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Abstract

In this paper we investigate the asymptotic behavior of coin position entanglement

(CPE) of a discrete-time quantum walk in one dimensional lattice using a time-dependent

unitary coin operator. We consider the entropy of entanglement of a two-period quantum

walk defined by two orthogonal matrices for local and nonlocal initial states. We show

that compared the other types of quantum walk (like Hadamard walk), for both of initial

conditions, values of CPE are increased for this time-dependent walk and their maximum

value is reached.
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1 Introduction

Markov chains or random walks is a fundamental tool with broad applications in various fileds

of mathematics, computer science and the natural science, such as mathematical modeling of

physical systems [1, 2, 3] which its kind of quantum is quantum walks (QWs) and the possibility

that future quantum algorithms will be based on the QWs has attracted the attention of

researchers from different fields [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. QWs evolution involves the

quantum features of interference and superposition, resulting the quadratically faster spreed

in position space than it’s classical counterpart. This difference characterized by the standard

deviation, which is defined as σ(t) =
√
E(X2

t )−E(Xt)2, where Xt is the position of the

quantum walker at time t and E(Y ) denotes the expected value of Y . Its value for the classical

and quantum state are calculated σ(t) ∼
√
t and σ(t) ∼ t [14, 15, 16, 17, 18], respectively.

This property as well as quantum parallelism and quantum entanglement could be used to

increase the efficiency of quantum algorithms, to explain phenomena such as the breakdown

of electric-field driven system [19] and direct experimental evidence for wave like energy trans-

fer within photosynthetic systems [20, 21], to induce Anderson localization of Bose-Einstein

condensate in optical lattice [22], to demonstrate the coherent quantum control over atoms,

quantum phase transition [23], to generate entanglement between spatially separated systems

[24] and etc. QWs are studied in two forms: continuous-time quantum walk (CTQW) defined

by Farhi and Gutmann [16] and discrete-time quantum walks (DTQW) defined by Aharonove

et al [17, 18, 25].

The conditional shift in the evolution operator of the quantum walk generates entangle-

ment between the coin and position degrees of freedom. Quantum entanglement is one of

the key resource for quantum information processing and manipulating of entangled states

are essential for quantum information applications. Such these applications are superdense

coding, quantum teleportation, information exchanges through time, and the creation of a
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quantum computer. After several steps, it converges to a well-defined value which for a given

evolution operator, is determined by the initial state [26]. This paper deals with coin posi-

tion entanglement for DTQW in one-dimensional which we consider the time-dependent coin.

Time-dependence here means that for a different particle location acts a different coin operator.

Existence of two free parameters in this time-dependent operator supply enough freedom to

easily find conditions under which entanglement is maximal. Since the system which we con-

sider is pure and bipartite, so by using the Von-Neumann entropy investigate the asymptotic

behavior of CPE for different initial conditions, local and nonlocal. We see that the entropy

of entanglement addition dependence on free parameters of coin operator also depends on the

initial conditions and can be reached to its maximum value under certain conditions.

This work organized as follows: In section 2 a formal description of the quantum walk

is presented in detail. Definition entropy of entanglement is shown in section 3. It includes

a general formulation for calculating the entanglement using the Von-Neumann entropy. In

section 4 the tow-period QWs is presented and in its subsections the asymptotic behavior of

CPE for local and nonlocal initial conditions is investigated. Summary and conclusions is given

in the last section.

2 Formal description of the quantum walk

DTQW takes place in a discrete space of positions, with a unitary evolution of coin toss

and position shift in discrete time steps [17]. Let Hp be position Hilbert space spanned by

orthonormal basis {|x〉; x ∈ Z} and Hc be single-qubit coin space spanned by two orthonormal

vectors [|R〉, |L〉]. The total Hilbert space is given by H = Hp ⊗ Hc. Then a state of the

quantum walk is

|ψt〉 =
∑

x∈Z
|x〉 ⊗ [at(x)|L〉 + bt(x)|R〉], (2-1)
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where at(x) (bt(x)) is the amplitude of the base |x, L〉 (|x,R〉) at time t and at(x), bt(x) belong

to the complex number C satisfying the normalization condition
∑

x∈Z |at(x)|2 + |bt(x)|2 = 1.

The evolution of the system at each step of the walk is generated by Ut = S.(Ip⊗Ct), where Ct

is the time dependent coin operator (only acting onHc) and the quantum equivalent of random

selection for choosing the direction of particle movement [27]. In this paper we consider

Ct = [αt|L〉〈L|+ βt|L〉〈R|+ γt|R〉〈L|+ δt|R〉〈R|], (2-2)

where αt, βt, γt, δt ∈ C. Ip is the identity operator (only acting on Hp) and S is the conditional

position-shift operator that moves the particle according to the coin state and defined as

S = SL ⊗ |L〉〈L|+ SR ⊗ |R〉〈R| whit SL = |x− 1〉〈x| and SR = |x+ 1〉〈x|. The time evolution

of |ψt〉 is given by

|ψt+1〉 = Ut|ψt〉. (2-3)

The Fourier transform |ψ̃t(k)〉 (k ∈ (−π, π)) is given by

|ψ̃t(k)〉 =
∑

x∈Z
e−ikx|ψt(x)〉, (2-4)

then the inverse Fourier transform as

|ψt(x)〉 =
∫ π

−π

dk

2π
eikx|ψ̃t(k)〉. (2-5)

From Eqs. (2-3) and (2-4), the time evolution of |ψ̃t(k)〉 becomes

|ψ̃t(k)〉 = Ũt−1(k)Ũt−2(k)Ũt−3(k)....Ũ0(k)|ψ̃0(k)〉, (2-6)

where Ũt(k) = R(k)Ut and R(k) =



eik 0

0 e−ik


. Note when Ut = U for any t, the walk

becomes a usual walk and |ψ̃t(k)〉 = Ũ t(k)|ψ̃0(k)〉.

3 Entropy of entanglement

Entropy of entanglement is one of tools to quantify entanglement [28]. Some measures such

as concurrence [29, 30, 31, 32], negativity [33, 34, 35], and tangle [36, 37, 38] can be used for
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quantifying entanglement. If the overall system is pure, the entropy of one subsystem can

be used to measure its degree of entanglement with the other subsystems. Using the Von-

Neumann entropy, Bennett et al [39] have defined a measure of entanglement for each pure

state of a bipartite system as:

SE = −tr(ρc log2 ρc). (3-7)

In this equation, ρc = trp(ρ) is the reduced density operator obtained from ρ = (U)tρ0(U
†)t

by tracing out the position degrees of freedom. Since ρc has two dimension, this quantity is

SE ∈ [0, 1], i.e., SE = 0 for a product state and SE = 1 for a maximally entangled state. Note

that, in general tr(ρc) = 1 and tr(ρ2c) ≤ 1. The entropy of entanglement can be obtained after

digitalization of ρc. This operator which acts in Hc is represented by the Hermitian matrix

[40] as

ρc =



αt βt

β∗
t γt


 , (3-8)

where

αt ≡
∑

x∈Z
|at(x)|2 =

∫ π

−π

dk

2π
|ãt(k)|2,

βt ≡
∑

x∈Z
|at(x)||b∗t (x)| =

∫ π

−π

dk

2π
|ãt(k)||b̃∗t (k)|,

γt ≡
∑

x∈Z
|bt(x)|2 =

∫ π

−π

dk

2π
|b̃t(k)|2.

The eigenvalues of ρc, namely r1 and r2 are given by

r1,2 =
1

2
[1±

√
1 + 4(|βt|2 − αtγt)]. (3-9)

Therefore, by using Eqs. (3-7) and (3-9) one can obtain the entropy of entanglement as

SE = −(r1 log r1 + r2 log r2). (3-10)
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4 Two-period QWs

In this section we explain the two-period QWs, let {Ct; t = 0, 1, ...} be a sequence of orthogonal

matrices with C2s = H0 and C2s+1 = H1 (s = 0, 1, ...)

Hγ =




cos θγ sin θγ

sin θγ − cos θγ



 , (4-11)

where γ = 0, 1 and θ0, θ1 ∈ [0, 2π) and they are free parameters of cion operator [27]. With this

interpretation, Ut depends on initial state that we explain this concepts in the next subsections.

4.1 local initial conditions

Now we consider an initial state as |ψ0(x) = |0〉 ⊗ |χ〉 with initial coin state |χ〉 = a0(0)|L〉+

b0(0)|R〉, where |a0(0)|2 + |b0(0)|2 = 1, and also |ψ̃0(k)〉 = |ψ0(0)〉. The Fourier transform for

this state regarded as

|ψ̃2t(k)〉 = (H̃1(k)H̃0(k))
t|ψ̃0(k)〉. (4-12)

The two eigenvalues of H̃1(k)H̃0(k) are given by

λγ(k) = c0c1 cos 2k + s0s1 + (−1)γi
√
1− (c0c1 cos 2k + s0s1)2 for (γ = 0, 1), (4-13)

where cγ = cos θγ and sγ = sin θγ . The eigenvectors |Vγ(k)〉 corresponding to λγ(k) are

|Vγ(k)〉 = 1√
Nγ




u(k)

v(k) + (−1)γw(k)


 , (4-14)

where the elements of this matrix are as follows

u(k) = s0c1e
2ik − c0s1

v(k) = −ic0c1 sin 2k

w(k) = i
√
1− (c0c1 cos 2k + s0s1)2,
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and Nγ is the normalization constant. According to Eq. (4-12), the spinor components for

|ψ̃t(k)〉 are defined as

ãt(k) = u(k)(
λt
0
(k)

N0

F (k) +
λt
1
(k)

N1

G(k)),

b̃t(k) = v(k)(
λt
0
(k)

N0

F (k) +
λt
1
(k)

N1

G(k)) + w(k)(
λt
0
(k)

N0

F (k)− λt
1
(k)

N1

G(k)),
(4-15)

where

F (k) = u∗(k)ã0(k) + (v∗(k) + w∗(k))b̃0(k),

G(k) = u∗(k)ã0(k) + (v∗(k)− w∗(k))b̃0(k).

Therefore by using the Eqs. (3-8) and (4-15), we have

αt =
∫ π
−π

dk
2π
( |u(k)|

2

N2

0

|F (k)|2 + |u(k)|2
N2

1

|G(k)|2

+ |u(k)|2
N0N1

(λ2t0 (k)F (k)G
∗(k) + λ2t1 (k)F

∗(k)G(k))),

βt =
∫ π
−π

dk
2π
(u(k)(v(k)+w(k))

N2

0

|F (k)|2 + u(k)(v(k)−w(k))
N2

1

|G(k)|2

+u(k)v∗(k)
N0N1

(λ2t0 (k)F (k)G
∗(k) + λ2t1 (k)F

∗(k)G(k))− u(k)w∗(k)
N0N1

(λ2t0 (k)F (k)G
∗(k)− λ2t1 (k)F

∗(k)G(k))).
(4-16)

Note that, by using the Riemann-Lebesgue lemma, in the long time limit the time dependence

of these equations are vanished [41]. Since these integrals are elliptic integrals of type and

solving them analytically is not possible, a computer code was prepared to solve them numer-

ically. This computer code by put θ0 and θ1 as numerical value with 0.05rad steps has been

able to from Eq. (4-16) calculate α and β. Found much more than thousand numerical values

for α,β and for each them entropy of entanglement from Eqs. (3-9) and (3-10) was calculated

and as functions of θ0,θ1 are plotted. In follow we see that SE addition dependence on free

parameters of coin operator also depends on the initial conditions. One of the simple case of

a local initial state is as |ψ0(x)〉 = |0〉 ⊗ |L〉, so we have ã0(0) = 1 and b̃0(0) = 0. In Fig.1

behavior SE as a function of θ0,θ1 for this type of initial state has been plotted. In this figure

we can see a periodic behavior of SE that is resulting from the periodic behavior of Ut. The

numerical calculations show that, as in the Fig.1 is clear, for certain θ0 and θ1 we have the

maximal entropy of entanglement as SE ≈ 0.99999.
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Let us now consider a slightly more general kind of local initial condition as ã0(k) = ib̃0(k).

Also in this case, for the certain θ0 and θ1 the maximal entropy of entanglement has appeared

but the amount’s is equal to SE ≈ 0.99995. In Fig.2 (a) we have shown behavior of SE as a

function of θ0 and θ1 for these initial conditions (Fig.2 (b) shows the contour plot of the same

surface). Note that if θ0 = θ1 = π
4
, then we have the particular case of walk that name’s is

the Hadamard walks and entropy of entanglement is obtained as SE = 0.8724 which this exact

value agrees with the numerical and analytically observations reported in Refs. [26, 40]. This

result shows that for Hadamard walk, when initial condition is local, the value of entanglement

independent of a0(0) (ã0(k)) and b0(0) (b̃0(k)). Up here we see that by using two period coin

operator, for local initial conditions, entropy of entanglement has increased considerably and

almost their maximum value is reached.

4.2 Nonlocal initial conditions

Now we consider a quantum walk initialized in a simple uniform superposition of two position

eigenstates such as

|ψ±〉 =
| − ξ〉 ± |ξ〉√

2
⊗ |χ〉, (4-17)

weher |χ〉 = 1√
2
(|L〉+ i|R〉) and ξ ∈ Z. If ξ is odd then the Fourier transform becomes

|ψ̃2t(k)〉 = (H̃0(k)H̃1(k))
t|ψ̃0(k)〉. (4-18)

Two eigenvalues of H̃0(k)H̃1(k) are equal with Eq. (4-13) and two eigenvectors are given by

|Vγ(k)〉 = 1√
Nγ




u(k)

v(k) + (−1)γw(k)




u(k) = s1c0e
2ik − c1s0

v(k) = −ic0c1 sin(2k)

w(k) = i
√
1− (c0c1 cos(2k) + s0s1)2.

(4-19)



9

For initial state which defined in Eq. (4-17), we have ã0(k) = ib̃0(k), therefore

|ã0(k)|2 =





cos2(ξk) for |ψ+〉

sin2(ξk) for |ψ−〉.

From Eq. (4-15), the spinor components for |ψ̃t(k)〉 and From Eq. (4-16), by using the

computer code, elements of ρc are calculated. The numerical conclutions shows that, per

certain θ0 and θ1, the maximal value of SE for |ψ+〉 is S+
E = 1 and for |ψ−〉 is S−

E = 0.99995.

Fig.3 (a) (Fig.4 (a)) shows behavior of SE as a function of θ0 and θ1 for nonlocal initial

condition |ψ+〉( |ψ−〉), respectively. Also, Fig.3 (b) (Fig.4 (b)) shows the contour plot this

surface. In special case, when θ0 = θ1 = π
4
(which equal Hadamard walks) for ξ = 1 we

have S+
E = 0.97866 and S−

E = 0.66129 which these exact values agrees with the analytically

observations reported in Refs. [40]. If ξ is even, the Fourier transform of evolution are generated

by Ũt(k) = H̃1(k)H̃0(k). The eigenvalues and eigenvectors of this operator is calculated in the

previous subsection. In this case maximal value of entropy have obtained as S+
E = 0.999804

and S−
E = 1. Our numerical calculations show that this time dependent operator compared to

other operators increased entanglement significantly as far as the highest value of entanglement

was obtained.

5 Conclusion and discuss

In the final section, we offer the conclusion and discuss our two-period walks. We can see that

our walk is similar to the Kronig-Penney model, whose potential on a lattice is periodic [42].

The conditional shift operator in evolution of QWs cause coin and position states entangled.

In quantum information, measurement of this quantity is very important and there are varied

of measurements. Since our system was bipartite and pure, the entanglement were calculated

through the Von-Neumann entropy. Using tow-period coin operator then, existence of two

free parameters (θ0 and θ1) in the evolution operator provided enough freedom to check the
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conditions under which entanglement is maximally enhanced. Although the purpose is study

system in the long time limit, but value of entanglement is independent of time and depends

on initial conditions and two free parameters of the evolution operator. Two types of initial

conditions was evaluated: local and nonlocal, in both cases we have shown that values of CPE

are increased for this time-dependent walk and their maximum value is reached.

As a summary of the present paper: for local initial state as |ψ0(x) = |0〉 ⊗ |χ〉 with initial

coin state |χ〉 = a0(0)|L〉 + b0(0)|R〉, for a0(0) = 1 and b0(0) = 0 the maximal entropy of

entanglement is SE ≈ 0.99999 and for a0(0) = ib0(0) it is SE ≈ 0.99995. For all nonlocal initial

states as |ψ±〉 = |−ξ〉±|ξ〉√
2

⊗ |χ〉 we obtain

S+
E =






1 ξ is Odd

0.999804 ξ is Even,

and

S−
E =






0.99995 ξ is Odd

1 ξ is Even.
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Figure Captions

Fig1: (a) Entropy of entanglement SE as a function of θ0 and θ1, defined in Eq. (3-10) for

|ψ0(x)〉 = |0〉⊗ |L〉.magnification is 20.

Fig2: (a) Entropy of entanglement SE as a function of θ0 and θ1, defined in Eq. (3-10) for

ã0(k) = ib̃0(k). magnification is 20.

(b) contour plot the surface shown in Fig.2 (a).

Fig3: (a) Entropy of entanglement SE as a function of θ0 and θ1, defined in Eq. (3-10) for

nonlocal initial state |ψ+〉.magnification is 20.

(b) contour plot the surface shown in Fig.3 (a).

Fig4: (a) Entropy of entanglement SE as a function of θ0 and θ1, defined in Eq. (3-10) for

nonlocal initial state |ψ−〉. magnification is 20.

(b) contour plot the surface shown in Fig.4 (a).


