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Abstract. - The exploration of cold polar molecules in different geometries is a rapidly developing
experimental and theoretical pursuit. Recently, the implementation of optical lattices has enabled
confinement in stacks of planes, the number of which is also controllable. Here we consider the
bound state structure of two polar molecules confined in two adjacent planes as function of the
polarization angle of the dipole moment of the molecules. We present evidence for the existence
of bound states for arbitrary dipole moments and polarization angles in this two-dimensional
geometry. The spatial structure of the bound states is dominated by two-dimensional s- and p-
waves, where the latter exceeds 40 percent over a large range of polarization angles for intermediate
or strong dipole strength. Finally, we consider the influence of the dimer bound states on the
potential many-body ground-state of the system.

Introduction. – A strong experimental drive in the
field of polar atoms and molecules has realized control-
lable samples in the rotational and vibrational ground-
state that are close to quantum degeneracy [1–6]. These
heteronuclear systems have a number of very interesting
properties due to the long-range and anisotropic dipole-
dipole force which can give rise to highly non-trivial many-
body states in both the weak- and strong-coupling regime
[7, 8]. The attractive head-to-tail configuration can, how-
ever, lead to collapse of the system [9], and confinement in
optical lattices has been suggested as a means of avoiding
this problem [10]. These confined one- or two-dimensional
geometries have led to a number of predictions of novel
few- and many-body states [10–18], and very recently the
first experimental implementation of a multilayered stack
of pancakes containing fermionic polar molecules was re-
ported [19].

Here we consider the case of two adjacent layers. How-
ever, even in this seemingly simple case there is a compe-
tition of intra- and interlayer interactions which can vary
between repulsion and attraction as one changes the po-
larization angle of the dipole moments with respect to the
layers. In the present paper we will be concerned with
few-body states with one particle in each layer in order to
describe the simplest complex in such a system in detail.

The case of dipoles oriented perpendicular to the layers
was considered from the few-body bound state and scat-
tering point of view in previous works [20–23]. At the
so-called ’magic’ angle where the intralayer repulsion van-
ishes in a one-dimensional trap the few-body bound state
structure was also discussed [24]. However, to our knowl-
edge no paper has adressed the full two-body bound-state
problem as a function of the polarization angle and the
dipole moment. This problem is highly non-trivial due to
(i) the anisotropy and (ii) the vanishing integral over space
of the potential for arbitrary polarization angle.

We solve for the bound states using a powerful stochas-
tic variational approach from which we can get energies
and expectation values of relevant operators. One of our
main results is that the bilayer system has a bound state
for any polarization angle and any value of the dipole mo-
ment. We also calculate a partial-wave decomposition that
characterizes the geometric structure of the wavefunction
which indicates the likely symmetries of the corresponding
many-body problem. As a first application of our results
in a many-body context we consider the limit of strong
coupling where the system forms bound bosonic dimers
that can potentially form a (quasi)-condensate.
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Theoretical Model. – The potential of two dipoles
in layers separated by a distance d has the following form
in the ideal limit of zero-width layers

V (x, y) = D2 ρ
2 + d2 − 3(x cos θ + d sin θ)2

(ρ2 + d2)5/2
, (1)

where ρ2 = x2 + y2, x = ρ cosφ and y = ρ sinφ, D is
the dipole moment 1, and θ denotes the polarization angle
measured from the layer plane to the z-axis which inter-
sects the two layers at right angles. Thus, for θ = π/2,
the dipoles are oriented perpendicular to the layers as in
[20, 22, 23]. One can take corrections to the zero-width
layer limit into account by integrating out a gaussian in the
transverse direction. However, the corrections are second-
order in the width, w, and we neglect them as we are
interested in the w ≪ d limit. We solve the 2 dimensional
(2D) Schrödinger equation with the potential in Eq. 1, i.e.

[

−1

2

(

d2

dx̃2
+

d2

dỹ2

)

+
Md2

2h̄2 V (x, y)

]

Ψ = ẼΨ, (2)

where x̃ and ỹ are measured in units of d, M is the molec-
ular mass and Ẽ = Md2E/2h̄2. The factor of 2 on the
potential and energy comes from the reduced mass. The
bound state energy is now a function of the dimension-
less dipolar strength quantity U = MD2/(h̄2d), which
is the ratio of potential to kinetic energy. We will also
consider the case where U < 0 which is also physically
realizable as explained below. Since the potential is in
general anisotropic the wave equation is not easy to solve
by discretization or integration. We therefore turn to the
stochastic variational approach using gaussian wavefunc-
tions which has been successfully applied to other interac-
tions [25].
The potential has the peculiar property that

∫

d xd yV (x, y) = 0 for any θ. In particular, it does
not fulfil the Landau criterion for bound states in two di-
mensions [26]. In the spherically symmetric case, θ = π/2,
an early existance proof was given in [27]. Here we are
interested in the appearance and properties of bound
states for arbitrary θ. A partial-wave decomposition of
the potential in the basis {1, cosφ, cos(2φ)} (which are
the only non-zero terms) leads to

V0(ρ) = U [3 sin2 θ−1][ρ2/2−1]

(ρ2+1)5/2
, (3)

V1(ρ) = −3U ρ sin 2θ
(ρ2+1)5/2

, (4)

V2(ρ) = − 3
2U

ρ2 cos2 θ
(ρ2+1)5/2

, (5)

which we will refer to as monopole, dipole, and quadrupole
terms, respectively. Here ρ is measured in units of d. No-
tice that for θ = θc where sin2 θ = 1/3, the monopole
term vanishes. The dipole term only vanishes for θ = 0

1In SI units we have D2 = d2/4πǫ0 when d is dipole moment

of the molecules. However, in this letter we use d to denote the

interlayer distance.

and π/2, whereas the quadrupole term is finite except at
θ = π/2. Thus for θ > θc and U > 0, the monopole term
has an inner attractive pocket and a repulsive barrier out-
side ρ/d =

√
2, and vice versa for θ < θc. For U < 0

the story is reversed. We expect the monopole term to
be the most important one for determining the system
properties, at least when it is non-vanishing away from
θ = θc. However, the monopole term is, except for the
factor of 3 sin2 θ− 1, identical to the full potential at π/2,
i.e. we know from previous work that it always supports
bound states [22, 23, 27]. We also know that the config-
uration with an attractive inner pocket and a repulsive
outer barrier leads to considerably stronger binding than
in the reversed case [22]. We will see this explicitly in the
energies presented below.
It is very important to notice that the angle θc is dif-

ferent from the magic angle where the potential of two
dipoles moving in one dimension vanishes (determined by
cos2 θ = 1/3) [8]. This demonstrates an important differ-
ence between one- and two-dimensional dipolar systems.
We will address this fact in more detail when we discuss
many-body physics below.
The bound state wavefunction, Ψ, in spherical coordi-

nates can be decomposed into partial waves,

Φ(ρ, φ) =
∑

mΨm(ρ) cos(mφ) (6)

Ψm(ρ) = 1
(1+δm0)π

∫ 2π

0
dφ cos(mφ)Ψ(ρ, φ), (7)

where the corresponding contribution of the sin(mφ) terms
is zero since the wavefunction has the same y → −y in-
variance as the potential. From Ψm(ρ) we define the prob-
ability as

Pm = π(1 + δm0)

∫

∞

0

dρ ρ|Ψm(ρ)|2, (8)

that gives the total contribution of each partial wave, nor-
malized as

∑

m Pm = 1.
When U becomes small we expect universal behavior of

energies and radii [28,29]. Using the stochastic variational
approach in the small U limit, our results for θ = π/2
approach the universal behavior of the energy which to
leading order scales like Log(−E) ∝ −1/U2 as discussed
previously [22, 23, 27]. For other values of θ we expect
the same scaling for very small U , however, the range of
U around zero where this applies will very likely have a
strong dependence on θ as indicated by the energies pre-
sented below. We also expect differences for general θ
between positive and negative U in the limit U → 0 as
for θ = π/2 [22]. The questions of critical behavior of the
binding energy and approach to universality need to be
investigated in more details.

Energies and Wavefunctions. – The energies have
been calculated using the correlated gaussian approach. In
Fig. (1) we exhibit the results as a function of U > 0 for
a selection of polarization angles. At small U the energy
decreases very fast with decresing U as noted already in
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Fig. 1: Bound state energies as a function of U for different
angles. Insets show contour plots of the potentials with valleys
in bright (blue) and hills in dark (red) colors.

[27], whereas at larger U we find a linear dependence on
U as argued in [22] for θ = π/2. The binding energies
decrease dramatically as θ approaches zero. However, we
stress that we find a bound state for any value of U also
in this particularly unfavorable case of θ = 0. Notice that
there are more bound states for larger U but we restricted
our discussion to the single bound state regime.

The U < 0 case is also of great interest as that potential
can be generated by using microwave-dressed molecules.
In [12, 13] an AC light field directed perpendicular to the
layers was used to create the θ = π/2 potential with U < 0.
A straightforward calculation shows that if the laser hits
the layers at an angle, θ, the potential is the same as for
a homogeneous electric field at angle θ but with negative
U . For U < 0 we again find that for all values of the
strength the two-body system has bound states. The re-
sults for the binding energy at different angles are shown
in Fig. (2) as function of |U |. The first thing one notices
is that the overall magnitude of the bound state energy
is smaller than that for U > 0. At θ = π/2 this can
be understood as the potential has a repulsive core at
ρ = 0, forcing the state to reside in the shallow attrac-
tive pocket at intermediate distance. In turn, this gives
a much smaller binding energy. This qualitative behavior
of the potential persists until θ decreases below θc where
the monopole changes sign. Then the potential changes
overall character to become more attractive with inner at-
tractive pocket and outer repulsive tail. The U < 0 results
thus show maximum binding at θ = 0 which is, however,
still about a factor of three smaller than the U > 0 case
at its most favorable angle of θ = π/2.

The structure of the bound state wavefunctions can be
seen from the partial wave decomposition. The results are
shown in Fig. (3) for a strong coupling of U = 10 and a
weaker one of U = 4. The probabilities are normalized so
that they sum to one. We note that the contribution of
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Fig. 2: Same as Fig. (1) but for U < 0. Note that the vertical
scale is different from that of Fig. (1).

m > 2 is only a few percent with a maximum at θ = 0
of 5% in m > 2 terms. As expected we find that m = 0
becomes dominant for θ → π/2 as we approach spherical
symmetry. Interestingly, close to θ = 0 we also find a
very large m = 0 component, no m = 1 content, and a
significant m = 2 contribution. The remaining content of
the wavefunction is found in the higher m contributions.
The fact that m = 1 has no weight for θ = 0 can be
understood from the symmetry of the potential. For x →
−x the m = 1 term changes sign, whereas the potential
is invariant. Interestingly, as we go away from θ = 0, the
m = 1 component raises rapidly and stays on the order
of 40% until we reach θ = θc at which it starts to decline
as for m = 2, in line with the restoration of spherical
symmetry at θ = π/2. For U > 10 the m = 0 component
can be even more suppressed in comparison to m > 0
for intermediate θ, whereas for positive U < 4 the m = 0
component will eventually dominate as one approaches the
universal limit discussed above.

We have found similar results for the U < 0 when taking
into account that the angle θ for U > 0 correspond to
angle π/2− θ for U < 0 and vice versa. This is in fact an
exact symmetry of the dipole part of the potential and an
approximate one for the monopole term since θc is close to
π/4. For U = −10 we find that there is a window θc < θ <
1.1 in which the m = 1 term is around 40%. Interestingly,
we find that the partial-wave content for U < 0 is almost
exclusively m = 0 and m = 1. This is perhaps surprising
as the potential in the m = 2 channel is non-vanishing
except at θ = π/2. For small θ, the potential looks like a
harmonic oscillator along the y-axis for small x and y. The
depth of this harmonic well around zero is about twice as
large for θ = 0 and U < 0 as opposed to the depth of the
two wells in the x-direction for U > 0 shown in Fig. (1).
A simple gaussian wavefunction should therefore be a fair
approximation to the full problem and in turn the lowest
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partial-waves should dominate.

The Many-Body Bilayer System. – The bilayer
system has an interesting many-body structure with com-
bination of attractive interactions that can induce pairing
and repulsive interaction that tend to suppress such ef-
fects. This was discussed recently for the θ = π/2 case
in [14, 15]. Here we consider the strongly-coupled limit
(large U) where the bound two-body dimers are expected
to be the relevant degrees of freedom. As the dimers are
effectively bosons, they are capable of forming a (quasi)-
condensate under the right conditions [14]. However, as
is well-known from BCS-BEC crossover studies [30], this
is only expected to occur when the density is low. Unfor-
tunately, the Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition [31, 32] that governs this two-dimensional system
has a critical temperature that is proportional to density
[14, 15]. Therefore, a compromise where the dimer con-
densate occurs at not too low densities would be optimal
to allow experimental access to this unusual many-body
state.

As the criterion for the onset of condensation of dimers,
we consider the point at which the chemical potential be-
comes negative [14], i.e.

µ(U, θ) =
1

2
nVeff(U, θ) + EF − 1

2
EB(U, θ), (9)

where EB is the dimer binding energy and Veff is the long-
wavelength (zero momentum) effective momentum-space
interaction between two dimers. Here we include both the
binding energy and the dimer-dimer interaction, and we
also include a term for the Fermi energy, EF , that the con-
stituents of the dimer inherit from their layer. The density
of dimers (equal to the single-layer density when the layers
have an equal number of molecules) is denoted by n. To

obtain the effective interaction, one must in principle in-
tegrate out the wavefunction of the dimer and include all
inter- and intralayer two-body terms [14]. However, here
we are only interested in the long-wavelength limit (mo-
mentum zero) in which the interlayer term vanishes [17].
This gives

Veff(U, θ) =
h̄2

M

4U

3
√
2π

(

d

w

)

4πP2(sin θ), (10)

where P2(x) = (3x2 − 1)/2. For the layer width, we take
w/d = 0.2 in the following. Notice that Veff is attractive
for θ < θc, vanishes at θc, and repulsive for θ > θc. The
attraction for θ < θc results in a negative compressibility
in a single layer [16]. We stress again that θc is much
smaller than the angle at which the intralayer repulsion
vanishes in a one-dimensional system. In this sense θc
is a special angle for the intralayer repulsion, whereas it
has no dramatic effect on the binding energies which vary
smoothly around θ = θc. Combining the formula above,
the final expression for µ becomes

Md2

h̄2 µ =
(kF d)

2

2

(

4U

3
√
2π

(

d

w

)

P2(sin θ) + 1

)

−Md2

2h̄2 EB ,

(11)
where we use the Fermi momentum k2F = 4πn for fermions
in a single layer in place of n.
The lines of µ = 0 for selected angles are shown in

Fig. (4) in the (U, kFd) plane for U > 2.5 where the dimers
are strongly bound and can be treated as localized bosonic
objects. For θ = π/2 we present results both with and
without the intralayer term which is clearly seen to shrink
the region of potential dimer condensation. For θ = θc,
the intralayer term vanishes and we find a larger region of
µ < 0. For θ < θc the region would in principle become
even larger, however, the intralayer term is then attractive
and can lead to instability and collapse [16]. We therefore
expect the line for θ = θc to provide a boundary for how
large the BEC region can become when tuning the angle
within our approximations. In the large U limit, the BKT
transition temperature is maximal at kBTBKT = EF /8
[12, 14, 15], or

TBKT = 765
n

108 cm−2

amu

M
nK. (12)

If we consider LiCs molecules (which can have a dipole
moment of up to 5.5 Debye) with d = 0.5µm, then the
µ = 0 phase for θ = θc at U = 10 is at n = 8.1 · 107 cm2,
and thus TBKT ∼ 4.9 nK. While still very low, this is a
significant increase over the sub-nano Kelvin temperatures
for θ = π/2.
We expect that the partial-wave analysis presented

above can help indicate what symmetries are possible and
relevant for the corresponding many-body problem in the
large U limit. The problem is of course still that the in-
tralayer term is attractive in the long-wavelength limit for
θ < θc, and we thus expect that the most stable system

p-4



Bound Dimers in Bilayers of Cold Polar Molecules

0 0.5 1 1.5 2 2.5 3

3

4

5

6

7

8

9

10

kF d

U

θ = π

2

θ = θc

Including

Intralayer

BCS

BEC

Fig. 4: Lines of vanishing chemical potential for sin2 θc = 1/3
(solid black) and θ = π/2 with (solid red) and without (dashed
red) intralayer repulsion. Above the solid lines we expect con-
densation of dimers to occur, whereas in the lower right part a
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of the system.

require θ > θc where the decomposition of the wavefunc-
tion is entirely dominated by the m = 0 term. However,
close to θc we still have a substantial m = 1 contribution
(immediately to the right of the vertical line in Fig. (3)).
We therefore expect a region of interest in which an ex-
otic many-body state with non-trivial symmetry like a
p-wave dominated or mixed symmetry superfluid would
emerge in the bilayer. These indications are consistent
with a partial-wave decomposition of the potential itself
[33]. Combining this information strongly suggests that
there is a very interesting crossover from weak- to strong-
coupling in the corresponding many-body system as re-
cently discussed for the θ = π/2 case [14, 15]. Similar
considerations hold for the U < 0 case.

Summary and Outlook. – We have studied a bi-
layer system of dipolar molecules for arbitrary orientation
of the dipoles with respect to the planes. The two-body
bound state structure was calculated, including energies
and partial-wave decomposition of the wavefunction as
function of dipolar strength and polarization angle. We al-
ways find a bound two-body state in the system, irrespec-
tive of strength and polarization angle of the molecules.
We argued that this follows from the fact that for small
strength, the wavefunction must reside outside the region
where the potential is non-zero, and as such the known
proof of bound states applies in the limit. The results
apply irrespective of the sign of the interaction strength.
Negative strengths invert the dependence of energy on the
dipole angle such that perpendicular polarization angle
has the smallest binding energy. The structure of the
wavefunction is dominated by the monopole component
which decreases with the strength of the interaction. Up

to moderate strengths, the monopole component is always
larger than 50 percent while the dipole component ac-
counts for most of the remaining probability.

Implications for the many-body physics of a bilayer
were discussed in the limit of strong-coupling where the
two-body bound states are expected to be the important
degrees of freedom. We conclude that the region where
(quasi)-condensation of two-molecule dimers is likely to
occur can be enhanced by tuning the angle of the dipoles.
In particular, at the critical angle, sin2 θc = 1/3, where
the long-wavelength part of the intralayer interaction van-
ishes, we expect the conditions are most favorable for ac-
cessing this phase where dimers condense. This critical
angle is different from the ’magic’ angle at which dipoles
moving on a line become non-interacting which has been
discussed in a number of previous works [8, 24, 34]. The
possible roton instability in the bilayer system, as dis-
cussed for the perpendicular case in [14], is currently under
active investigation.

The results presented in this letter indicate that bound
complexes of more than two particles must exist in the
bilayer. In the case of one-dimensional tubes this was
studied in some special cases in [24] and [34], and a full
investigation of one-dimensional complexes as function of
angles and dipole moment is forthcoming [35]. For the
two-dimensional case, the method employed here can be
extended to complexes of more particles and we plan such
investigations in the near future. We also note that the
external trapping potential that is present in each layer
in experiments [19] can be easily accomodated in the cur-
rent approach by introducing one-body harmonic oscilla-
tor terms.

In conclusion, we find that bound states of dimers in a
bilayer consisting of one particle in each layer are generic
for particles interacting through the dipole-dipole force,
irrespective of the dipole strength or polarization angle of
the dipoles with respect to the layers. In general, the wave-
function contains several partial-wave components and
therefore has interesting spatial structure. This suggests
that few-body states with more than two particles will also
have rich structure and it also implies that the many-body
physics of the system is highly non-trivial. We sketched a
phase diagram for the appearance of a dimer condensate
as a function of polarization angle and showed that it is en-
hanced around the so-called magic angle. At this point the
dimer contains a large admixture of higher partial waves
and we expect the collective behavior of the system to re-
flect this fact. The many-body problem of a bilayer with
polar molecules of arbitrary polarization angle therefore
deserve further investigation.

∗ ∗ ∗
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