these equations imply that:

Z−S0 = 0 (525)

where

Z− = N (N − 1)− RiRi (526)

and

N =

(
NF +

1

2
N ′

)
(527)

where Z− is defined by (376), so that:

Z− =

(
NF +

1

2
N ′

)(
NF +

1

2
N ′ − 1

)
−RiRi (528)

But we also have the complex conjugate equations which imply that:

Z−S0 = 0 (529)

where

Z− = N
(
N − 1

)
−R

i
R
i

(530)

and

N =

(
NF +

1

2
N

′
)

(531)

so that

Z− =

(
NF +

1

2
N

′
)(

NF +
1

2
N

′
− 1

)
− R

i
R
i

(532)

We cannot have NF ≥ 2 or NF ≥ 2 because for these we would get an impossible equation

from one of the above. So in order to have anything at all in the space we must have both

NF = 0, 1 and NF = 0, 1. If NF = NF = 0 there is nothing there at all.

So there are just three cases of any interest, and they are all restricted by the above, plus

the equation

Π2∂
†

αβ̇
S0 = 0 (533)

1. Case where NF = 0, NF = 1 The only possibility is:

(C · ξ · C)A ∈ S3 ⊂ E∞ (534)

2. Case where NF = 0, NF = 1 The only possibility is:

(C · ξ · C)A ∈ S3 ⊂ E∞ (535)

72



3. Case where NF = 1, NF = 1

Here there are several possibilities. First note that

If NF = 1.

Z− ⇒

(
1 +

1

2
N ′

)(
1

2
N ′

)
− RiRi ≡ ZR (536)

If NF = 1.

Z− =

(
1

2
N

′
)(

1

2
N

′
+ 1

)
− R

i
R
i
= ZR (537)

So we see that for this case the solution must have all its undotted indices symmetrized

and all of its dotted indices symmetrized also. Incorporating (533) we get the following:

Simplest Example:

S3,1 = (C · ξ · C)AA ∈ S3 (538)

Second Example:

S3,αβ̇ = (CξC)
(
AjAjγδ̇ − A

j

γδ̇
Aj − ψ

j
γψjδ̇

)
(539)

We shall not look here for examples with more derivatives, but presumably they do

exist.

When the theory becomes interacting or massive, these simple Solutions get mapped into

R4 by d4, resulting in new constraints for them and for R4. The same applies to d6 and d8.

E.5. Third and Fourth Classes of irregular equations : P1 ⊕ P1 and Q2 ⊕Q2

The last two classes of irregular equations are those which govern sectors of the theory with

ghost number G = −3 and G = −2. So the simplest possible examples of these would be

something like

P1 ∈ E∞ →

∫
d4s

{
Y Y Y

}
∈ H (540)

or

Q2 ∈ E∞ →

∫
d4s {Y Y } ∈ H (541)

Nothing this simple seems to be present however, as one can verify by trying some examples.
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Here are the relevant full equations:

Table 542: All equations for P1 and P1

equations for E2 Mapping to:

Π1(C∇)P1 = 0 Π1P2

Π1(C∇)P1 = 0 Π1P2

Π1

{
(C∇)†P1 + (C∇)†P1

}
= 0 Π1P0

equations for E3 Mapping to:

Π2

{
(ξ∂)P1 + (C · ξ · C

†
)∇2P1

}
= 0 Π2Q2

Π2

{
(ξ∂)P1 + (C† · ξ · C)∇

2
P1

}
= 0 Π2Q2

(542)

Table 543: All equations for Q2 and Q2

equations for E2 Mapping to:

Π1(C∇)Q2 = 0 Π1Q3

Π1(C∇)Q2 = 0 Π1Q3

Π1

{
(C∇)Q2 + (C∇)Q2

}
= 0 Π1S3

equations for E3 Mapping to:

Π2

{
(ξ∂)†Q2 + (C · ξ† · C

†
)(∇

†
)2Q2

}
= 0 Π2P1

Π2

{
(ξ∂)†Q2 + (C† · ξ† · C)(∇†)2Q2

}
= 0 Π2P1

(543)

The separated equations here for P1 and Q2 are similar to the regular equations, with

some extra equations added. So it seems likely that there are no solutions for the separated

equations. However this is not yet proved in general. It is easy to establish at low dimensions

for the operators, because if there any solutions for these sectors, they must have ghost charge

G = −3 and ghost charge G = −2 respectively, which implies that they must also have a

fairly high dimension. It has not yet been determined whether such examples exist or not.

F. Summary of the Cohomology of the Free Massless Chiral

SUSY Theory

F.1. The Normal Part E3 Normal of the space E3

In this section we summarize the form of the Normal part E3 Normal of the space E3. This

is the final step for this part for the free massless theory. To completely describe the BRS

cohomology of the free massless theory, we need only to expand this to include the exceptional

part of the space E3.

However that is not solved in this paper for two reasons:
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1. It is a long process that is not yet completed.

2. Much of it has no relevance to what we need for present purposes.

3. There is already much to think about just dealing with the Normal solutions.

Once we have described this space E3 Normal we will go on to consider what happens to it

when there are interactions in the theory.

F.2. The Space E3 Normal = E3 Simple ⊕E3 Regular

Here we assemble the information that we have derived in the foregoing. The Regular

solutions plus the separated irregular solutions up to the level of E3 are summarized in the

following form:

E3 Normal = (CξC)S0 Simple + (Cξ2C)R0 Simple + (Cξ2C)R0 Simple (544)

⊕
∞∑

n=1

{
(Cξ2C)Rn Regular + (Cξ2C)Rn Regular

}
(545)

where the regular solutions E3 Regular have the form

Rp Regular = R(α1···αn+p) = T
(j1···jm)
[i1···in]

Aj1 · · ·Ajmψ
i1
(α1
· · ·ψinαn

Cαn+1
· · ·Cαn+p) (546)

The complex conjugate of (546) is:

Rp Regular = R(α̇1···α̇n+p) = T
[i1···in]

(j1···jm)A
j1 · · ·Ajmψi1(α̇1

· · ·ψinα̇n
C α̇n+1

· · ·C α̇n+p) (547)

The simple solutions R0 Simple have the form

R0 Simple = R(α1···αn) = T
(j1···jm)
[i1···in]

Aj1 · · ·Ajmψ
i1
(α1
· · ·ψin

αn)
(548)

The complex conjugate of (546) is:

R0 Simple = R(α̇1···α̇n) = T
[i1···in]

(j1···jm)A
j1 · · ·Ajmψi1(α̇1

· · ·ψinα̇n) (549)

and

S3 Simple = (CξC)S0 Simple (550)

= (CξC)
{
fiA

i + f
i
Ai + f ijA

jAi + f i2,j

(
AiAjγδ̇ − A

i

γδ̇
Aj − ψ

i
γψjδ̇

)
+ · · ·

}
(551)

We have simplified in the foregoing, because we have not included terms with derivatives,

except in the last term (551). These terms can be added easily be going through the equa-

tions.

In the main body of the paper, we discuss how these objects in E3 give rise to objects in the

cohomology space H. We shall not repeat that here, except to say that the objects (546)

reappear as the solutions (58) in H.
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G. Summary of the Spaces Er Normal, r = 3, 4, 5 and the

Differentials dr, r = 3, 4 and for the Interacting Massless

Chiral SUSY Theory

G.1. The Operator d3 and the Space E4 = ker d3 ∩ ker d†3 ∩ E3

The spectral sequence ends at E3 for the free massless theory and we have discussed how

the cohomology space for that theory arises out of E3 = E∞ for that case. However, for the

interacting theory, it is not true that E3 = E∞. Here we will assume that gijk 6= 0 but that

m = vi = 0 in equation (54).

In this section we shall examine what happens for the space

E3 Normal = E3 Regular ⊕ E3 Simple Irregular (552)

described in the preceding section.

An examination of the possible d3 operators leads to the conclusion that for the physical

approach we get:

d3 = Π3δ3Π3 (553)

where

δ3 =

∫
d4x

(
gijkA

jAkC β̇

δ

δψiβ̇
+ Cαg

ijkAjAk
δ

δψiα

)
(554)

However the operator δ3 in (554) does not exist for the superfield approach. But we arrive

at the same d3 anyway using a different route:

d3 = Π3δ2
δ
†
0

∆0
δ1Π3 ≈ Π3

(∫
gijkA

jAk
δ

δΛi

) (∫ Λj
δ

δF j

)

∆0

(∫
C β̇F k

δ

δψkβ̇

)
(555)

This differential has the effect:

Rn
d3−→ Rn+1;n = 4, 5, · · · (556)

and

Rn
d3−→ Rn+1;n = 4, 5, · · · (557)

So we can treat one of these, and then the other follows.

G.1.1. The Simplest Example for d3: (Cξ2C)fiψ
i
α

The simplest case is:

(Cξ2C)fiψ
i
α ∈ E3

d3−→ (Cξ2C)Cαfig
ijkAjAk ∈ E3, (558)
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So this means that

(Cξ2C)fiψ
i
α ∈ E4 ⇐⇒ fig

ijk = 0 (559)

This means that, for each i, the equation (559) is true if and only if the superpotential is

independent of the field Ai. This is equivalent to:

fiA
†

i

{
gpqrApAqAr

}
= 3fpg

pqrAqAr = 0 (560)

The complex conjugate is also true of course:

f
i
Ai† {gpqrA

pAqAr} = 3f
p
gpqrA

qAr = 0 (561)

The adjoint equation to the above (558) is

(Cξ2C)CαT
ijAiAj ∈ E3

d
†
3−→ (Cξ2C)T ijgijkψ

k
α ∈ E3 (562)

This means that

(Cξ2C)CαT
ijAiAj ∈ E4 ⇐⇒ T ijgijk = 0 (563)

A more convenient way to evaluate this requirement in practice for a given model is to write

it in the form:

(Cξ2C)CαT
ijAiAj ∈ E4 ⇐⇒ T ijAi†Aj† {gpqrA

pAqAr} = 6T pqgpqrA
r = 0 (564)

This implies the complex conjugate equation:

(Cξ2C)C α̇T ijA
iAj ∈ E4 ⇐⇒ T ijA

†

iA
†

j

{
gpqrApAqAr

}
= 6T ijg

ijrAr = 0 (565)

The meaning of this becomes clearer in a given model. For example in the CSSM one gets

a space of solutions here quite easily using this form (564) of the requirement.

G.1.2. A Lie Algebra Invariance of the Superpotential: The Next to Simplest Example for

d3: (Cξ2C)f liψ
i
αAl

The next example is:

(Cξ2C)f liψ
i
αAl ∈ E3

d3−→ (Cξ2C)Cαf
l
ig
ijkAjAkAl ∈ E3 (566)

This means that

(Cξ2C)f liψ
i
αAl ∈ E4 ⇐⇒ f lig

ijkAjAkAl = 0 (567)

Again, in practice for a given model, this requirement can be conveniently written in the

form:

Lf
(
gijkAiAjAk

)
= 0 (568)
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where we define

Lf = f liAlA
†

i (569)

This equation (568) is true if the superpotential is invariant under the action of the Lie

algebra generator specified by (569).

So we see that a solution of the equation

(Cξ2C)f liψ
i
αAl

d3−→ 0 (570)

is generated by each Lie invariance of the superpotential. In other words there is an object of

the form (Cξ2C)f liψ
i
αAl which survives to E4 for each such Lie algebra generator. In fact we

will see that it survives to E∞ in general for the massless interacting case. Similar remarks

apply to the more complicated examples where there is more than one ψ or more than one

A, or when there are derivatives involved.

The adjoint of (566) also creates a constraint:

(Cξ2C)CαT
ijkAiAjAk ∈ E3

d
†
3−→ (Cξ2C)T ijkgsjkψ

s
αAi ∈ E3 (571)

So in this case, we get

(Cξ2C)CαT
ijkAiAjAk ∈ E4 ⇐⇒ T ijkgsjk = 0 (572)

Again, in practice for a given model, this requirement can be conveniently written in the

form:

T pqrApA
q†Ar†

(
gijkA

iAjAk
)
= 0 (573)

For a given tensor gijk, which specifies a given model, this generates a space of solutions

T pqr. The complex conjugate follows as usual.

G.2. The Operator d4 and the Space E5 = ker d4 ∩ ker d†4 ∩ E4

The next differential has the form

d4 = Π4δ3
δ
†
0

∆0
δ1Π4 + ∗ (574)

It arises from the combination where we use δ3 from (554), δ0 from (219) and δ1 from the

first term in (276). Schematically this is:

d4 = Π4

(∫
d4x1Cαg

ijkAjAk

δ

δψ
j
α

)(
ξC

†
C†
)∫

d4x2

(
C·ψj

δ

δA
j

)
Π4 + ∗ (575)

We can usually ignore the complicating factor 1
∆0

in these calculations, because it only adds

an irrelevant factor. Now d4 has the explicit form:

d4 = Π4(CξC
†
)

{∫
d4x gijkAjAk

δ

δAi

}
Π4 + ∗ (576)
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To get this operator in the superfield approach we follow the reasoning in (555), as follows:

d4 = Π4δ2
δ
†
0

∆0
δ1
δ
†
0

∆0
δ1Π4 + ∗ (577)

and more specifically this is:

d4 = Π4

(∫
gijkA

jAk
δ

δΛi

)(∫
Λj

δ

δF j

)
(578)

(∫
C β̇F k

δ

δψkβ̇

)(
ξC

†
C†
)(∫

C·ψj
δ

δAj

)
Π4 (579)

= Π4(ξCC
†)AAA

†
Π4 (580)

This acts to take

S3
d4−→ R4 (581)

and it eliminates various possible objects in both spaces.

G.2.1. The Simplest Example for d4: (CξC)fiA
i

Again here let us look at the low dimensional examples.

(CξC)f iAi
d4−→ (Cξ2C)f igijkA

jAk (582)

(CξC)Tjkg
ijkAi

d
†
4←− (Cξ2C)TjkA

jAk (583)

So we see that

(CξC)f iAi ∈ E5 ⇐⇒ f igijk = 0 (584)

and

(Cξ2C)TjkA
jAk ∈ E4 ⇐⇒ Tjkg

ijk = 0 (585)

The above is very similar to the analysis in subsection G.1.1.

G.2.2. The Next to Simplest Example (CξC)f ji A
iAjfor d4: A Lie Algebra Invariance of

the Superpotential

Again here let us look at the low dimensional examples.

(CξC)f ji A
iAj

d4−→ (Cξ2C)f si A
igsjkA

jAk (586)

and

(CξC)gsjkTtjkA
tAs

d
†
4←− (Cξ2C)TijkA

iAjAk (587)
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So we see that

(CξC)f ji A
iAj ∈ E5 ⇐⇒ f si A

igsjkA
jAk = 0 (588)

and

(Cξ2C)TijkA
iAjAk ∈ E5 ⇐⇒ gsjkTtjkA

tAs = 0 (589)

The above is very similar to the analysis in subsection G.1.1.

H. Summary of the Differentials dr, r = 5, 6, 7, 8 and Spaces

Er, r = 6, 7, 8, 9 for the Massive Interacting Chiral SUSY

Theory

H.1. The Operator d5 and the Space E6 = ker d5 ∩ ker d†5 ∩ E5

For the massless interacting theory the spectral sequence ends at E5. When the mass is

non-zero, we must augment the space with a dependence on the parameter m and then we

find that there is another differential:

d5 = Π5δ5Π5 (590)

where

δ5 = 2

∫
d4x

(
gijkmv

jAkC β̇

δ

δψiβ̇
+ Cαg

ijkmvjAk
δ

δψiα

)
(591)

To get this operator in the superfield approach we follow the reasoning in (555) again, as

follows:

d5 = Π5δ4
δ
†
0

∆0
δ1Π5 + ∗ (592)

and more specifically this is:

d5 = Π5

(∫
gijkmv

jAk
δ

δΛi

)(∫
Λj

δ

δF j

)(∫
C β̇F k

δ

δψkβ̇

)
Π5 (593)

This acts to take

Rn
d5−→ Rn+1;n = 4, 5, · · · (594)

and

Rn
d5−→ Rn+1;n = 4, 5, · · · (595)

So here we get

(Cξ2C)f liψ
i
αAl

d5−→ Π5(Cξ
2C)Cαf

l
ig
ijkmvjAkAl (596)
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Now we also know from multiplying the argument in subsubsection G.2.1 by m, that

(Cξ2C)CαmT
jkAjAk ∈ E5 ⇐⇒ mT jkgijk = 0 (597)

So the effect of the Π5 in (596) is to ensure that the equation (596) is projected onto the

subspace defined by

T jkgijk = 0 (598)

In practice, in a given explicit model like the CSSM, it is easy to implement this. One simply

writes down the general form of the space defined by (597), and then looks at the part of

the equation (596) which survives in this space. This is much clearer with an example and

a non-symmetric notation.

H.2. The Operator d6 and the Space E7 = ker d6 ∩ ker d†6 ∩ E6

Similarly we have:

d6 = Π6(CξC
†
)

{∫
d4x gijkmvjAk

δ

δAi

}
Π6 + ∗ (599)

This arises in the superfield approach by again using the reasoning in (577).

This acts to map the ‘separated solutions’ of the following spaces into each other:

S3
d6−→ R4 (600)

Again, these become more meaningful in a specific model like the CSSM. The analysis here

is similar to those given above.

H.3. The Operator d7 and the Space E8 = ker d7 ∩ ker d†7 ∩ E7

At the next level it is rather tricky to find a further differential. However, after a search, we

find that there is a non-zero differential of the following form (for the physical formulation):

d7 = Π7δ5
d
†
3

∆3
δ5Π7 ≈ Π7m

2gggACαA
†
ψ†
αΠ7 + ∗ (601)

where

δ5 ≈ mgijkvjAkCαψ
i†
α (602)

δ3 ≈ gijkAjAkCαψ
i†
α (603)

One sees here the advantage of starting this problem with the physical formulation, because

this operator in the superfield formulation is quite a complicated thing, of a form similar to

(555) and (591):

d7 = Π7

(
δ4
d
†
2

∆2

δ4
δ
†
0

∆0

δ1

)
Π7 + ∗ (604)
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≈ Π7

(
gmAΛ†

) (
gΛA†A†

) (
gmAΛ†

) (
ΛF

†
)(

FCψ
†
)
Π7 + ∗ (605)

≈ Π7 ggg m
2 AC α̇A

†ψ
†

α̇Π7 + ∗ (606)

If one started with the superfield formulation it might be harder to get the insight necessary

to find the above form (604).

This differential yields the important mapping

(Cξ2C)ψαA
d7−→ (Cξ2C)m2ACα (607)

More generally it acts to take

Rn ∩ E7
d7−→ Rn+1 ∩ E7 n = 4, 5 · · · (608)

and it eliminates various objects from these spaces. Its effect is best understood in a detailed

model like the CSSM, and we discuss it in subsection 7.8.

H.4. The Operator d8 and the Space E9 = ker d8 ∩ ker d†8 ∩ E8

We find that there is a non-zero differential of the form:

d8 = Π8δ5
d
†
3

∆3
δ5
δ
†
0

∆0
δ1Π8 (609)

This comes from

δ5 ≈ mgijkvjAkCαψ
i†
α (610)

δ3 ≈ gijkAjAkCαψ
i†
α (611)

δ
†
0 ≈ (ξC†C

†
) (612)

δ1 ≈ (CψA
†
) + (CψA†) (613)

- The superspace version arises easily once has found d7:

d8 = Π8

(
δ4
δ
†
2

∆2
δ4
δ
†
0

∆0
δ1
δ
†
0

∆0
δ1

)
Π8 + ∗ (614)

≈ Π8

(
gmAΛ†

) (
gΛA†A†

) (
gmAΛ†

) (
ΛF

†
)(

FCψ
†
)
(ξC†C

†
)(CψA

†
)Π8 + ∗ (615)

Either way one gets something of the form17

d8 ≈ Π8

(
m2ggg(CξC†)AA

†
A† +m2ggg(CξC

†
)AA

†
A†
)
Π8 + ∗ (616)

17As usual we are showing only the first terms here, out of an infinite series with more derivatives.
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This differential has the general effect

(CξC)AA
d7−→
{
(Cξ2C)m2A+ (Cξ2C)m2A

}
(617)

This acts to take

S3 ∩ E8
d8−→ R4 ∩ E8 (618)

and it eliminates various objects from S3 ∩ E8 and R4 ∩ E8. Again, this is best understood

in a detailed model like the CSSM.

H.4.1. The differentials d7 and d8 are not antiderivations

For all dr up to r = 6, as regards the fields18, the differential dr satisfies the ‘antiderivation’

identity:

dr(XY ) = (drX)(Y ) + (−1)[X](X)(drY ) (619)

but this does not hold for the differential d7, because it involves two field destruction opera-

tors A
†
ψ†
α in (601). The differential d8 is similar. This kind of feature is common for d†r, but

dr, r ≤ 6 are all derivations as regards the fields, because they have only one field destruction

operator. This means that one needs to be careful when applying d7 or d8 to objects with

more than two fields in them. Objects with more than two fields are common in (546) of

course. We shall not attempt to discuss this further here.

H.5. Unseparated Irregular Equations, and the End of the Spectral Sequence

In the above, we have discussed the regular and separated irregular sectors. The unseparated

irregular sectors are not solved here. In many cases, particularly for the regular and separated

irrregular sectors, it is possible to show that the spectral sequence collapses here at E9 = E∞

for specific dimensions and index structures. This is discussed in Appendix I. Noting,

however, that the operator d7 is not a derivation, and that it arises in a rather obscure way,

makes it a somewhat daunting task to ensure that one has all the differentials for the general

case. For the time being, it seems sufficiently challenging to proceed to try to understand

the significance of the cohomology that has already been found. Furthermore, much of the

cohomology relates to the gauge theory in various ways that require a paper on that subject.

18There are some double destruction operators if one includes the ghosts. The symbol [X ] = 1 if X is a

fermion, and [X ] = 0 if X is a boson.
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I. Collapse of the Spectral Sequences

I.1. Collapse of the Spectral Sequence at E3 for the free massless stage

In this subsection we shall prove, for the free massless stage , that

dr = 0 for r ≥ 3 (620)

so that

E3 = E∞ for the free massless stage (621)

Proof: We have:

NZinnEr = 0 for r ≥ 1 (622)

Hence we have

NGhost ≡ NC +NC +Nξ for r ≥ 1 (623)

So for the free massless case, for r ≥ 1, we have

NGrading = NGhost +Nξ (624)

Now since

[NGhost, δr] = δr (625)

and

[NGrading, δr] = rδr (626)

and

[NGrading, dr] = rdr (627)

It follows that

[Nξ, dr] = (r − 1)dr for r ≥ 1 (628)

So for r=4 we need

[Nξ, dr] = 3dr (629)

and this is obviously impossible because there are no terms with Nξ = 3, given the result for

the form of E2, so

dr = 0 for r ≥ 4 (630)

Hence

E4 = E∞ (631)

for this free case.

So for r=3 we need to prove that

[Nξ, d3] = 2d3 (632)
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does not happen for the free massless theory. For this we need to look more carefully, since

there are terms with Nξ = 2 in E2.

The differential d3 can only link pieces of E3 that differ by two factors of ξ and ghost charge

one. We have proved that

E3 = P1 ⊕P1 ⊕Q2 ⊕Q2

⊕Q3 ⊕Q3 ⊕ S3

⊕R4 ⊕R4

⊕
∞∑

n=5

{
Rn ⊕Rn

}
(633)

Even though we do not know everything about the terms in (633), we can easily verify by

inspection that there are no terms that differ by ghost charge one and two factors of ξ here.

The only terms19 with Nξ = 0 are P1 ⊕ P1, and these have NGhost = −3, whereas the only

terms with Nξ = 2 are Rn ⊕ Rn, and these have NGhost ≥ 0. So the spectral sequence

collapses here and we have, for the free massless case:

E3 = E∞ (634)

We will not attempt to prove collapse for the interacting or massive cases, because we do not

even know the form of the solutions for the unseparated irregular equations. My conjecture

is that the interacting case collapses at E5 and that the massive case collapses at E9, in

accord with Table 90.

I.2. Envoi

Although progress has been made, there is still work to be done, and interesting results to

be derived, and possible errors to discover. The irregular unseparated sectors need to be

finished.

Also it should be noted that some of the interesting phenomena do not require a complicated

analysis to show that the spectral sequence collapses. For example, we found in subsection 7.8

that the simplest dotspinor Quarks and Leptons get removed from E8 by d7. So there cannot

be higher dr for this sector, because there is nothing left for it to work on. The interesting

phenomenon for this sector is not what is left in the cohomology space–it is the removal

of these operators from the cohomology space when the internal symmetry breaks. That

means that when these operators are coupled to external sources, the symmetry breaking

changes the SUSY realization by mixing the effective dotspinors with elementary Quarks

and Leptons.

19In subsection E.5 we noted that we have not succeeded in eliminating the possibility that there are terms

P1 ⊕ P1 (and Q2 ⊕Q2) in E∞ for the massless free theory.
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