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Abstract

We discuss an algebraic approach to propositional logic with side effects. To this
end, we use Hoare’s conditional [1985], which is a ternary connective comparable to
if-then-else. Starting from McCarthy’s notion of sequential evaluation [1963] we discuss
a number of valuation congruences and we introduce Hoare-McCarthy algebras as the
structures that characterize these congruences.
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1 Introduction

In the paper [4] we introduced proposition algebra, an account of propositional logic with side
effects in an algebraic, equational style. We define several semantics, all of which identify
less than conventional propositional logic (PL), and the one that identifies least is named
free valuation congruence.

Free valuation congruence can be roughly explained as follows: consider valuation func-
tions defined on strings of propositional variables (atoms), then two propositional statements
P andQ are free valuation equivalent if under all such valuations they yield the same Boolean
value, i.e., either T (true) or F (false). For example, the associativity of conjunction is pre-
served under free valuation equivalence, and P ∧F is free valuation equivalent with F (both
evaluate to F ). However, free valuation equivalence is not a congruence: continuing the last
example and assuming evaluation proceeds from left to right and a and b are atoms,

(a ∧ F ) ∨ b and F ∨ b

yield different evaluation results for any valuation function f with f(b) = T and f(ab) = F
because irrespective of the value of f(a), (a∧F ) evaluates under f to F , and the evaluation of
b in (a∧F )∨b is then determined by f(ab), while F∨b yields under valuation f the value f(b).
The requirement that propositional statements are equal only if in each context they yield the
same value indeed admits the possibility to model side effects. Free valuation congruence,
defined as the largest congruence contained in free valuation equivalence, identifies less
than free valuation equivalence and is the semantical notion we are interested in. As an
example, associativity of conjunction is preserved under free valuation congruence. So, in
free valuation equivalence, the evaluation of an atom in a propositional statement depends
on the evaluation history (i.e., the atoms previously evaluated in that statement). Although
we failed to find a precise definition of a “side effect”, we use as a working hypothesis that
this kind of dependency models the occurrence of side effects.

As implied above, the order of evaluation is crucial in proposition algebra. This immedi-
ately implies that the conventional connectives ∧ and ∨ are not appropriate because their
symmetry is lost: while in PL the propositional statements

F ∧ P and P ∧ F

are identified, they are not free valuation congruent: if evaluation proceeds from left to right,
the evaluation of P in P ∧F may yield a side effect that is not created upon the evaluation
of F ∧ P (in the latter P is not evaluated, although both statements evaluate to F ).

A logical connective that incorporates a fixed order of evaluation “by nature” is Hoare’s
ternary connective

x ⊳ y ⊲ z,

introduced in the paper [8] as the conditional.1 A more common expression for the condi-
tional x ⊳ y ⊲ z is

if y then x else z

with x, y and z ranging over propositional statements. However, in order to reason system-
atically with conditionals, a notation such as x ⊳ y ⊲ z seems indispensable, and equational

1Not to be confused with Hoare’s conditional introduced in in his 1985 book on CSP [7] and in his
well-known 1987 paper Laws of Programming [6] for expressions P ⊳ b ⊲ Q with P and Q programs and b a
Boolean expression; these sources do not refer to [8] that appeared in 1985.
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x ⊳ T ⊲ y = x (CP1)

x ⊳ F ⊲ y = y (CP2)

T ⊳ x ⊲ F = x (CP3)

x ⊳ (y ⊳ z ⊲ u) ⊲ v = (x ⊳ y ⊲ v) ⊳ z ⊲ (x ⊳ u ⊲ v) (CP4)

Table 1: The set CP of axioms for proposition algebra

reasoning appears to be the most natural and elegant type of reasoning. Note that a left-
sequential conjunction x ∧ y can be expressed as y ⊳ x ⊲ F . In this paper we restrict to
the conditional as the only primitive connective; in the papers [4, 5] we use the notation
∧b (taken from [1]) for left-sequential conjunction and elaborate on the connection between
sequential binary connectives and the conditional; we return to this point in our conclusions
(Section 9). In [8], Hoare proves that propositional logic can be equationally characterized
over the signature ΣCP = {T, F, ⊳ ⊲ } and provides a set of elegant axioms to this end,
including those in Table 1.

In [4] we define varieties of so-called valuation algebras in order to provide a semantic
framework for proposition algebra. These varieties serve the interpretation of a logic over
ΣCP by means of sequential evaluation: in the evaluation of t1 ⊳ t2 ⊲ t3, first t2 is evaluated,
and the result of this evaluation determines further evaluation; upon T , t1 is evaluated
and determines the final evaluation result (t3 is not evaluated); upon F , t3 is evaluated
and determines the final evaluation result (t1 is not evaluated).2 The interpretation of
propositional statements that is defined by each of the varieties discussed in [4] satisfies
the axioms in Table 1, and the interpretation of propositional statements defined by the
most distinguishing variety is axiomatized by exactly these four axioms. We write CP for
this set of axioms (where CP abbreviates conditional propositions) and =fr (free valuation
congruence) for the associated valuation congruence. Thus for each pair of closed terms t, t′

over ΣCP, i.e., terms that do not contain variables, but that of course may contain atoms
(propositional variables),

CP ⊢ t = t′ ⇐⇒ t =fr t
′. (1)

In [10] it is shown that CP is an independent axiomatization, and also that CP is ω-complete
if the set A of atoms involved contains at least two elements. A further introduction to the
semantics defined in [4] can be found in Section 9.

In this paper we provide an alternative semantics for proposition algebra. We define a
particular type of two-sorted algebras that capture both axiomatic derivability and semantic
congruence at the same time. We call these algebras Hoare-McCarthy algebras (HMAs for
short) and for a number of valuation congruences we prove the existence of a ‘canonical’
HMA in which axiomatic derivability and semantic congruence coincide. Thus, our first
typical result is

CP ⊢ t = t′ ⇐⇒ A
sc |= t = t′, (2)

where Asc is the canonical HMA referred to above. Here the direction =⇒ indicates sound-
ness of the axiom set CP (which appears to hold in each HMA), and the other direction

2Sequential evaluation is also called short-circuit, minimal or McCarthy evaluation, and can be traced
back to McCarthy’s seminal paper [9].
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indicates completeness. Thus, the combination of (1) en (2) shows that we can characterize
free valuation congruence in a single HMA. A further discussion about the semantics defined
in [4] and the semantics defined in this paper and a comparison of these can be found in
Section 9.

In Sections 4-8 we consider classes of valuation functions defined on (subsets of) A+ with
the property that

f(a1...anan+1) ∈ {T, F}

gives the reply of valuation f on atom an+1 after a1 up to an have been evaluated, so
both an+1 and the valuation history a1...an determine the result of evaluation. The class
of all valuation functions defines structural congruence (which coincides with free valuation
congruence), these function all have domain A+ (each valuation history is significant), and
the class of valuation functions that defines static congruence only considers functions that
have A as their domain (no valuation history is significant; this is equivalent to PL). For
|A| > 1, domains that are strictly in between these two are Acr, the set of strings in which
no atom has the same neighbour, and Acore, the set of strings in which each atom occurs at
most once. Note that if A is finite, Acr is infinite and Acore is finite, and if A = {a} then
Acr = Acore = A. We define contractive congruence using {T, F}A

cr

as its class of valuation
functions, and memorizing congruence with help of {T, F}A

core

. We distinguish two more
congruences: repetition-proof congruence which is based on a subset of the function space
{T, F}A

+

, and weakly memorizing congruence which is based on a subset of the function
space {T, F}A

core

. For all congruences mentioned, we provide complete axiomatizations,
and in Section 9 we relate these results to similar results proved in [4].

In some forthcoming definitions and proofs we use the empty string, which we always
denote by ǫ. Furthermore, we use ≡ to denote syntactic equivalence.

2 Proposition algebras and HMAs

In this section we define proposition algebras and Hoare-McCarthy algebras.

Throughout this paper let A be a non-empty, denumerable set of atoms (propositional
variables). Define C as the sort of conditional expressions with signature

ΣA
ce

= {a : C, T : C, F : C, . ⊳ . ⊲ . : C × C × C → C | a ∈ A},

thus each atom in A is a constant of sort C. In ΣA
ce
, ce stands for “conditional expressions”.

We write TΣA
ce

for the set of closed terms over ΣA
ce
, and TΣA

ce

for the set of all terms. Given
an expression t1 ⊳ t2 ⊲ t3 we will sometimes refer to t2 as the central condition. We assume
that conditional composition satisfies the axioms in Table 1. We refer to this set of axioms
with CP.

Definition 1. A ΣA
ce
-algebra is a proposition algebra if it is a model of CP.

A non-trivial initial algebra I(ΣA
ce
,CP) exists. This can be easily shown in the setting of

term rewriting [11]. Directing all CP-axioms from left to right yields a strongly normalizing
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TRS (term rewriting system) for closed terms: define a weight fuction w : TΣA
ce

→ N+ by

w(a) = 2 for all a ∈ A

w(T ) = 2

w(F ) = 2

w(x ⊳ y ⊲ z) = (w(x) · w(z))w(y)

Clearly, for all rewrite rules l → r and closed substitutions σ we have w(σ(l)) > w(σ(r)).
It is also not difficult to see that this TRS is weakly confluent, the critical pairs 〈t, t′〉 stem
from the following combinations:

(CP1), (CP3) on T ⊳ T ⊲ F : 〈T, T 〉,

(CP1), (CP4) on x ⊳ (y ⊳ T ⊲ u) ⊲ v : 〈x ⊳ y ⊲ v, (x ⊳ y ⊲ v) ⊳ T ⊲ (x ⊳ u ⊲ v)〉,

(CP2), (CP3) on T ⊳ F ⊲ F : 〈F, F 〉,

(CP2), (CP4) on x ⊳ (y ⊳ F ⊲ u) ⊲ v : 〈x ⊳ u ⊲ v, (x ⊳ y ⊲ v) ⊳ F ⊲ (x ⊳ u ⊲ v)〉,

(CP3), (CP4) on x ⊳ (T ⊳ z ⊲ F ) ⊲ v : 〈x ⊳ z ⊲ v, (x ⊳ T ⊲ v) ⊳ z ⊲ (x ⊳ F ⊲ v)〉,

(CP3), (CP4) on T ⊳ (y ⊳ z ⊲ u) ⊲ F : 〈y ⊳ z ⊲ u, (T ⊳ y ⊲ F ) ⊳ z ⊲ (T ⊳ u ⊲ F )〉,

and (CP4), (CP4) on x ⊳ (w ⊳ (y ⊳ z ⊲ u) ⊲ r) ⊲ v:

〈(x ⊳ w ⊲ v) ⊳ (y ⊳ z ⊲ u) ⊲ (x ⊳ r ⊲ v), x ⊳ ((w ⊳ y ⊲ r) ⊳ z ⊲ (w ⊳ u ⊲ r)) ⊲ v〉

with common reduct

((x ⊳ w ⊲ v) ⊳ y ⊲ (x ⊳ r ⊲ v)) ⊳ z ⊲ ((x ⊳ w ⊲ v) ⊳ u ⊲ (x ⊳ r ⊲ v)).

Hence we have a ground-complete TRS, and a closed term t is a normal form if, and only
if, t ∈ A ∪ {T, F}, or t satisfies the following property:

If t1 ⊳ t2 ⊲ t3 is a subterm of t, then t2 ∈ A and it is not the case that t1 ≡ T and t3 ≡ F .

However, the normal forms resulting from this TRS are not particularly suitable for system-
atic reasoning, and we introduce another class of closed terms for this purpose.

Definition 2. A term t ∈ TΣA
ce

is a basic form if for a ∈ A,

t ::= T | F | t ⊳ a ⊲ t.

Lemma 1. For each closed term t ∈ TΣA
ce

there exists a unique basic form t′ with CP ⊢ t = t′.

Proof. Let t′′ be the unique normal form of t. Replace in t′′ each subterm that is a single
atom a by T ⊳ a ⊲ F . This results in a unique basic form t′ and clearly CP ⊢ t = t′.

Let S be a non-empty sort of states with constant c. We extend the signature ΣA
ce

to

ΣA
sce

= ΣA
ce
∪ {c : S, . ⊳ . ⊲ . : S × C × S → S},

where sce stands for “states and conditional expressions”.
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Definition 3. A ΣA
sce

-algebra is a two-sorted proposition algebra if its ΣA
ce
-reduct is a

proposition algebra, and if it satisfies the following axioms where x, y, z range over condi-
tional expressions and s, s′ range over states:

s ⊳ T ⊲ s′ = s, (TS1)

s ⊳ F ⊲ s′ = s′, (TS2)

x 6= T ∧ x 6= F → s ⊳ x ⊲ s′ = c. (TS3)

Later on (after the next definition) we comment on these axioms.

Proposition 1. If CP ⊢ t = t′, then s⊳ t⊲s′ = s⊳ t′ ⊲s′ holds in each two-sorted proposition
algebra.

So, the state set of a two-sorted proposition algebra can be seen as one that is equipped
with an if-then else construct and conditions that stem from CP. We extend the signature
ΣA

sce
to

ΣA
spa

= ΣA
sce

∪ {• : C × S → S, ! : C × S → C},

where spa stands for “stateful proposition algebra” (see below). The operator • is called
“apply” and the operator ! is called “reply” and we further assume that these operators bind
stronger than conditional composition. The apply and reply operator are taken from [2].

Definition 4. A ΣA
spa

-algebra is a stateful proposition algebra, SPA for short, if its

reduct to ΣA
sce

is a two-sorted proposition algebra, and if it satisfies the following axioms
where x, y, z range over conditional expressions and s ranges over states:

T ! s = T, (SPA1)

F ! s = F, (SPA2)

(x ⊳ y ⊲ z) ! s = x ! (y • s) ⊳ y ! s ⊲ z ! (y • s), (SPA3)

T • s = s, (SPA4)

F • s = s, (SPA5)

(x ⊳ y ⊲ z) • s = x • (y • s) ⊳ y ! s ⊲ z • (y • s), (SPA6)

x ! s = T ∨ x ! s = F, (SPA7)

∀s(x ! s = y ! s ∧ x • s = y • s) → x = y. (SPA8)

We refer to (SPA7) as two-valuedness and we write CTS (for CP and TS and SPA) for
the set that contains all fifteen axioms involved.

In a stateful proposition algebra S with domain C′ of conditional expressions and domain
S′ of states, a conditional expression t can be associated with a ‘valuation function’ t ! :
S′ → {T, F} (the evaluation of t in some initial state) and a ‘state transformer’ t• : S′ → S′.

We note that the axioms of a SPA are consistent with those of a two-sorted proposition
algebra, and that the special instances

s ⊳ T ⊲ s = s and s ⊳ F ⊲ s = s

6



of axioms (TS1) and (TS2) are derivable: first note that s = T • (T • s) by axiom (SPA4),
T = T ! s by (SPA1), and T ⊳ T ⊲ T = T by CP-axiom (CP1), and thus

CTS ⊢ s ⊳ T ⊲ s = T • (T • s) ⊳ T ! s ⊲ T • (T • s)

= (T ⊳ T ⊲ T ) • s

= T • s

= s.

(Note that more derivable CP-identities can be used to prove this fact, e.g., T ⊳ T ⊲F = T .)
In a similar way one can derive s ⊳ F ⊲ s = s.

Definition 5. A Hoare-McCarthy algebra, HMA for short, is the ΣA
ce
-reduct of a stateful

proposition algebra.

For each HMA A we have by definition A |= CP. In Theorem 1 below we prove the
existence of an HMA that characterizes CP in the sense that a closed equation is valid only
if it is derivable from CP.

Recall TΣA
ce

is the set of closed terms over ΣA
ce
. We define structural congruence, notation

=sc

on TΣA
ce

as the congruence generated by CP.

Theorem 1. An HMA that characterizes CP exists: there is an HMA A
sc such that for all

t, t′ ∈ TΣA
ce

, CP ⊢ t = t′ ⇐⇒ Asc |= t = t′.

Proof. We construct the ΣA
spa

-algebra Ssc with C′ = TΣA
ce

/=sc
as its set of conditional ex-

pressions and the function space

S′ = {T, F}A
+

as its set of states. For each state f and atom a ∈ A define a ! f = f(a) and a • f as the
function defined for σ ∈ A+ by

(a • f)(σ) = f(aσ).

The state constant c is given an arbitrary interpretation, and the axioms (TS1)–(TS3) define
. ⊳ . ⊲ . : S′ × C′ × S′ in Ssc. The axioms (SPA1)–(SPA6) fully determine the functions !
and •, and this is well-defined: if t =sc t

′ then for all f , t ! f = t′ ! f and t • f = t′ • f (this
follows by inspection of the CP axioms). The axiom (SPA7) holds by construction of S′. In
order to prove that Ssc is a SPA it remains to be shown that axiom (SPA8) holds, i.e., for
all t, t′ ∈ TΣA

ce

,
∀f(t ! f = t′ ! f ∧ t • f = t′ • f) → t =sc t

′.

This follows by contraposition. By Lemma 1 we may assume that t and t′ are basic forms,
and we apply induction on the complexity of t.

1. If t ≡ T , then t′ ≡ F yields t ! f 6= t′ ! f for any f , and if t′ ≡ t1 ⊳ a ⊲ t2 then consider
f with f(a) = T and f(aσ) = F for σ ∈ A+. We find t • f = f and t′ • f 6= f because
(t′ • f)(a) = (t1 • f)(aσ) = F .

2. If t ≡ F a similar argument applies.
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3. If t ≡ t1 ⊳ a ⊲ t2, then the case t′ ∈ {T, F} can be dealt with as above.

If t′ ≡ t3 ⊳ a ⊲ t4 then assume t1 ⊳ a ⊲ t2 6=sc t3 ⊳ a ⊲ t4 because t1 6=sc t3. By induction
there exists f with t1 • f 6= t3 • f or t1 ! f 6= t3 ! f . Take some g such that a • g = f
and a ! g = T , then g distinguishes t1 ⊳ a ⊲ t2 and t3 ⊳ a ⊲ t4. If t1 =sc t3, then a similar
argument applies for t2 6=sc t4.

If t′ ≡ t3 ⊳ b ⊲ t4 with a and b different, then (t1 ⊳ a ⊲ t2) • f 6= (t3 ⊳ b ⊲ t4) • f for f
defined by f(a) = f(aσ) = T and f(b) = f(bσ) = F because ((t1 ⊳ a ⊲ t2) • f)(a) =
(t1 • (a• f))(a) = f(aρa) = T , and ((t3 ⊳ b ⊲ t4)• f)(a) = (t4 • (b• f))(a) = f(bρ′a) = F
(where ρ, ρ′ possibly equal ǫ).

So Ssc is a SPA. Define the HMA Asc as the ΣA
ce
-reduct of Ssc. The validity of axiom (SPA8)

proves ⇐= as stated in the theorem (the implication =⇒ holds by definition of a SPA).

Observe that Asc ∼= I(ΣA
ce
,CP). By the proof of the above theorem we find for all

t, t′ ∈ TΣA
ce

,
CP ⊢ t = t′ ⇐⇒ S

sc |= t = t′. (3)

We have the following (trivial) corollary on the quasivariety of SPAs, the first of a number
of corollaries in which certain quasivarieties of SPAs are characterized.

Corollary 1. Let Cfr be the class of all SPAs. Then for all t, t′ ∈ TΣA
ce

,

Cfr |= t = t′ ⇐⇒ CP ⊢ t = t′.

Proof. By the facts that Ssc ∈ Cfr and that each SPA satisfies CP by definition.

3 Not all proposition algebras are HMAs

In this section we show that not all proposition algebras are HMAs. Then we formulate a
sufficient condition under which a proposition algebra is an HMA.

If we add to CP the equation
T ⊳ x ⊲ T = T,

a non-trivial initial algebra I(ΣA
ce
,CP+ 〈T ⊳x⊲T = T 〉) exists: again we can define normal

forms by directing all axioms from left to right; this yields a strongly normalizing TRS by
the weight function w defined in the previous section. It is also not difficult to see that this
TRS is weakly confluent, the critical pairs not dealt with before arise from the following
combinations:

(CP1) and 〈T ⊳ x ⊲ T = T 〉 on T ⊳ T ⊲ T : 〈T, T 〉,

(CP2) and 〈T ⊳ x ⊲ T = T 〉 on T ⊳ F ⊲ T : 〈T, T 〉,

(CP4) and 〈T ⊳ x ⊲ T = T 〉 on T ⊳ (y ⊳ z ⊲ u) ⊲ T : 〈(T ⊳ y ⊲ T ) ⊳ z ⊲ (T ⊳ u ⊲ T ), T 〉,

(CP4) and 〈T ⊳ x ⊲ T = T 〉 on x ⊳ (T ⊳ z ⊲ T ) ⊲ u :

〈(x ⊳ T ⊲ u) ⊳ z ⊲ (x ⊳ T ⊲ u), x ⊳ T ⊲ u〉.

8



It is easily seen that all these pairs have a common reduct, hence, also this TRS is ground-
complete. Furthermore, observe that both T ⊳ a ⊲ b and T ⊳ b ⊲ a are normal forms. Note the
following consequence in CP + 〈T ⊳ x ⊲ T = T 〉:

x = x ⊳ (T ⊳ y ⊲ T ) ⊲ x

= (x ⊳ T ⊲ x) ⊳ y ⊲ (x ⊳ T ⊲ x)

= x ⊳ y ⊲ x. (4)

Now consider the conditional equation

((T ⊳ x ⊲ T = T ) ∧ (T ⊳ y ⊲ T = T )) → T ⊳ x ⊲ y = T ⊳ y ⊲ x. (5)

Lemma 2. Each HMA satisfies the conditional equation (5).

Proof. Let HMA A be the ΣA
ce
-reduct of some stateful proposition algebra S with domains

C′ and S′ and assume A, σ |= (T ⊳ x ⊲ T = T ) ∧ (T ⊳ y ⊲ T = T ) for some assignment σ.
Writing σ(x) = t and σ(y) = t′, it follows that ∀s ∈ S′(t • s = s = t′ • s):

(T ⊳ t ⊲ T ) • s = T • t • s ⊳ t ! s ⊲ T • t • s

= t • s ⊳ t ! s ⊲ t • s.

By assumption (T ⊳ t ⊲ T ) • s = T • s and by T • s = s we find by axiom (SPA7) and
axiom (TS3) that t • s = s. In a similar way it follows that t′ • s = s.

Then for all s ∈ S′,

(T ⊳ t ⊲ t′) ! s = T ! (t • s) ⊳ t ! s ⊲ t′ ! (t • s)

= T ⊳ t ! s ⊲ t′ ! s,

and by symmetry, (T ⊳t′⊲t)!s = T ⊳t′ !s⊲t !s. Now (T ⊳t⊲t′)!s = (T ⊳t′⊲t)!s follows by case
distinction, using axioms (SPA7), (CP1) and (CP2). Furthermore, by (SPA7) and (TS1),

(T ⊳ t ⊲ t′) • s = T • t • s ⊳ t ! s ⊲ t′ • t • s

= s ⊳ t ! s ⊲ s

= s,

and in a similar way it follows that (T ⊳ t′ ⊲ t) • s = s, thus (T ⊳ t ⊲ t′) • s = (T ⊳ t′ ⊲ t) • s.
By (SPA8), T ⊳ t⊲ t′ = T ⊳ t′ ⊲ t and thus A, σ |= T ⊳x⊲y = T ⊳y ⊲x, as was to be proved.

In a setting with two different atoms, not each proposition algebra is an HMA.

Theorem 2. For |A| > 1 there exist proposition algebra’s that are no HMAs.

Proof. Consider the initial algebra I(ΣA
ce
,CP+〈T ⊳x⊲T = T 〉). Clearly this algebra satisfies

T ⊳a⊲T = T = T ⊳b⊲T , and therewith an instance of the premise of conditional equation (5),
but not its conclusion T ⊳ a ⊲ b = T ⊳ b ⊲ a because these terms are different normal forms.
By Lemma 2, I(ΣA

ce
,CP + 〈T ⊳ x ⊲ T = T 〉) is not an HMA.

9



Let HMAA be the class of ΣA
ce
-algebra’s that are HMAs. The diagram of A ∈ HMAA,

notation ∆A, is defined by

∆A = {t = t′ | t, t′ ∈ TΣA
ce

, A |= t = t′} ∪ {t 6= t′ | t, t′ ∈ TΣA
ce

, A |= t 6= t′}.

Let CceTh(A) be the closed conditional equational theory of A and let CceTh(HMAA) be
the set of closed conditional equations true in all HMAs, thus

CceTh(HMAA) =
⋂

A∈HMAA

CceTh(A).

Theorem 3. Let A be some minimal ΣA
ce
-algebra. If A |= CceTh(HMAA) then A ∈

HMAA.

Proof. Using compactness we prove that ∆A ∪CTS is consistent. Consider finite subsets D
and D′ of the positive respectively negative part of ∆A.

If D′ = ∅, then extend A to a two-sorted model Ss by adding a state set S′ = {s} and
defining the function s ⊳ t ⊲ s by the axioms (TS1)–(TS3) (of course, the interpretation of
the state constant c is s). Furthermore, define in Ss the functions ! and • by a ! s = T and
a • s = s for all a ∈ A, and the other cases by axioms (SPA1)–(SPA6) (so t • s = s for all t).
Finally, if for closed terms t and t′, t ! s = t′ ! s, extend D with t = t′. Now observe that the
axioms of CP are valid in Ss because A |= CceTh(HMAA). Furthermore, axiom (SPA7) is
trivially valid. Axiom (SPA8) is valid by construction, so Ss |= CTS ∪D.

If D′ 6= ∅, then let e′ be such that ¬e′ ∈ D′. Let E =
∧

e∈D e and write ¬D′ for the set
of equations whose negation is in D′, so e ∈ ¬D′ if and only if ¬e ∈ D′. Then E → e′ 6∈
CceTh(HMAA) because A 6|= E → e′. Thus there exists a model Se′ of CTS ∪ E ∪ {¬e′}.
We can consider a disjoint union S∗ of all Se′ for e

′ ∈ D′, where we forget all c’s (the state
constant that guarantees that S is a non-empty sort). Here the state sets are taken disjoint
and for D′ = {¬e′1, ...,¬e

′

n}, SS∗ = SSe′
1

∪ ... ∪ SSe′n
. The disjoint union then found is again

a model of CTS ∪ E and it satisfies ¬e′ for each e′ ∈ ¬D′. Finally, c is given an arbitrary
interpretation. We find that S∗ |= CTS ∪ E ∪ {¬e′ | e′ ∈ ¬D′}.

By compactness this proves the consistency of ∆A ∪ CTS. Let S be a ΣA
spa

-algebra with
S |= ∆A ∪ CTS. Then the minimal subalgebra S′ of S is a model of CTS and its reduct to
ΣA

ce
satisfies ∆A. So S′ ↾ ΣA

ce
∼= A, whence A ∈ HMAA.

4 Repetition-proof congruence

In this section we consider repetition-proof congruence defined by the axioms of CP and
these axiom schemes (a ∈ A):

(x ⊳ a ⊲ y) ⊳ a ⊲ z = (x ⊳ a ⊲ x) ⊳ a ⊲ z, (CPrp1)

x ⊳ a ⊲ (y ⊳ a ⊲ z) = x ⊳ a ⊲ (z ⊳ a ⊲ z). (CPrp2)

Typically, the valuation of successive equal atoms yields the same reply.

We write CPrp for this set of axioms. Let repetition-proof congruence, notation =rp, be
the congruence on TΣA

ce

generated by the axioms of CPrp.
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Definition 6. A term t ∈ TΣA
ce

is an rp-basic form if for a ∈ A,

t ::= T | F | t1 ⊳ a ⊲ t2

and ti (i = 1, 2) is an rp-basic form with the restriction that the central condition (if present)
is either different from a, or ti ≡ t′i ⊳ a ⊲ t′i with t′i an rp-basic form.

Lemma 3. For each t ∈ TΣA
ce

there exists an rp-basic form t′ with CPrp ⊢ t = t′.

Proof. First, we prove that the conditional composition t1 ⊳ t2 ⊲ t3 of three rp-basic terms
can be proved equal to an rp-basic term by structural induction on t2. If t2 ∈ {T, F} this is
trivial, and otherwise we find by induction rp-basic forms t4 and t5 with

t1 ⊳ (t ⊳ a ⊲ t
′) ⊲ t3 = (t1 ⊳ t ⊲ t3) ⊳ a ⊲ (t1 ⊳ t

′ ⊲ t3)

= t4 ⊳ a ⊲ t5.

If t4 ≡ t6⊳a⊲t7 then apply axiom (CPrp1) on t4, thus obtaining t6⊳a⊲t6, and if t5 ≡ t8⊳a⊲t9,
replace it by t9 ⊳ a ⊲ t9 (axiom (CPrp2)). Clearly, the resulting term is an rp-basic form.

With the above result, the lemma’s statement follows easily by structural induction.

Theorem 4. For |A| > 1, an HMA that characterizes CPrp exists: there is an HMA Arp

such that for all t, t′ ∈ TΣA
ce

, CPrp ⊢ t = t′ ⇐⇒ Arp |= t = t′.

Proof. Define the function space

RP ⊂ {T, F}A
+

by f ∈ RP if for all a ∈ A and σ ∈ A∗, f(σaa) = f(σa). Construct the ΣA
spa

-algebra Srp

with TΣA
ce

/=rp
as its set of conditional expressions and RP as its set of states. For each state

f and atom a ∈ A define a ! f = f(a) and a • f by

(a • f)(σ) = f(aσ).

Clearly, if f ∈ RP then a • f ∈ RP .

Similar as in the proof of Theorem 1, the state constant c is given an arbitrary interpreta-
tion, and the axioms (TS1)–(TS3) define the function s ⊳ f ⊲ s′ in Srp. The axioms (SPA1)–
(SPA6) fully determine the functions ! and •, and this is well-defined: if t =rp t′ then for all
f , t !f = t′ !f and t• f = t′ • f follow by inspection of the CPrp axioms. We show soundness
of the axiom scheme (CPrp1): For all f ∈ RP , a ! (a • f) = a ! f , and thus if a ! f = T ,

(t1 ⊳ a ⊲ t2) ! (a • f) = (t1 ⊳ a ⊲ t1) ! (a • f).

We derive

((t1 ⊳ a ⊲ t2) ⊳ a ⊲ t) ! f = (t1 ⊳ a ⊲ t2) ! (a • f) ⊳ a ! f ⊲ t ! (a • f)

= (t1 ⊳ a ⊲ t1) ! (a • f) ⊳ a ! f ⊲ t ! (a • f)

= ((t1 ⊳ a ⊲ t1) ⊳ a ⊲ t) ! f,

and

((t1 ⊳ a ⊲ t2) ⊳ a ⊲ t) • f = (t1 ⊳ a ⊲ t2) • (a • f) ⊳ a ! f ⊲ t • (a • f)

= (t1 ⊳ a ⊲ t1) • (a • f) ⊳ a ! f ⊲ t • (a • f)

= ((t1 ⊳ a ⊲ t1) ⊳ a ⊲ t) • f.

11



The soundness of (CPrp2) follows in a similar way. The axiom (SPA7) holds by construction
of RP . In order to prove that Srp is a SPA it remains to be shown that axiom (SPA8) holds,
i.e., for all t, t′ ∈ TΣA

ce

,

∀f(t ! f = t′ ! f ∧ t • f = t′ • f) → t =rp t′.

This follows by contraposition in the same way as in the proof of Theorem 1. However, the
restriction to RP imposes some subtle constraints, so we give a full proof. We may assume
that both t and t′ are rp-basic forms. We apply induction on the complexity of t. Let
a, b ∈ A with a 6= b.

1. If t ≡ T , then if t′ ≡ F it follows that t ! f 6= t′ ! f for any f ∈ RP , and if t′ ≡ t1 ⊳ a ⊲ t2
then consider some f ∈ RP with f(b) = T and f(a) = f(aσ) = F for σ ∈ A+. We
find (t • f)(b) = f(b) = T and (t′ • f)(b) = (t1 • f)(aσb) = F (where σ possibly equals
ǫ), so t′ • f 6= t • f .

2. If t ≡ F a similar argument applies.

3. If t ≡ t1 ⊳ a ⊲ t2, then the case t′ ∈ {T, F} can be dealt with as above.

If t′ ≡ t3 ⊳ a ⊲ t4 then assume t 6=rp t′ because t1 6=rp t3. By induction there exists
f ∈ RP with the distinguishing property t1 • f 6= t3 • f or t1 ! f 6= t3 ! f .

• If none of t1 and t3 has a as its central condition, there exists g ∈ RP with
a • g = f and a ! g = T , and such a function g distinguishes t and t′.

• If at least one of t1 and t3 has a as its central condition, then this a and all
successive a’s occur in subterms of the form t′′ ⊳ a ⊲ t′′ because t and t′ are
rp-basic forms. Hence, we may assume that t1 and t3 can be distinguished by
f ′ ∈ RP with f ′(a) = T and f ′ otherwise defined as f (so, f and f ′ differ at most
on initial a-sequences). We find that f ′ distinguishes t and t′.

If t1 =rp t3, then a similar argument applies for t2 6=rp t4.

If t′ ≡ t3 ⊳ b ⊲ t4 with a and b different, then (t1 ⊳ a ⊲ t2) • f 6= (t3 ⊳ b ⊲ t4) • f for f
defined by f(a) = f(aσ) = T and f(b) = f(bσ) = F because ((t1 ⊳ a ⊲ t2) • f)(a) =
(t1 • (a• f))(a) = f(aρa) = T , and ((t3 ⊳ b ⊲ t4)• f)(a) = (t4 • (b• f))(a) = f(bρ′a) = F
(where ρ, ρ′ possibly equal ǫ).

So Srp is a SPA. Define the HMA Arp as the ΣA
ce
-reduct of Srp. The above argument on the

soundness of the axiom schemes (CPrp1) and (CPrp2) proves =⇒ as stated in the theorem,
and the validity of axiom (SPA8) proves ⇐=. We finally note that Arp ∼= I(ΣA

ce
,CPrp).

In the proof above we defined the SPA Srp and we found that if |A| > 1, then for all
t, t′ ∈ TΣA

ce

,
CPrp ⊢ t = t′ ⇐⇒ S

rp |= t = t′. (6)

If A = {a} then Srp has only two states, say f and g with f(an+1) = T and g(an+1) = F
and it easily follows that

A
rp |= T ⊳ a ⊲ T = T,

so Arp 6∼= I(ΣA
ce
,CPrp) in this case. The following corollary is related to Theorem 4 and

characterizes repetition-proof congruence in terms of a quasivariety of SPAs that satisfy an
extra condition.
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Corollary 2. Let |A| > 1. Let Crp be the class of SPAs that satisfy for all a ∈ A and s ∈ S,

a ! (a • s) = a ! s.

Then for all t, t′ ∈ TΣA
ce

,
Crp |= t = t′ ⇐⇒ CPrp ⊢ t = t′.

Proof. By its definition, Srp ∈ Crp, which by (6) implies =⇒. For the converse, it is sufficient
to show that the axioms (CPrp1) and (CPrp2) hold in each SPA that is in Crp. Let such S

be given. Consider (CPrp1): if for some interpretation of s in S, a ! s = F there is nothing
to prove, and if a ! s = T , then a ! (a • s) = T and hence

((t1 ⊳ a ⊲ t2) ⊳ a ⊲ t) ! s = t1 ! (a • (a • s))

= ((t1 ⊳ a ⊲ t1) ⊳ a ⊲ t) ! s,

and

((t1 ⊳ a ⊲ t2) ⊳ a ⊲ t) • s = t1 • (a • (a • s))

= ((t1 ⊳ a ⊲ t1) ⊳ a ⊲ t) • s.

The soundness of axiom (CPrp2) can be proved in the same way.

5 Contractive congruence

In this section we consider contractive congruence defined by the axioms of CP and these
axiom schemes (a ∈ A):

(x ⊳ a ⊲ y) ⊳ a ⊲ z = x ⊳ a ⊲ z, (CPcr1)

x ⊳ a ⊲ (y ⊳ a ⊲ z) = x ⊳ a ⊲ z. (CPcr2)

Typically, successive equal atoms are contracted.

We write CPcr for this set of axioms. Let contractive congruence, notation =cr, be the
congruence on TΣA

ce

generated by the axioms of CPcr.

Definition 7. A term t ∈ TΣA
ce

is a cr-basic form if for a ∈ A,

t ::= T | F | t1 ⊳ a ⊲ t2

and ti (i = 1, 2) is a cr-basic form with the restriction that the central condition (if present)
is different from a.

Lemma 4. For each t ∈ TΣA
ce

there exists a cr-basic form t′ with CPcr ⊢ t = t′.

Proof. Similar to the proof of Lemma 3.

Theorem 5. For |A| > 1 an HMA that characterizes CPcr exists, i.e. there is an HMA
Acr such that for all t, t′ ∈ TΣA

ce

, CPcr ⊢ t = t′ ⇐⇒ Acr |= t = t′.
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Proof. Let Acr ⊂ A+ be the set of strings that contain no consecutive occurrences of the
same atom. Construct the ΣA

spa
-algebra Scr with TΣA

ce

/=cr
as its set of conditional expressions

and the function space
{T, F}A

cr

as its set of states. For each state f and atom a ∈ A define a ! f = f(a) and a • f by

(a • f)(σ) =

{

f(σ) if σ = a or σ = aρ,

f(aσ) otherwise.

Clearly, a • f ∈ {T, F}A
cr

if f ∈ {T, F}A
cr

. Similar as in the proof of Theorem 1, the
state constant c is given an arbitrary interpretation, and the axioms (TS1)–(TS3) define the
function s ⊳ f ⊲ s′ in Scr. The axioms (SPA1)–(SPA6) fully determine the functions ! and
•, and this is well-defined: if t =cr t′ then for all f , t ! f = t′ ! f and t • f = t′ • f follow by
inspection of the CPcr axioms. We show soundness of the axiom scheme (CPcr1): first note
that a ! (a • f) = a ! f and a • (a • f) = a • f , and derive

((t1 ⊳ a ⊲ t2) ⊳ a ⊲ t) ! f = (t1 ⊳ a ⊲ t2) ! (a • f) ⊳ a ! f ⊲ t ! (a • f)

= t1 ! (a • (a • f)) ⊳ a ! f ⊲ t ! (a • f)

= (t1 ⊳ a ⊲ t) ! f,

and

((t1 ⊳ a ⊲ t2) ⊳ a ⊲ t) • f = (t1 ⊳ a ⊲ t2) • (a • f) ⊳ a ! f ⊲ t • (a • f)

= t1 • (a • (a • f)) ⊳ a ! f ⊲ t • (a • f)

= (t1 ⊳ a ⊲ t) • f.

The soundness of (CPcr2) follows in a similar way. The axiom (SPA7) holds by construction
of RP . In order to prove that Scr is a SPA it remains to be shown that axiom (SPA8) holds,
i.e., for all t, t′ ∈ TΣA

ce

,

∀f(t ! f = t′ ! f ∧ t • f = t′ • f) → t =cr t
′.

This follows by contraposition. We may assume that both t and t′ are cr-basic forms, and
we apply induction on the complexity of t. Let a, b ∈ A with a 6= b.

1. If t ≡ T , then if t′ ≡ F it follows that t ! f 6= t′ ! f for any f , and if t′ ≡ t1 ⊳ a ⊲ t2
then consider some f with f(b) = T and f(a) = f(aσ) = F for aσ ∈ Acr. We find
(t • f)(b) = f(b) = T and (t′ • f)(b) = (t1 • f)(aσb) = F (where σ possibly equals ǫ),
so t′ • f 6= t • f .

2. If t ≡ F a similar argument applies.

3. If t ≡ t1 ⊳ a ⊲ t2, then the case t′ ∈ {T, F} can be dealt with as above.

If t′ ≡ t3⊳a⊲t4 then assume t 6=cr t
′ because t1 6=cr t3. Then a is not a central condition

in t1 and t3, and by induction there exists f with t1 • f 6= t3 • f or t1 ! f 6= t3 ! f . Take
some g such that a • g = f and a ! g = T , then g distinguishes t1 ⊳ a ⊲ t2 and t3 ⊳ a ⊲ t4.
If t1 =cr t3, then a similar argument applies for t2 6=cr t4.

If t′ ≡ t3 ⊳ b ⊲ t4 then (t1 ⊳a⊲ t2)• f 6= (t3 ⊳ b ⊲ t4)• f for f defined by f(a) = f(aσ) = T
and f(b) = f(bσ) = F because ((t1 ⊳ a ⊲ t2) • f)(b) = (t1 • (a • f))(b) = f(aρb) = T
(where ρ possibly equals ǫ), and ((t3 ⊳ b ⊲ t4) • f)(b) = (t4 • (b • f))(b) and this equals
either f(bρ′b) = F for some ρ′ ∈ (A \ {b})cr, or f(b) = F .
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So Scr is a SPA. Define the HMA Acr as the ΣA
ce
-reduct of Scr. The above argument on the

soundness of the axiom schemes (CPcr1) and (CPcr2) proves =⇒ as stated in the theorem,
and the validity of axiom (SPA8) proves ⇐=. Finally, we note that Acr ∼= I(ΣA

ce
,CPcr).

In the proof above we defined the SPA S
cr and we found that if |A| > 1, then for all

t, t′ ∈ TΣA
ce

,
CPcr ⊢ t = t′ ⇐⇒ S

cr |= t = t′. (7)

If A = {a} then Acr = A and Scr as defined above has only two states, say f and g with
f(a) = T and g(a) = F . It easily follows that

A
cr |= T ⊳ a ⊲ T = T,

so Acr 6∼= I(ΣA
ce
,CPcr) if A = {a}. The following corollary is related to Theorem 5 and

characterizes contractive congruence in terms of a quasivariety of SPAs that satisfy an extra
condition.

Corollary 3. Let |A| > 1. Let Ccr be the class of SPAs that satisfy for all a ∈ A and s ∈ S,

a ! (a • s) = a ! s ∧ a • (a • s) = a • s.

Then for all t, t′ ∈ TΣA
ce

,
Ccr |= t = t′ ⇐⇒ CPcr ⊢ t = t′.

Proof. By its definition, Scr ∈ Ccr, which by (7) implies =⇒. For the converse, it is sufficient
to show that the axioms (CPcr1) and (CPcr2) hold in any SPA that is in Ccr. Let such S

be given. Consider (CPcr1): if for some interpretation of s in S, a ! s = F there is nothing
to prove, and if a ! s = T , then a ! (a • s) = T and hence

((t1 ⊳ a ⊲ t2) ⊳ a ⊲ t) ! s = t1 ! (a • (a • s))

= t1 ! (a • s)

= (t1 ⊳ a ⊲ t) ! s,

and

((t1 ⊳ a ⊲ t2) ⊳ a ⊲ t) • s = t1 • (a • (a • s))

= t1 • (a • s)

= (t1 ⊳ a ⊲ t) • s.

The soundness of axiom (CPcr2) can be proved in the same way.

6 Weakly memorizing congruence

In this section we consider weakly memorizing congruence defined by the axioms of CPcr

and these axiom schemes (a, b ∈ A):

((x ⊳ a ⊲ y) ⊳ b ⊲ z) ⊳ a ⊲ v = (x ⊳ b ⊲ z) ⊳ a ⊲ v, (CPwm1)

x ⊳ a ⊲ (y ⊳ b ⊲ (z ⊳ a ⊲ v)) = x ⊳ a ⊲ (y ⊳ b ⊲ v). (CPwm2)
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Note that for a = b, these axioms follow from CPcr. We write CPwm for this set of axioms.
Typically, if evaluation of a series of successive atoms yields equal replies, contraction takes
place. This is also the case if there is more than one “intermediate” atom, an example is

(((x ⊳ a ⊲ y) ⊳ b ⊲ z) ⊳ c ⊲ u) ⊳ a ⊲ v = ((((x ⊳ a ⊲ y) ⊳ b ⊲ z) ⊳ a ⊲ w) ⊳ c ⊲ u) ⊳ a ⊲ v

= (((x ⊳ b ⊲ z) ⊳ a ⊲ w) ⊳ c ⊲ u) ⊳ a ⊲ v

= ((x ⊳ b ⊲ z) ⊳ c ⊲ u) ⊳ a ⊲ v.

Let weakly memorizing congruence, notation =wm, be the congruence on TΣA
ce

generated
by the axioms of CPwm. Again we define a special type of basic forms.

Definition 8. Let t be a basic form. Then pos(t) is the set of atoms that occur as the central
condition of t, or at a left-hand (positive) position in t:

pos(T ) = pos(F ) = ∅ and pos(t ⊳ a ⊲ t′) = {a} ∪ pos(t),

and neg(t) is the set of atoms that occur as the central condition of t, or at a right-hand
(negative) position in t:

neg(T ) = neg(F ) = ∅ and neg(t ⊳ a ⊲ t′) = {a} ∪ neg(t′).

Term t ∈ TΣA
ce

is a wmem-basic form if for a ∈ A,

t ::= T | F | t1 ⊳ a ⊲ t2

and t1 and t2 are wm-basic forms with the restriction that a 6∈ pos(t1) ∪ neg(t2).

Lemma 5. For each t ∈ TΣA
ce

there exists a wm-basic form t′ with CPwm ⊢ t = t′.

Proof. See [4]; this proof is repeated in Appendix A.

In the following we prepare the ingredients for an HMA that characterizes =wm. Recall
Acr ⊂ A+ is the set of strings that contain no consecutive occurrences of the same atom.
Define “element-wise left-concatenation with absorption”  on A×Acr → Acr by

a σ =











a if σ = a,

a ρ if σ = aρ,

aσ otherwise.

Observe that for all σ ∈ Acr, a (a σ) = a σ.

Definition 9. The function space WM ⊂ {T, F}A
cr

is defined by the following restriction:
f ∈ WM if for all a ∈ A and b ∈ A \ {a}, and all ρ ∈ A∗ that satisfy ρa ∈ Acr,

f(ρab) = f(ρa) =⇒

{

f(ρaba) = f(ρa), and

f(ρaba σ) = f(ρab σ) for all σ ∈ Acr.

For example, if f ∈ WM and bσ ∈ Acr, then

f(a) = f(ab) =⇒ (f(abab) = f(ab) and f(ababσ) = f(abσ)). (8)
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Theorem 6. For |A| > 1 an HMA that characterizes CPwm exists, i.e. there is an HMA
Awm such that for all t, t′ ∈ TΣA

ce

, CPwm ⊢ t = t′ ⇐⇒ Awm |= t = t′.

Proof. Construct the ΣA
spa

-algebra Swm with TΣA
ce

/=wm
as its set of conditional expressions

and WM (Definition 9) as its set of states. We first argue that WM is suitable as state set.
Define for f ∈ WM , a ! f = f(a) and for σ ∈ Acr,

(a • f)(σ) = f(a σ).

This is well-defined: if f ∈ WM then it easily follows that for all a ∈ A, a • f ∈ WM . We
note that for all a ∈ A and f ∈ WM , a • (a • f) = a • f , and also

f(a) = f(ab) =⇒ a • (b • (a • f)) = b • (a • f). (9)

The latter conditional equation follows immediately from Definition 9.

Similar as in the proof of Theorem 1, the state constant c is given an arbitrary interpreta-
tion, and the axioms (TS1)–(TS3) define the function s⊳f ⊲s′ in Swm. The axioms (SPA1)–
(SPA6) fully determine the functions ! and •, and this is well-defined: if t =wm t′ then for
all f ∈ WM , t !f = t′ !f and t•f = t′ •f follow by inspection of the CPwm axioms. We show
soundness of the axiom (CPwm1). Assume a 6= b and f(a) = f(ab), then f(aba) = f(a) and
by equation (9) (case f(a) = T ),

(((t1 ⊳ a ⊲ t2) ⊳ b ⊲ t3) ⊳ a ⊲ t) ! f

= [(t1 ⊳ a ⊲ t2) ! (b • (a • f)) ⊳ b ! (a • f) ⊲ t3 ! (b • (a • f))] ⊳ a ! f ⊲ t ! (a • f)

= [t1 ! (a • (b • (a • f))) ⊳ b ! (a • f) ⊲ t3 ! (b • (a • f))] ⊳ a ! f ⊲ t ! (a • f)

= [t1 ! (b • (a • f)) ⊳ b ! (a • f) ⊲ t3 ! (b • (a • f))] ⊳ a ! f ⊲ t ! (a • f)

= ((t1 ⊳ b ⊲ t3) ⊳ a ⊲ t) ! f,

and in a similar way (((t1 ⊳ a ⊲ t2) ⊳ b ⊲ t3) ⊳ a ⊲ t) • f = (t1 ⊳ a ⊲ t3) • f follows. The cases
a = b and f(a) 6= f(ab) are trivial. Soundness of the axiom (CPwm2) follows in a similar
way. The axiom (SPA7) holds by construction of RP . In order to prove that Swm is a SPA
it remains to be shown that axiom (SPA8) holds, i.e., for all t, t′ ∈ TΣA

ce

,

∀f(t ! f = t′ ! f ∧ t • f = t′ • f) → t =wm t′.

This follows by contraposition. We may assume that both t and t′ are wm-basic forms, and
we apply induction on the complexity of t. Let a, b ∈ A with a 6= b.

1. If t ≡ T , then if t′ ≡ F it follows that t ! f 6= t′ ! f for any f , and if t′ ≡ t1 ⊳ a ⊲ t2 then
consider some f with f(a) = f(b) = T and f(ab) = f(aσb) = F for all appropriate σ.
We find (t • f)(b) = f(b) = T and (t′ • f)(b) = (t1 • f)(aσb) = F (where σ possibly
equals ǫ), so t′ • f 6= t • f .

2. If t ≡ F a similar argument applies.

3. If t ≡ t1 ⊳ a ⊲ t2, then the case t′ ∈ {T, F} can be dealt with as above.

If t′ ≡ t3 ⊳ a ⊲ t4 then assume t 6=wm t′ because t1 6=wm t3. Then a 6∈ pos(t1)∪ pos(t3),
and by induction there is f with t1 • f 6= t3 • f or t1 ! f 6= t3 ! f . Take g such that
a • g = f and a ! g = T , then g distinguishes t1 ⊳ a ⊲ t2 and t3 ⊳ a ⊲ t4. Note that the
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restriction obtained by a • g = f and a ! g = T that is imposed by Definition 9, i.e.,
for all b ∈ A \ {a},

g(ab) = g(a) =⇒

{

g(aba) = g(a), and

g(aba σ) = g(ab σ) for all σ ∈ Acr.

is not relevant because of a 6∈ pos(t1) ∪ pos(t3), and hence values of g(aba  σ) play
not a role in the above-mentioned distinction.

If t1 =wm t3, then a similar argument applies for t2 6=wm t4.

If t′ ≡ t3⊳b⊲t4 then (t1⊳a⊲t2)•f 6= (t3⊳b⊲t4)•f for f defined by f(a) = f(aσ) = T and
f(b) = f(bσ′) = F for all appropriate σ, σ′ because ((t1⊳a⊲t2)•f)(b) = (t1•(a•f))(b) =
f(aρb) = T (where ρ possibly equals ǫ), and ((t3 ⊳ b ⊲ t4) • f)(b) = (t4 • (b • f))(b) and
this equals either f(bρ′b) = F for some ρ′ 6= ǫ, or f(b) = F .

So Swm is a SPA. Define the HMA Awm as the ΣA
ce
-reduct of Swm. The above argument

on the soundness of the axiom schemes (CPwm1) and (CPwm2) proves =⇒ as stated in
the theorem, and the validity of axiom (SPA8) proves ⇐=. We finally note that Awm ∼=
I(ΣA

ce
,CPwm).

In the proof above we defined the SPA S
wm and we found that if |A| > 1, then for all

t, t′ ∈ TΣA
ce

,
CPwm ⊢ t = t′ ⇐⇒ S

wm |= t = t′. (10)

If A = {a} then Acr = A and S
wm as defined above has only two states, say f and g with

f(a) = T and g(a) = F . It easily follows that

A
wm |= T ⊳ a ⊲ T = T,

so Awm 6∼= I(ΣA
ce
,CPwm) if A = {a}. The following corollary is related to Theorem 6 and

characterizes weakly memorizing congruence in terms of a quasivariety of SPAs that satisfy
two extra conditions.

Corollary 4. Let |A| > 1. Let Cwm be the class of SPAs that satisfy for all a, b ∈ A and
s ∈ S,

a ! (a • s) = a ! s ∧ a • (a • s) = a • s,

b ! (a • s) = a ! s → (a ! (b • (a • s)) = a • s ∧ a • (b • (a • s)) = b • (a • s)).

Then for all t, t′ ∈ TΣA
ce

,

Cwm |= t = t′ ⇐⇒ CPwm ⊢ t = t′.

Proof. By its definition, Swm ∈ Cwm, which by (10) implies =⇒. For the converse, it is
sufficient to show that the axioms (CPwm1) and (CPwm2) hold in each SPA that is in Cwm

because Cwm ⊆ Ccr. Let such S be given. Consider (CPwm1): if for some interpretation of s
in S, a !s = F there is nothing to prove, and if a !s = b !(a•s) = T and thus a !(b•(a•s)) = T ,
then

(((t1 ⊳ a ⊲ t2) ⊳ b ⊲ t3) ⊳ a ⊲ t) ! s = t1 ! (a • (b • (a • s)))

= t1 ! (b • (a • s))

= ((t1 ⊳ b ⊲ t3) ⊳ a ⊲ t) ! s,
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and

(((t1 ⊳ a ⊲ t2) ⊳ b ⊲ t3) ⊳ a ⊲ t) • s = t1 • (a • (b • (a • s)))

= t1 • (b • (a • s))

= ((t1 ⊳ b ⊲ t3) ⊳ a ⊲ t) • s.

The soundness of axiom (CPwm2) can be proved in a similar way.

7 Memorizing congruence

In this section we consider memorizing congruence. We define CPmem as the extension of
CP with the axiom

x ⊳ y ⊲ (z ⊳ u ⊲ (v ⊳ y ⊲ w)) = x ⊳ y ⊲ (z ⊳ u ⊲ w). (CPmem)

Axiom (CPmem) defines how the central condition y may recur in a propositional state-
ment, and thus defines a general form of contraction. The symmetric variants of (CPmem),
i.e.,

x ⊳ y ⊲ ((z ⊳ y ⊲ u) ⊳ v ⊲ w) = x ⊳ y ⊲ (u ⊳ v ⊲ w), (11)

(x ⊳ y ⊲ (z ⊳ u ⊲ v)) ⊳ u ⊲ w = (x ⊳ y ⊲ z) ⊳ u ⊲ w, (12)

((x ⊳ y ⊲ z) ⊳ u ⊲ v) ⊳ y ⊲ w = (x ⊳ u ⊲ v) ⊳ y ⊲ w, (13)

all follow easily with y ⊳ x ⊲ z = z ⊳ (F ⊳ x ⊲ T ) ⊲ y (which is derivable in CP), e.g., a proof
of (11) is as follows:

x ⊳ y ⊲ ((z ⊳ y ⊲ u) ⊳ v ⊲ w) = x ⊳ y ⊲ (w ⊳ (F ⊳ v ⊲ T ) ⊲ (z ⊳ y ⊲ u))

= x ⊳ y ⊲ (w ⊳ (F ⊳ v ⊲ T ) ⊲ u)

= x ⊳ y ⊲ (u ⊳ v ⊲ w).

Let memorizing congruence, notation =mem, be the congruence on TΣA
ce

generated by the
axioms of CPmem.

Definition 10. A term t ∈ TΣA
ce

is a mem-basic form over A′ ⊂ A if for a ∈ A′,

t ::= T | F | t1 ⊳ a ⊲ t2

and ti (i = 1, 2) is a mem-basic form over A′ \ {a}.

E.g., for A = {a} the set of all mem-basic forms is {B, B ⊳ a ⊲ B′ | B,B′ ∈ {T, F}}, and
for A = {a, b} it is

{B, t1 ⊳ a ⊲ t2, t3 ⊳ b ⊲ t4 | B ∈ {T, F},

t1, t2 mem-basic forms over {b},

t3, t4 mem-basic forms over {a}}.

For |A| = n, the number of mem-basic forms is an = n(an−1)
2 + 2 with a0 = 2, so the first

few values are 6, 74, 16430.
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Lemma 6. For each t ∈ TΣA
ce

there exists a mem-basic form t′ with CPmem ⊢ t = t′.

Proof. See [4]; this proof is repeated in Appendix A.

Definition 11. Let Acore ⊂ A+ be the set of strings in which each element of A occurs at
most once.3

We first argue that M = {T, F}A
core

is suitable as state set of a SPA that characterizes
CPmem. Define for f ∈ M the following: a ! f = f(a) and for σ ∈ Acore,

(a • f)(σ) =

{

f(a) if σ = a or σ = ρa,

f(a(σ − a)) otherwise, where (σ − a) is as σ but with a left out.

For example, (a•)f(a) = (a • f)(ba) = f(a) and (a • f)(b) = (a • f)(ab) = f(ab). Observe
that

(t′ ⊳ t ⊲ t′) • f = t′ • (t • f)

because if t ! f = T then (t′ ⊳ t ⊲ t′) • f = t′ • (t • f) and this also holds if t ! f = F ; now apply
axiom (SPA7).

Lemma 7. For all f ∈ M and t, t′ ∈ TΣA
ce

,

t ! (t′ • (t • f)) = t ! f ∧ t • (t′ • (t • f)) = t′ • (t • f). (14)

Proof. See Appendix A.

Theorem 7. For |A| > 1 an HMA that characterizes CPmem exists, i.e. there is an HMA
Amem such that for all t, t′ ∈ TΣA

ce

, CPmem ⊢ t = t′ ⇐⇒ Amem |= t = t′.

Proof. Construct the ΣA
spa

-algebra Smem with TΣA
ce

/=mem
as the set of conditional expressions

and the function space M as defined above as the set of states. Furthermore, adopt the
definitions of a ! f and a • f given above.

Similar as in the proof of Theorem 1, the state constant c is given an arbitrary interpreta-
tion, and the axioms (TS1)–(TS3) define the function s⊳f ⊲s′ in Smem. The axioms (SPA1)–
(SPA6) fully determine the functions ! and •, and this is well-defined: if t =mem t′ then for
all f , t ! f = t′ ! f and t • f = t′ • f . We show soundness of the axiom (CPmem): consider
an arbitrary closed instance t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ (t5 ⊳ t2 ⊲ t6)) = t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ t6). A sufficient
property to conclude for all states f that

(t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ (t5 ⊳ t2 ⊲ t6))) ! f = (t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ t6)) ! f,

(t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ (t5 ⊳ t2 ⊲ t6))) • f = (t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ t6)) • f

is the validity of equation (14) (read t2 for t and t4 for u), which was proved in Lemma 7.
The axiom (SPA7) holds by construction of RP . In order to prove that Smem is a SPA it
remains to be shown that axiom (SPA8) holds, i.e., for all t, t′ ∈ TΣA

ce

,

∀f(t ! f = t′ ! f ∧ t • f = t′ • f) → t =mem t′.

This follows by contraposition. We may assume that both t and t′ are mem-basic forms,
and we apply induction on the complexity of t. Let a, b ∈ A with a 6= b.

3If |A| = n then |Acore| = bn with b1 = 1 and bn = n(bn−1 + 1). (The first few bn-values are
1, 4, 15, 64, 325, ...).

20



1. If t ≡ T , then if t′ ≡ F it follows that t ! f 6= t′ ! f for any f , and if t′ ≡ t1 ⊳ a ⊲ t2 then
consider some f with f(a) = f(b) = T and f(ab) = f(aσb) = F for all appropriate σ.
We find (t • f)(b) = f(b) = T and (t′ • f)(b) = (t1 • f)(aσb) = F (where σ possibly
equals ǫ), so t′ • f 6= t • f .

2. If t ≡ F a similar argument applies.

3. If t ≡ t1 ⊳ a ⊲ t2, then the case t′ ∈ {T, F} can be dealt with as above.

If t′ ≡ t3 ⊳ a ⊲ t4 then assume t 6=mem t′ because t1 6=mem t3. Then a does not occur
in any of the ti, and by induction there is f with t1 • f 6= t3 • f or t1 ! f 6= t3 ! f . Take
g such that g ↾ A \ {a} = f ↾ \{a} and a • g = f and a ! g = T , then g distinguishes
t1 ⊳a⊲ t2 and t3 ⊳a⊲ t4. If t1 =mem t3, then a similar argument applies for t2 6=mem t4.

If t′ ≡ t3⊳b⊲t4 then (t1⊳a⊲t2)•f 6= (t3⊳b⊲t4)•f for f defined by f(a) = f(aσ) = T and
f(b) = f(bσ′) = F for all appropriate σ, σ′ because ((t1⊳a⊲t2)•f)(b) = (t1•(a•f))(b) =
f(aρb) = T (where ρ possibly equals ǫ), and ((t3 ⊳ b ⊲ t4) • f)(b) = (t4 • (b • f))(b) and
this equals either f(bρ′) = F for some ρ′ 6= ǫ, or f(b) = F .

So S
mem is a SPA. Define the HMA A

mem as the ΣA
ce
-reduct of Smem. The above argument

on the soundness of the axiom (CPmem) proves =⇒ as stated in the theorem, and the
validity of axiom (SPA8) proves ⇐=. Observe that Amem ∼= I(ΣA

ce
,CPmem).

Remark 1. If A = {a} then Smem as defined above has only two states, say f and g with
f(a) = T and g(a) = F . It then easily follows that Amem |= T ⊳ a ⊲ T = T so in that case
Amem 6∼= I(ΣA

ce
,CPmem).

Furthermore, if A = {a, b} it easily follows that Smem 6|= a ∧b b = b ∧b a: take f such that
f(a) = f(ab) = T and f(b) = F .

If |A| > 1, then it follows from the proof of Theorem 7 that for all t, t′ ∈ TΣA
ce

,

CPmem ⊢ t = t′ ⇐⇒ S
mem |= t = t′. (15)

The following corollary is related to Theorem 7 and characterizes memorizing congruence
in terms of a quasivariety of SPAs that satisfy an extra condition.

Corollary 5. Let |A| > 1. Let Cmem be the class of SPAs that satisfy for all a ∈ A and
s ∈ S,

a ! (x • (a • s)) = a ! s ∧ a • (x • (a • s)) = x • (a • s). (16)

(Note that with x = T this yields the axiom scheme from Corollary 3 that characterizes
contractive congruence.) Then for all t, t′ ∈ TΣA

ce

,

Cmem |= t = t′ ⇐⇒ CPmem ⊢ t = t′.

Proof. By its definition we find that Smem ∈ Cmem, which by (15) implies =⇒. For the
converse, it is sufficient to show that the axiom (CPmem) holds in each SPA in Cmem. Let
such S be given. Consider an arbitrary closed instance t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ (t5 ⊳ t2 ⊲ t6)) =
t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ t6). A sufficient property to conclude that

(t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ (t5 ⊳ t2 ⊲ t6))) ! s = (t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ t6)) ! s,

(t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ (t5 ⊳ t2 ⊲ t6))) • s = (t1 ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ t6)) • s
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is the following (read t2 for t and t4 for t′):

t ! (t′ • (t • s)) = t ! s ∧ t • (t′ • (t • s)) = t′ • (t • s). (17)

We prove this property by structural induction on t. If t ≡ T or t ≡ F or t ≡ a ∈ A then
(17) follows immediately. If t ≡ t1 ⊳ t2 ⊲ t3 we make a case distinction:

(i) Assume for some interpretation of s in S, t2 ! s = T . We derive t2 ! (t
′ • (t1 • (t2 • s))) =

t2 !((t
′⊳t1⊲t

′)•(t2•s)) and by the induction hypothesis (IH) we find t2 !((t
′⊳t1⊲t

′)•(t2•s)) =
t2 ! s = T . We further derive

t ! (t′ • (t • s)) = t ! (t′ • (t1 • (t2 • s)))

= (t1 ⊳ t2 ⊲ t3) ! (t
′ • (t1 • (t2 • s)))

= t1 ! (t2 • (t
′ • (t1 • (t2 • s))))

= t1 ! ((t2 ⊳ t
′ ⊲ t2) • (t1 • (t2 • s)))

= t1 ! (t2 • s) (by IH)

= t ! s,

and

t • (t′ • (t • s)) = t • (t′ • (t1 • (t2 • s)))

= (t1 ⊳ t2 ⊲ t3) • (t
′ • (t1 • (t2 • s)))

= t1 • (t2 • (t
′ • (t1 • (t2 • s))))

= t1 • ((t2 ⊳ t
′ ⊲ t2) • (t1 • (t2 • s)))

= (t2 ⊳ t
′ ⊲ t2) • (t1 • (t2 • s)) (by IH)

= t2 • (t
′ • (t1 • (t2 • s)))

= t2 • ((t
′ ⊳ t1 ⊲ t

′) • (t2 • s))

= (t′ ⊳ t1 ⊲ t
′) • (t2 • s) (by IH)

= t′ • (t1 • (t2 • s))

= t′ • (t • s).

(ii) Assume for some interpretation of s in S, t2 ! s = F . Similar.

8 Static congruence (Propositional logic)

In this section we consider static congruence defined by the axioms of CP and the axioms

(x ⊳ y ⊲ z) ⊳ u ⊲ v = (x ⊳ u ⊲ v) ⊳ y ⊲ (z ⊳ u ⊲ v), (CPstat)

(x ⊳ y ⊲ z) ⊳ y ⊲ u = x ⊳ y ⊲ u. (CPcontr)

We write CPst for this set of axioms. Note that the symmetric variants of the axioms (CPstat)
and (CPcontr), say

x ⊳ y ⊲ (z ⊳ u ⊲ v) = (x ⊳ y ⊲ z) ⊳ u ⊲ (x ⊳ y ⊲ v), (CPstat′)

x ⊳ y ⊲ (z ⊳ y ⊲ u) = x ⊳ y ⊲ u, (CPcontr′)
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easily follow with identity y ⊳ x ⊲ z = (z ⊳ F ⊲ y) ⊳ x ⊲ (z ⊳ T ⊲ y) = z ⊳ (F ⊳ x ⊲ T ) ⊲ y (thus an
identity derivable in CP). Moreover, in CPst it follows that

x = (x ⊳ y ⊲ z) ⊳ F ⊲ x

= (x ⊳ F ⊲ x) ⊳ y ⊲ (z ⊳ F ⊲ x)

= x ⊳ y ⊲ x (cf. equation (4)).

We define static congruence =st on TΣA
ce

as the congruence generated by CPst. Let
t, t′ ∈ TΣA

ce

. Then under static congruence, t and t′ can be rewritten into the following special
type of basic form: assume the atoms occurring in t and t′ are a1, ..., an, and consider the
full binary tree with at level i only occurrences of atom ai (there are 2

i−1 such occurrences),
and at level n+1 only leaves that are either T or F (there are 2n such leaves). For example,
for n = 2 we find the 24 different terms

(T/F ⊳ a2 ⊲ T/F ) ⊳ a1 ⊲ (T/F ⊳ a2 ⊲ T/F ).

Then the axioms in CPst are sufficient to rewrite both t and t′ into exactly one such special
basic form.

Theorem 8. There exists an HMA that characterizes propositional logic, i.e. there is an
HMA Ast such that for all t, t′ ∈ TΣA

ce

, CPst ⊢ t = t′ ⇐⇒ Ast |= t = t′.

Proof. Construct the ΣA
spa

-algebra Sst with TΣA
ce

/=st
as the set of conditional expressions

and the function space {T, F}A as the set of states. For each state f and atom a ∈ A define
a !f = f(a) and a•f = f . Similar as in the proof of Theorem 1, the state constant c is given
an arbitrary interpretation, and the axioms (TS1)–(TS3) define the function s ⊳ f ⊲ s′ in Sst.
The axioms (SPA1)–(SPA6) fully determine the functions ! and •, and this is well-defined:
if t =st t′ then for all f , t ! f = t′ ! f and t • f = t′ • f follow by inspection of the CPst

axioms. The axiom (SPA7) holds by construction of RP . In order to prove that Sst is a
SPA it remains to be shown that axiom (SPA8) holds, i.e., for all t, t′ ∈ TΣA

ce

,

∀f(t ! f = t′ ! f ∧ t • f = t′ • f) → t =st t
′.

This follows by contraposition. We may assume that both t and t′ are in the basic form
described above: if t and t′ are different in some leaf then the reply function f leading to
this leaf satisfies t ! f 6= t′ ! f .

So Sst is a SPA. Define the HMA Ast as the ΣA
ce
-reduct of Sst. The above argument on

the soundness of the axioms (CPstat) and (CPcontr) proves =⇒ as stated in the theorem,
and the validity of axiom (SPA8) proves ⇐=. Moreover, Ast ∼= I(ΣA

ce
,CPst).

From the proof above it follows that for all t, t′ ∈ TΣA
ce

,

CPst ⊢ t = t′ ⇐⇒ S
st |= t = t′. (18)

Corollary 6. Let Cst be the class of SPAs that satisfy for all a ∈ A and s ∈ S,

a • s = s.

Then for all t, t′ ∈ TΣA
ce

,
Cst |= t = t′ ⇐⇒ CPst ⊢ t = t′.
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Proof. By its definition, Sst ∈ Cst, which by (18) implies =⇒. For the converse, it is sufficient
to show that the axioms (CPstat) and (CPcontr) hold in each SPA in Cst. We first prove
by structural induction on t ∈ TΣA

ce

the Cst-identity

t • s = s.

If t ∈ {T, F, a | a ∈ A} this is clear, and if t ≡ t1 ⊳ t2 ⊲ t3 then

t • s = (t1 ⊳ t2 ⊲ t3) • s

= (t1 • (t2 • s)) ⊳ t2 ! s ⊲ (t3 • (t2 • s))

= (t1 • s) ⊳ t2 ! s ⊲ (t3 • s) (by IH)

= s ⊳ t2 ! s ⊲ s (by IH)

= s.

With the identity t • s = s the soundness of the axioms (CPstat) and (CPcontr) follows
easily: let S ∈ Cst be given. Consider a closed instance of (CPstat):

(t1 ⊳ t2 ⊲ t3) ⊳ t4 ⊲ t5 = (t1 ⊳ t4 ⊲ t5) ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ t5).

Then for all states s, both the left-hand side and the right-hand side transform s under • to
s, so

((t1 ⊳ t2 ⊲ t3) ⊳ t4 ⊲ t5) ! s = (t1 ! s ⊳ t2 ! s ⊲ t3 ! s) ⊳ t4 ! s ⊲ t5 ! s

and

((t1 ⊳ t4 ⊲ t5) ⊳ t2 ⊲ (t3 ⊳ t4 ⊲ t5)) ! s = (t1 ! s ⊳ t4 ! s ⊲ t5 ! s) ⊳ t2 ! s ⊲ (t3 ! s ⊳ t4 ! s ⊲ t5 ! s).

By case distinction on the reply values of t4 and t2 in S, it easily follows that both these
instances yield equal values. The soundness of axiom (CPcontr) can be proved in the same
way.

9 Conclusions and related work

A main result in our defining paper on proposition algebra [4] concerns its semantics: in that
paper we define valuation algebras (VAs) as two-sorted algebras with the Boolean constants
and valuations as their sorts. Using these, valuation varieties (varieties of VAs) are defined
by equational specifications. For example, the free variety fr contains all VAs, and the
variety rp of repetition-proof VAs is the subvariety of VAs that satisfy the axiom (in the
notation of this paper)

a ! (a • s) = a ! s

(cf. Corollary 2). A valuation variety defines a valuation equivalence by identifying all
propositional statements that yield the same evaluation result in all VAs in that variety. For
example, T and T ⊳ a ⊲ T are valuation equivalent in all valuation varieties we consider. For

K ∈ {fr, rp, cr, wm,mem, st},

such a valuation equivalence is denoted by ≡K , and — overloading notation here — the
valuation congruence =K is defined as the largest congruence contained in ≡K . We prove
that for all t, t′ ∈ TΣA

ce

,
CPK ⊢ t = t′ ⇐⇒ t =K t′,
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where CPfr denotes the axiom set CP.4

In this paper we provide an alternative semantics for proposition algebra in the form of
HMAs, which has the advantage that we can define a valuation congruence without first
defining some valuation equivalence it is contained in. Our HMA-semantics provides by
construction a valuation congruence and the relation between evaluation of propositions
and transformation of valuations appears to be more elegant. A typical difference between
semantics based on VAs and our semantics based on HMAs is that the apply operator •
in the latter is defined on a more general level. We see this difference if we compare the
definition of the variety of VAs that defines static congruence with the quasivariety of SPAs
that characterizes CPst: in the former, the crucial axiom on valuations reads as follows: for
all atoms a, b ∈ A and valuations s,

a ! (b • s) = a ! s,

while according to Corollary 6, HMA-semantics requires in the case of static congruence
that for all atoms a ∈ A and valuations s,

a • s = s.5

A question related to the difference between VA-based and HMA-based semantics is to
either prove or refute that the class Cmem (see Corollary 5) is definable by weakening re-
quirement (16) on its SPAs to this one: for all a, b ∈ A and s ∈ S,

a ! (a • s) = a ! s ∧ a • (a • s) = a • s, (19)

a ! (b • (a • s)) = a ! s ∧ a • (b • (a • s)) = b • (a • s), (20)

because equations (19) and (20) exactly capture the variety of VAs that characterizes mem-
orizing valuation congruence (cf. [4]). Last but not least, a semantics for proposition algebra
based on HMAs refutes axiomatizations such as the one defined by CP + 〈T ⊳ x ⊲ T = T 〉,
which indeed is a peculiar axiomatization if one analyzes it in terms of TRSs (see Theorem 2
in Section 3).

Further results from [4] concern binary connectives: we prove that the conditional con-
nective cannot be expressed modulo =cr (or any finer congruence) if only binary connectives
are allowed, but that it can be expressed modulo =mem (and =st); for =wm we leave this
question open. In the papers [4, 5] we use the notation ∧b (taken from [1]) for left-sequential
conjunction, defined by

x ∧b y = y ⊳ x ⊲ F,

and elaborate on the connection between sequential binary connectives, the conditional and
negation, defined by

¬x = F ⊳ x ⊲ T.

In [5] we define various short-circuit logics : the fragments of proposition algebra that remain
if only ∧b and ¬ can be used. These logics (various choices can be made) are put forward
for modeling conditions as used in programming. Typical laws that are valid with respect
to each valuation congruence are the associativity of ∧b , the double negation shift, and
F ∧b x = F (and, as explained in the Introduction, a typical non-validity is x ∧b F = F ).

4In this paper we use the notation t =K t′ as a shorthand for CPK ⊢ t = t′, but according to the
above-mentioned result this overloading is not a problem.

5This is the case because if CPst ⊢ t = t′, then for each SPA that characterizes static valuation congruence
it should be the case that both t ! s = t′ ! s and t•s = t′ •s hold (and therefore t = t′ by axiom (SPA8)); now
observe that t • s = t′ • s does not follow from CTS extended with the weaker requirement a ! (b • s) = a ! s
(for all atoms a, b ∈ A and valuations s).
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A Some proofs

Lemma (This is Lemma 5, Section 6). For each t ∈ TΣA
ce

there exists a wm-basic form t′

with CPwm ⊢ t = t′.

Proof. By Lemma 1 we may assume that t is a basic form and we proceed by structural
induction on t. If t ≡ T or t ≡ F there is nothing to prove. If t ≡ t1 ⊳ a ⊲ t2 we may
assume that ti are wm-basic forms (if not, they can proved equal to wm-basic forms). We
first consider the positive side of t. If a 6∈ pos(t1) we are done, otherwise we saturate t1 by
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replacing each atom b 6= a that occurs in a positive position with (a ⊳ b ⊲ F ) using axiom
(CPwm1). In this way we can retract each a that is in pos(t1) (also using axiom (CPcr1))
and end up with t′1 that does not contain a on positive positions. For example,

t ≡(((T ⊳ a ⊲ R) ⊳ b ⊲ S) ⊳ c ⊲ V ) ⊳ a ⊲ t2

= (((T ⊳ a ⊲ R) ⊳ (a ⊳ b ⊲ F ) ⊲ S) ⊳ (a ⊳ c ⊲ F ) ⊲ V ) ⊳ a ⊲ t2

= (((((T ⊳ a ⊲ R) ⊳ a ⊲ S) ⊳ b ⊲ S) ⊳ a ⊲ V ) ⊳ c ⊲ V ) ⊳ a ⊲ t2

= (((T ⊳ b ⊲ S) ⊳ a ⊲ V ) ⊳ c ⊲ V ) ⊳ a ⊲ t2

= ((T ⊳ b ⊲ S) ⊳ c ⊲ V ) ⊳ a ⊲ t2.

Following the same procedure for the negative side of t (saturation with (T ⊳ b ⊲ a) for all
b 6= a etc.) yields a wm-basic form t′1 ⊳ a ⊲ t

′

2 with CPwm ⊢ t = t′1 ⊳ a ⊲ t
′

2.

Lemma (This is Lemma 6, Section 7). For each t ∈ TΣA
ce

there exists a mem-basic form t′

with CPmem ⊢ t = t′.

Proof. First observe that the axioms of CPmem imply the following simple consequences:

x ⊳ y ⊲ (v ⊳ y ⊲ w) = x ⊳ y ⊲ w (take u = F in axiom (CPmem)), (21)

(x ⊳ y ⊲ z) ⊳ y ⊲ w = x ⊳ y ⊲ w (take u = T in equation (13)). (22)

By Lemma 1 we may assume that t is a basic form and we proceed by structural induction
on t. If t ≡ T or t ≡ F there is nothing to prove.

Assume t ≡ t1 ⊳ a ⊲ t2. We write [T/a]t1 for the term that results when T is substituted
for a in t1. We first show that

CPmem ⊢ t1 ⊳ a ⊲ t2 = [T/a]t1 ⊳ a ⊲ t2

by induction on t1: if t1 equals T or F this is clear. If t1 ≡ t′1 ⊳ a ⊲ t
′′

1 then CP ⊢ [T/a]t1 =
[T/a]t′1 and we derive

t1 ⊳ a ⊲ t2 = (t′1 ⊳ a ⊲ t
′′

1 ) ⊳ a ⊲ t2

= ([T/a]t′1 ⊳ a ⊲ t′′1) ⊳ a ⊲ t2 by IH

= [T/a]t′1 ⊳ a ⊲ t2 by (22)

= [T/a]t1 ⊳ a ⊲ t2,

and if t1 ≡ t′1 ⊳ b ⊲ t
′′

1 with b 6= a then CP ⊢ [T/a]t1 = [T/a]t′1 ⊳ b ⊲ [T/a]t
′′

1 and we derive

t1 ⊳ a ⊲ t2 = (t′1 ⊳ b ⊲ t
′′

1) ⊳ a ⊲ t2

= ((t′1 ⊳ a ⊲ T ) ⊳ b ⊲ (t′′1 ⊳ a ⊲ T )) ⊳ a ⊲ t2 by (12) and (13)

= (([T/a]t′1 ⊳ a ⊲ T ) ⊳ b ⊲ ([T/a]t′′1 ⊳ a ⊲ T )) ⊳ a ⊲ P2 by IH

= ([T/a]t′1 ⊳ b ⊲ [T/a]t
′′

1) ⊳ a ⊲ t2 by (12) and (13)

= [T/a]t1 ⊳ a ⊲ t2.

In a similar way, but now using (21), axiom (CPmem) and (11) instead, we find CPmem ⊢
t1 ⊳ a ⊲ t2 = t1 ⊳ a ⊲ [F/a]t2, and thus

CPmem ⊢ t1 ⊳ a ⊲ t2 = [T/a]t1 ⊳ a ⊲ [F/a]t2.
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With axioms (CP1) and (CP2) we find basic forms Qi in which a does not occur with
CPmem ⊢ Q1 = [T/a]P1 and CPmem ⊢ Q2 = [F/a]P2.

By induction it follows that there aremem-basic formsR1 and R2 with CPmem ⊢ Ri = Qi,
and hence CPmem ⊢ P = R1 ⊳ a ⊲ R2 and R1 ⊳ a ⊲ R2 is a mem-basic form.

Before proving Lemma 7 (Section 7), we first formulate another lemma:

Lemma 8. For all a ∈ A, f ∈ M , t, t′ ∈ TΣA
ce

, and ρ ∈ (A \ {a})core ∪ {ǫ},

(t′ • (t • (a • f)))(ρa) = (t • (a • f))(ρ′a) (23)

for some ρ′ ∈ (A \ {a})core ∪ {ǫ}.

Proof. By structural induction on t′.

If t′ ∈ {T, F} then (23) follows immediately.

If t′ ≡ a then (a • (t • (a • f)))(ρa) = (t • (a • f))(a).
Note that this case also covers A = {a}.

If t′ ≡ b 6≡ a then (b • (t • (a • f)))(ρa) = (t • (a • f))(b(ρ− b)a).

If t′ ≡ t1 ⊳ t2 ⊲ t3 we make a case distinction:

(i) t2 ! (t • (a • f)) = T . Then

(t′ • (t • (a • f)))(ρa) = (t1 • (t2 • (t • (a • f))))(ρa)

= (t1 • ((t2 ⊳ t ⊲ t2) • (a • f)))(ρa)

= ((t2 ⊳ t ⊲ t2) • (a • f))(ρ′a) (by IH)

= (t2 • (t • (a • f)))(ρ′a)

= (t • (a • f))(ρ′′a). (by IH)

(ii) t2 ! (t • (a • f)) = F . Similar.

Lemma (This is Lemma 7, Section 7). For all f ∈ M and t, t′ ∈ TΣA
ce

,

t ! (t′ • (t • f)) = t ! f ∧ t • (t′ • (t • f)) = t′ • (t • f). (14)

Proof. We prove this property by structural induction on t.

If t ∈ {T, F} then (14) follows immediately.

If t ≡ a ∈ A then apply Lemma 8 with t = T and derive (t′ •a•f)(ρa) = (a•f)(ρ′a) = f(a),
thus a ! (t′ • (a•f)) = (t′ • (a•f))(a) = f(a) = a !f . Furthermore, a• (t′ • (a•f)) = t′ • (a•f)
follows by structural induction on t′:

t′ ≡ T : (a • (a • f))(σ) =

{

(a • f)(a) = f(a) if σ = a or σ = ρa,

(a • f)(a(σ − a)) = f(a(σ − a)) otherwise,

thus a • (a • f) = a • f ,

t′ ≡ F : similar,

28



t′ ≡ a: similar,

t′ ≡ b 6≡ a then consider both functions applied to ρ ∈ Acore:

(i) if ρ ends with a then by definition both functions yield f(a),

(ii) if ρ ends with b then (a•(b•(a•f)))(ρ) = (b•(a•f))(a(ρ−a)) = (a•f)(b) =
f(ab) and (b • (a • f))(ρ) = (a • f)(b) = f(ab),

(iii) in the remaining case ρ does not end with either a or b, so
(a • (b • (a • f)))(ρ) = (b • (a • f))(a(ρ − a)) = (a • f)(ba((ρ − a) − b)) =
f(ab((ρ− a)− b)) and (b • (a • f))(ρ) = (a • f)(b(ρ− b)) = f(ab((ρ− b)− a)),
so both functions are the same,

t′ ≡ t′1 ⊳ t
′

2 ⊲ t
′

3 and we make a case distinction:

(i) if t′2 ! (a • f) = T then we find by IH that

t′ • (a • f) = t′1 • (t
′

2 • (a • f))

= t′1 • (a • (t
′

2 • (a • f)))

= a • (t′1 • (a • (t′2 • (a • f))))

= a • (t′1 • (t
′

2 • (a • f))),

(ii) t′2 ! (a • f) = F . Similar.

If t ≡ t1 ⊳ t2 ⊲ t3 we make a case distinction:

(i) t2 ! f = T . By IH we find t2 ! (t
′ • (t1 • (t2 • f))) = t2 ! ((t

′ ⊳ t1 ⊲ t
′) • (t2 • f)) = t2 ! f = T

and we derive

t ! (t′ • (t • f)) = t ! (t′ • (t1 • (t2 • f)))

= (t1 ⊳ t2 ⊲ t3) ! (t
′ • (t1 • (t2 • f)))

= t1 ! (t2 • (t
′ • (t1 • (t2 • f))))

= t1 ! ((t2 ⊳ t
′ ⊲ t2) • (t1 • (t2 • f)))

= t1 ! (t2 • f) (by IH)

= t ! f,

and

t • (t′ • (t • f)) = t • (t′ • (t1 • (t2 • f)))

= (t1 ⊳ t2 ⊲ t3) • (t
′ • (t1 • (t2 • f)))

= t1 • (t2 • (t
′ • (t1 • (t2 • f))))

= t1 • ((t2 ⊳ t
′ ⊲ t2) • (t1 • (t2 • f)))

= t′ • (t1 • (t2 • f)) (by IH)

= t′ • (t • f).

(ii) t2 ! f = F . Similar.
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