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Abstract

We consider two types of geometric graphs on point sets on the plane based on a plane set C: one
obtained by translates of C, another by positively scaled translates (homothets) of C. For compact and
convex C, graphs defined by scaled translates of C, i.e., Delaunay graphs based on C, are known to be
plane graphs. We show that as long as C is convex, both types of graphs are plane graphs.

1 Introduction and Preliminaries

Let P be a finite set of points on the Euclidean plane, and let C be an arbitrary subset of the Euclidean plane.
Denote by Gt(P,C) the graph on P with edge set consisting of those pairs of points that are the intersection
of P with some translate of C. Similarly, denote by Gst(P,C) the graph on P with edge set consisting of
those pairs of points that are the intersection of P with some positively scaled translate (homothet) of C.
We do not distinguish between graphs and their straight-line drawings.

If C is a disk, notice that Gst(P,C) is the usual Delaunay graph on P . If C is compact and convex, then
Gst(P,C) is the generalized Delaunay graph on P with respect to (any convex distance function based on)
C. It is a triangulation if and only if no four points in P lie on the boundary of a scaled translate of C. If
C is a non-convex or non-compact set, then it can no longer be used for defining a distance function, and
in turn, it cannot be used for defining a Voronoi diagram. Nonetheless, we still refer to Gst(P,C) as the
generalized Delaunay graph on P with respect to C.

Recall that a graph drawn on the plane is called a plane graph if it satisfies the following conditions:

1. no vertex is on an edge that it is not an endpoint of, and

2. no edges cross, i.e., edges may only intersect at common endpoints.

It was shown by Bose et al. [1] that Gst(P,C) is a plane graph in the case of compact and convex C.
Matoušek et al. [3] have established planarity in an even more special case. For any ordered pair (P,C),
notice that Gst(P,C) has all the vertices and edges in Gt(P,C), so the latter must be a plane graph if the
former is. Our eventual goal is to show that the graphs Gst are plane graphs whenever C is convex, and not
necessarily closed or bounded. We will prove this first for Gt graphs.

It is easy to argue that the plane graph condition 1 holds for Gt and Gst graphs based on any convex set
C. Since C is convex, then every (possibly scaled) translate C′ of it is also convex. Denote the line segment
between two points p and q and inclusive of them as pq. For any three points u, v, w ∈ P with v ∈ uw, the
convexity of C′ implies that it cannot meet u and w without meeting v, so C′ will not induce the edge uw.
Condition 2 remains to be shown for both the Gt and the Gst graphs.
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2 Geometric Graphs Defined by Translates of a Convex Set

Theorem 2.1. Gt(P,C) is a plane graph for every finite point set P whenever C is convex.

Proof. Let C be a convex subset of the plane. Assume for contradiction that for some finite point set P , the
graph Gt(P,C) has an edge ab that crosses another edge cd. Then there are translates C1 and C2 of C such
that a, b ∈ C1\C2 and c, d ∈ C2\C1. Let t be the vector that C1 can be translated by to obtain C2. Define
the +x-axis in the direction of t.

For the scope of this proof, for points p1(x1, y) and p2(x2, y), we write p1 < p2 and p2 > p1 if x1 < x2.
Again for the scope of this proof, for a point p and a segment qr that it is outside of, if some point s ∈ qr
shares the y-coordinate of p, we write p < qr if p < s, and p > qr if p > s.

Lemma 2.2. If a point p ∈ C1\C2 and a point q ∈ C2 have the same y-coordinate, then p < q. Similarly,
if a point p ∈ C2\C1 and a point q ∈ C1 have the same y-coordinate, then p > q.

Proof. Given a point p ∈ C1\C2 and a point q ∈ C2 with the same y-coordinate, assume for contradiction
that p < q does not hold. Since p and q must be distinct, p > q. But then we have a point r = p+ t ∈ C2

by the definition of t, we have p < r. Now p ∈ qr, so by convexity, p ∈ C2, a contradiction. The second fact
can be shown by a symmetric argument.

Lemma 2.3. For every point r ∈ C1\C2 and points p, q ⊆ C2, r 6< pq. (For every point r ∈ C2\C1 and
points p, q ⊆ C1, r 6> pq.)

Proof. Given a point r ∈ C1\C2 and a segment pq ⊆ C2, assume for contradiction that r < pq. Then there
is a point s ∈ pq such that r < s. By convexity, s ∈ C2. By the contrapositive of 2.2 we have r /∈ C1\C2.
The second fact can be proved by a symmetric argument.

To finish the proof of 2.1, recall that ab crosses cd such that a, b ∈ C1\C2 and c, d ∈ C2\C1. Let Q = {ℓ, h}
where ℓ and h are chosen from {a, b, c, d} to respectively have minimum and maximum y-coordinate. Denote
{a, b, c, d} \Q by Q. This ensures that both points in Q are comparable to ℓh. There are two possibilities.

Case 1: Q = {a, b} or Q = {c, d}. Let Q = {p, q}. The edge pq crosses the edge ℓh, so without loss of
generality, p < ℓh < q. Either p or q is in violation of 2.3, a contradiction.

Case 2: Without loss of generality, Q = {a, c}. Still without loss of generality, a = ℓ and c = h. Then
since ab and cd cross, b and d have the same relation to ac. If b < ac and d < ac, then since ab crosses cd,
we also have that b < cd, which contradicts 2.3. If b > ac and d > ac, then since ab crosses cd, we also have
b > cd, once again contradicting 2.3.

3 Generalized Delaunay Graphs with respect to a Convex Set

Theorem 3.1. Gst(P,C) is a plane graph for every finite point set P whenever C is convex.

Proof. Let C be a convex subset of the plane. Assume for contradiction that for some finite point set P , the
graph Gst(P,C) has an edge ab that crosses another edge cd. Then there are (possibly scaled) translates C1

and C2 of C such that a, b ∈ C1\C2 and c, d ∈ C2\C1. If C2 is a translate of C1, we handled this case in the
previous section. Otherwise, without loss of generality, C2 can be obtained by scaling C1 by a factor α > 1
about a point which we shall call O.

We now set up a polar coordinate system centered at O in which without loss of generality every point
of C1 is expressible as (r, θ) where r > 0 and θ ∈ [−π/2, π/2). Notice that O /∈ C1, otherwise we would
have C1 ⊆ C2 due to convexity, but we have a, b ∈ C1\C2 by hypothesis. Since O /∈ C1, by the Separation
Theorem for convex sets [2], some line L through O defines an open half-plane that does not meet C1.
Orient the plane such that L is vertical with no point of C1 to its left. If L meets C1, then since O /∈ C1, by
convexity, L∩C1 must be above O, or below O. Hence, without loss of generality, every point in C1 can be
expressed as (r, θ) where r > 0 and θ ∈ [−π/2, π/2).
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Every point of C2 is some point of C1 scaled positively about O, so it can be written as (r′, θ) where
θ ∈ [−π/2, π/2) and r′ > 0. Moreover, every convex combination of two points from C1 ∪ C2 has such a
representation. The following definitions, and the rest of the proof, are scoped to such points.

For the scope of this proof, for points p1(r1, θ) and p2(r2, θ), we write p1 < p2 and p2 > p1 if r1 < r2.
Again for the scope of this proof, for a point p and a segment qr that it is outside of, if some point s ∈ qr
shares the θ-coordinate of p, we write p < qr if p < s, and p > qr if p > s.

Now we prove the analogous fact to 2.2 whose proof is almost identical to its proof.

Lemma 3.2. If a point p ∈ C1\C2 and a point q ∈ C2 have the same θ-coordinate, then p < q. Similarly,
if a point p ∈ C2\C1 and a point q ∈ C1 have the same θ-coordinate, then p > q.

Proof. Given a point p ∈ C1\C2 and a point q ∈ C2 with the same θ-coordinate, assume for contradiction
that p < q does not hold. Since p and q must be distinct, p > q. But then we have a point r = αp ∈ C2,
which means that p < r. Now p ∈ qr, so by convexity, p ∈ C2, a contradiction. The second fact can be
shown by a symmetric argument.

With these analogous re-definitions of <, the rest of the proof of 2.1 (including 2.3 and its proof) can be
repeated here, with the caveat that “θ-coordinate” should be substituted in the place of “y-coordinate”.
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