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Abstract
The Ni – base superalloys, which are combined an unique physical and mechanical properties, are used in aircraft industry for production 
of aero engine most stressed parts, as are turbine blades. From this reason a dendrite arm spacing, carbides size and distribution, morphol-
ogy, number and value of  - phase are very important structural characteristics for blade lifetime prediction as well as aero engine its self. 
In this article are used methods of quantitative metallography (software LUCIA for carbides evaluation, measuring of secondary dendrite 
arm spacing and coherent testing grid for  - phase evaluation) for evaluation of structural characteristics mentioned above on experimen-
tal material – Ni base superalloy ŽS6K. The high temperature effect represented here by heat treatment at 800°C followed with holding 
time about 10 hours, and cooling rate, here represented by three various cooling mediums as water, air, and oil, on structural characteristics 
and application of quantitative methods evaluation are presented in this paper. 
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1. Introduction
 

Aerospace industry is one of the biggest consumers of ad-
vanced materials, because of its unique combination of mechani-
cal, physical properties and chemical stability. High alloyed 
stainless steel, titanium alloys and nickel base superalloys are 
most used for aerospace applications. High alloyed stainless steel 
is used for shafts of aero engine turbine, titanium alloys for com-
pressor blades and finally nickel base superalloys are used for 
most stressed parts of jet engine – turbine blades. Nickel base 
superalloys were used in various structure modifications: as cast 
polycrystalline, directionally solidified, single crystaled and in 
last years materials produced by powder metallurgy [6]. In this 
paper problems of polycrystalline nickel base superalloys turbine 
blades such as most stressed parts of aero jet engine will be dis-
cussed. 

The structure of polycrystalline Ni – base superalloys, de-
pending on a heat – treatment, consist of solid solution of ele-

ments in Ni (  - phase, also called matrix), primary carbides MC 
type (created by element such as Cr and Ti), intermetallic precipi-
tate Ni3(Al, Ti) (  - phase), and secondary carbides M23C6 type 
(created by elements such as Cr, Co, Mo, W). Shape and size of 
these structural components have a significant influence on final 
mechanical properties of alloy [1]. 

For instance the precipitate  size greater than 0.8 m sig-
nificantly decreasing the creep rupture life of superalloys and also 
carbides size greater than 5 m is not desirable because of fatigue 
cracks initiation [2]. 

For this reason needs of new non – conventional structure 
parameters methods evaluation were developed. The quantitative 
metallography, deep etching, and colour contrast belongs to the 
basic methods. The quantitative metallography analysis has statis-
tical nature. The elementary tasks of quantitative metallography 
are: 

Dendrite arm spacing evaluation; 
Carbide size and distribution; 
Volume ratio of evaluated phase; 
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Number ratio of evaluated phase; 
Size of evaluated phase. 

Application of the quantitative metallography and colour 
contrast on the Ni – base superalloys are the main objectives 
discussed in this paper. More detailed analysis is published in 
previous works [1-8]. These non – conventional methods were 
successfully used also for the other types of materials [9-11]. 

 
 

2. Experimental
 
 

The cast Ni – base superalloy ŽS6K was used as an experi-
mental material. Alloy ŽS6K contains higher amount of Cr, it has 
increased gas corrosion resistance and also high creep rupture life. 

This alloy was evaluated after annealing at 800 °C/ 10 and 
800 °C/ 15 hrs. and followed by cooling with various rate, pre-
sented with cooling in water, oil and air. The chemical composi-
tion in wt % is presented in Table 1. 

Table 1. Experimental alloy chemical composition  

Elements (wt. %) 
Alloy 

C Ni Co Fe Ti Cr Al W Mo

ŽS6K 
0.13 

- 
0.2 

base 4.0 
-5.5 2.0 

2.5 
- 

3.2 

9.5 
- 

12 

5.0 
- 

6.0 

4.5
- 

5.5

3.5
- 

4.8
*other minor elements: Mn, Si – 0.4; P, S, Ce, Bi – 0.015; B – 
0.02; Pb – 0.005 
 

Alloy ŽS6K is after casting strengthened with solid solution 
(Cr, Co and Mo),  phase (Ni3(AlTi)) and with carbides M23C6 
situated on grain boundaries.  

For evaluation of structural characteristics the following 
quantitative metallography methods were used: 

Carbide distribution and average size was evaluated by 
software LUCIA Metalo 5.0; 
Secondary dendrite arm spacing measurement; 
For number of  - phase particles coherent testing grid 
with area probe of square shape were used; 
For volume of  - phase particles coherent testing grid 
with 50 dot probes made of backslash crossing were 
used. 

 
 
 

3. Experimental results and discussion 

The ŽS6K microstructure of starting stage is created by car-
bides in chain morphology situated on grain boundary and large 
amount of eutectic cells /  (Fig. 1). An example of microstruc-
ture after annealing at 800 °C/ 15 hrs., focused on carbide distri-
bution is presented in Fig. 2. 

After 800 °C/ 10 and 800 °C/ 15 hrs. the microstructure 
shows some changes, mainly in number of carbides, its distribu-
tion and size. This effect is forced by diffusion mechanism and 
cooling rate when quick cooling represented by water gives not 
sufficient time for carbide growth. The results of carbide evalu-
ation are presented in Fig. 3.  

For dendrite structure evaluation method of measuring sec-
ondary dendrite arm spacing was used. The results of measuring 

are presented in Table 2. The cast materials are characterized by 
dendritic structure, as can be seen in Fig. 4 a and 4 b, which is a 
result of chemical heterogeneity. Increase of annealing time de-
creases its chemical heterogeneity. It means that the secondary 
dendrite arm spacing is increased (the dendrites are growing). 
ŽS6K dendrite arm spacing is increased in dependence of the 
annealing time, annealing temperature and cooling medium from 
113.64 to 156.25 μm. 

 
 

 
      Fig. 1. SuperalloyŽS6K: starting stage 

 
Fig. 2.Superalloy ŽS6K: 800°C/15hrs. cooled in oil.  

 
The characteristics of - phase morphology were also meas-

ured using the coherent testing grid methods. As were mentioned 
above, the number and volume of - phase have significant influ-
ence on mechanical properties of this alloy, especially on creep 
rupture life. Average satisfactory size of  - phase is about 0.35 –
 0.45 m and also carbide size should not exceed size of 5 m – 
because of fatigue crack initiation [3]. Another risk of using high 
temperature loading or annealing is creation of TCP phases, such 

 - phase or Laves phase, in range of temperature 750 °C –
 800 °C. Exposing for 10 hours at annealing temperature the 
volume of - phase was increased about 16.8 – 33 % comparing 
with the starting stage, Fig. 5 a and 5 b. The significant increasing 
of - phase was observed at holding time 15 hours, cooling on air, 
where volume of - phase is 76.6 %.  
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Fig. 3. Carbide particles ratio depended from cooling medium 
and time of holding 

 

Table 2. The results of secondary dendrite arm spacing 
evaluation 

Secondary dendrite arm spacing [ m] 
Alloy Air Oil Water Starting stage 

ŽS6K 10h 138,89 131,58 126,58 

ŽS6K 15h 156,25 131,58 113,64 
ŽS6Kv 185,19 

 
 

Vickers hardness measuring was carried out to confirm pos-
sible carbide re-distribution and decreasing of the chemical het-
erogeneity. It was found that the main influence on the hardness 
variation has cooling medium, as we can see from results pre-
sented in Table 3. The highest hardness was reached after cooling 
on air, after 15 hours – 493 HV 10. Cooling in oil, after 10 hours, 
brings to hardness 476 HV 10 and the lowest hardness was meas-
ured for the water cooling – 443 HV 10. From the result it is clear 
that holding time at temperature of annealing has no so significant 
effect on hardness value, but the cooling rate represented by 
various cooling medium has significant influence on the hardness.  

 

a) 

 

b) 

 
Fig. 4. Superalloy ŽS6K, secondary dendrite arm spacing: a) starting stage, b) 800 °C/ 10 hrs. cooled in water, etch. MARBLE 

 
a) 

 

b) 

 
Fig. 5. Superalloy ŽS6K: a) 800°C/10 hrs. cooled in water,b) 800 °C/ 15 hrs. cooled in water, etch. MARBLE 

 
 

 4. Conclusions 
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As cast Ni – base superalloy ŽS6K was used as an experi-
mental material. The structural characteristics were evaluated 
from starting stage of sample and after annealing at 800 °C/ 10 
and 800 °C/ 15 hrs. with using of quantitative metallography 
methods. The results are as follows: 

Table 3. The  - phase morphology evaluation including Vickers 
hardness measuring 

Alloy 

Number 
of 

- phase 
N [ m-2] 

Volume 
of 

 - phase 
V [%] 

Size of 
 - phase 
u [ m] 

Average 
carbide 

size [ m] 

Hardness
[HV 10] 

ŽS6Kv 2,47 39,4 0,61 3.55 408,6 
ZŠ6K10h water 1,95 56,2 0,54 6.05 456,70 

ŽS6K10h oil 1,60 63 0,63 6.07 476,31 
ŽS6K10h air 1,50 72,4 0,69 5.15 489,67 

ŽS6K15h water 1,90 66,8 0,59 5.74 443,86 
ŽS6K15h oil 1,59 71,8 0,67 6.12 463,05 
ŽS6K15h air 1,49 76,6 0,72 6.2 493,73 

Structure of the samples is characterized by dendritic segrega-
tion. In dendritic areas fine  - phase is segregate. In inter-
dendritic areas eutectic cells /  and carbides are segregated. 
Holding time (10 – 15 hrs.) does have significant influence on 
the carbide particles size. The size of carbides is under critical 
level for fatigue crack initiation only in starting stage. The in-
crease rate of cooling has significant effect on the carbide par-
ticles ratio. 
Chemical heterogeneity of the samples with longer holding 
time is decreasing. It is reason of sufficient time for diffusion 
mechanism, which is confirmed by secondary dendrite arm 
spacing measurement results.  
The volume of  - phase with longer holding time is increas-
ing and also  - phase size is growing. With higher rate of 
cooling are  particles finer. 
There was not evidence of TCP phase presence even though 
high annealing temperature.  
Cooling rate has also influence on the hardness. At lower rate 
of cooling the internal stresses are relaxed, which caused 
hardness increase – changing of the dislocation structure. 
Cooling rates, represented by various cooling mediums have 

influence on diffusion processes in structure of alloy. These diffu-
sion processes are the main mechanism for segregation and creat-
ing of carbide particles, equalization of chemical heterogeneity,  
- phase segregation and are responsible for structure degradation 
of this alloy as well. 
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