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Abstract 

Spectral risk measures (SRMs) are risk measures that take account of user risk-

aversion, but to date there has been little guidance on the choice of utility function 

underlying them. This paper addresses this issue by examining alternative 

approaches based on exponential and power utility functions. A number of 

problems are identified with both types of spectral risk measure. The general 

lesson is that users of spectral risk measures must be careful to select utility 

functions that fit the features of the particular problems they are dealing with, and 

should be especially careful when using power SRMs.  
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1. Introduction 

 

One of the most interesting and potentially most promising recent developments 

in the financial risk area has been the theory of spectral risk measures, recently 

proposed by Acerbi (2002, 2004). Spectral risk measures (SRMs) are closely 

related to the coherent risk measures proposed a little earlier by Artzner et al. 

(1997, 1999), and share with the coherent risk measures the highly desirable 

property of subadditivity. More formally, if (.)ρ  is a measure of risk, and if A and 

B are any two positions, then subadditivity means that it will always be the case 

that ( ) ( ) ( )A B A Bρ ρ ρ+ ≤ + . Subadditivity reflects the common-sense notion 

that individual risks typically diversify (or, at worst, do not increase) when we put 

risky positions together.  

 One of the nice features of SRMs is that they relate the risk measure to the 

user’s risk-aversion – in effect, the spectral risk measure is a weighted average of 

the quantiles of a loss distribution, the weights of which depend on the user’s risk-

aversion. Spectral risk measures therefore enable us to link the risk measure to the 

user’s attitude towards risk, and we might expect that if a user is more risk averse, 

other things being equal, then that user should face a higher risk, as given by the 

value of the SRM. SRMs can be applied to many different problems. For 

example, Acerbi (2004) suggests that they can be used to set capital requirements 

or obtain optimal risk-expected return tradeoffs, Overbeck (2004) discusses how 

they might be used for capital allocation, and Cotter and Dowd (2006) suggest 

that SRMs could be used by futures clearinghouses to set margin requirements 

that reflect their corporate risk aversion.  

 However the existing literature gives very little guidance on the choice of 

risk aversion function or on the question of what a suitable risk aversion function 

might entail. For instance, Szegö (2002) describes the process of multiplying 

coherent risk measures by an admissible risk aversion function but does not 

specify what an admissible risk aversion function might be. Similarly, Acerbi 

(2004, p. 175) calls for the identification of additional criteria to assist the risk 

manager in choosing an optimal risk aversion function for a portfolio, but he 
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himself illustrates only one particular risk-aversion function – namely, an 

exponential one.   

 This paper investigates this issue further, and examines alternative SRMs 

based on alternative underlying utility functions. The ones considered are 

‘exponential SRMs’ based on an exponential utility function, which are 

equivalent to the ones that Acerbi studied, and ‘power SRMs’ based on a power 

utility function. To our knowledge, these latter have received no attention so far in 

the published literature, but they are a natural object of study as the power utility 

function is very widely used in other contexts.  

 The article is organised as follows. Section 2 sets out the essence of 

Acerbi’s theory of spectral risk measures. Section 3 examines the properties of 

exponential SRMs, and section 4 does the same for power SRMs. Section 5 

concludes. 

 

2. Spectral Risk Measures 

 

Consider a risk measure φM  defined by: 

 

(1)                                                 ∫=
1

0

)( dpqpM pφφ  

 

where pq  is the p loss quantile and )( pφ  is a user-defined weighting function 

defined over the full range of cumulative probabilities ]1,0[∈p  (see also Acerbi, 

2002, 2004). φM  defines the class of quantile-based risk measures, and each 

individual risk measure in this class is characterized by its own particular 

weighting function )( pφ .  

 Two well-known members of this class are the VaR and the Expected 

Shortfall (ES): 

• The VaR at the α  confidence level is: 
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        (2)                                                      αα qVaR =     

  

The VaR places all its weight on the α  quantile, i.e., the VaR weighting 

function ( )pφ  is a Dirac delta function that gives the outcome α=p  an 

infinite weight and gives every other outcome a weight of zero.  

• The ES at the confidence level α  is the average of the worst α−1  losses, 

viz.: 

  (3)                                             ∫−
=

1

1

1

α

α
α

dpqES p                                                      

The ES weighing function )( pφ  gives all tail quantiles the same weight of 

α−1

1
 and gives non-tail quantiles a weight of zero.  

Thus, the VaR is based on a degenerate weighing function and the ES is based on 

a simple step weighting function. It can also be shown neither of these risk 

measures makes any allowance for the user being risk-averse (see, e.g., Grootveld 

and Hallerbach, 2004, pp. 34-35).  

 A user who is risk-averse might prefer to work with a risk measure that 

takes account of his/her risk aversion, and this takes us to the class of spectral risk 

measures (SRMs). In loose terms, an SRM is a quantile-based risk measure that 

takes the form of (1) where )( pφ  reflects the user’s risk aversion. More precisely, 

following Acerbi, we can define SRMs as the subset of φM  that satisfy the 

following properties of nonnegativity, normalisation and increasingness: 

P1. Nonnegativity: 0)( ≥pφ . 

P2. Normalisation: ∫ =
1

0

1)( dppφ . 

P3. Increasingness: 0)( ≥′ pφ .
1
 

The first coherent condition requires that the weights are nonnegative and the 

second requires that the probability-weighted weights should sum to 1, but the 

key condition is the third one. This condition requires that the weights attached to 

                                            
1
 See Acerbi (2002, 2004). Strictly speaking, Acerbi’s P3 is a decreasingness condition, but he is 

dealing with distributions in which loss outcomes are given negative rather than positive values.  

However, this difference is insubstantial and our conditions P1-P3 are equivalent to his.  
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higher losses should be no less than the weights attached to lower losses, and is 

intended to reflect user risk-aversion.  

 However, a drawback with property P3 is that it does not rule out risk-

neutral risk measures from the set of SRMs. For instance, the ES would qualify as 

an SRM under P3, and we have already seen that the ES does not accommodate 

user risk aversion. To rule out such cases, we replace P3 with the following 

slightly stronger condition: 

P3'. Strict increasingness: ( ) 0pϕ′ > . 

Condition P3' ensures that the weight )( pφ  rises with p. In ‘well-behaved’ cases, 

we would expect the weights to rise smoothly, and to rise more rapidly for users 

who are more risk-averse.  

 A risk measure that satisfies these properties is attractive not only because 

it takes account of user risk-aversion, but also because such a risk measure is 

known to be coherent (see Acerbi, 2004, Proposition 3.4). Thus, SRMs have the 

various attractions of coherent risk measures (and especially subadditivity). 

 There still remains the question of how to specify )( pφ , and perhaps the 

most natural way to obtain )( pφ  is from the user’s utility function (see also 

Bertsimas et al., 2004). 

 

3. Exponential Spectral Risk Measures 

 

This requires us to choose a utility function, and a natural choice is the following 

exponential utility function defined over outcomes x:  

 

(4)                                                    ( ) kx
U x e

−= −   

 

where 0k >  is the Arrow-Pratt coefficient of absolute risk aversion (ARA). The 

coefficients of absolute and relative risk aversion are: 

 

(5a)                                             
( )

( )
( )

A

U x
R x k

U x

′′
= − =

′
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(5b)                                           
( )

( )
( )

R

xU x
R x xk

U x

′′
= − =

′
 

 

To obtain our weighting function, we set 

 

(6)                                                  (1 )( ) k pp eϕ λ − −=   

 

where λ  is an unknown positive constant.
2
 This clearly satisfies properties 1 and 

3, and we can easily show (by integrating )( pφ  from 0 to 1, setting the integral to 

1 and solving for λ ) that it satisfies 2 if we set  

 

 (7)                                                     
1 k

k

e
λ

−
=

−
 

 

Hence, substituting (7) into (6) gives us the exponential weighting function 

corresponding to (4): 

 

(8)                                                 
(1 )

( )
1

k p

k

ke
p

e
φ

− −

−
=

−
                 

 

This weighting function is illustrated in Figure 1 for two alternative values of the 

ARA coefficient, k . Observe that this weighting function has a nice shape and 

rises exponentially with p . In addition, for the higher p  values associated with 

higher losses, the weights are higher and the rate of increase of )( pφ  is higher, 

the greater the value of the ARA coefficient.  

 

Insert Figure 1 here 

 

                                            
2
 A weighting function of the form given in (6) is a natural choice for an exponential utility 

function, as it reflects the structure of the utility function. We do not assert that this weighting 

function is unique, but we have not been able to find any alternative that also fits the necessary 

criteria.  
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 The SRM based on this weighting function, the exponential SRM, is then 

found by substituting (8) into (1), viz.: 

 

(9)                               ∫=
1

0

)( dpqpM pφφ =

1

(1 )

0
1

k p

pk

k
e q dp

e

− −

−− ∫  

 

The value of the risk measure can then be found using numerical integration. 

 The first question of interest is how the SRM changes with the coefficient 

of risk aversion. As proven in the Appendix, it is not possible to say that 

/ 0M kφ∂ ∂ >  for all possible distributions, but some plots of the SRM against k  

for various illustrative distributions are shown in Figure 2. The distributions 

illustrated are standard normal, Cauchy, standard uniform, a beta with a right-

hand skew and a Gumbel, a form of extreme-value distribution. In every case, the 

SRM rises with k  in a ‘well-behaved’ manner, and the fact that such different 

distributions produce qualitatively similar plots suggests that / 0M kφ∂ ∂ >  must 

commonly though not universally hold. Some illustrative values of the 

exponential SRM under these alternative loss distributions are given in Table 1. 

So, for example, if we set 5k = , the spectral risk measure under standard 

normality is 1.080, but if we increase k  to 25, the same measure rises to 1.945.  

 

Insert Table 1 here 

Insert Figure 2 here 

 

 However, the exponential SRM also has the rather odd property that the 

value of the risk measure approaches the mean of the loss distribution in the limit 

as the value of k  goes to zero, viz.: 

 

(10)                                          

1

0

pM q d pφ → ∫  as 0k →  

 

This property is also proved in the Appendix. This is a rather strange property, 

and one that also goes against the fairly natural expectation that a ‘sensible’ risk 
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measure should always be sensitive to conditions such as market volatility. Note, 

too, that this property holds for any loss distribution.  

 Finally, there is the question of whether the exponential utility function 

provides a good description of empirically plausible risk aversion. The answer 

here is mixed:  

• On the one hand, the exponential utility function implies that the 

coefficient of absolute risk aversion is constant and the coefficient of 

relative risk aversion increases with wealth (see (5) above). However, the 

generally accepted stylised facts are that real-world agents exhibit 

decreasing absolute risk aversion (because a rich person would usually 

require a smaller premium to accept a given gamble than a poorer one) 

and constant relative risk aversion (because society now is much wealthier 

than it used to be, but there seems no obvious connection between Gross 

Domestic Product and observable risk premiums). Thus, the absolute and 

relative risk aversion properties of the exponential do not match what we 

think we observe in the real-world, and this suggests that the exponential 

might not always be appropriate.  

• On the other hand, the theoretical work of Buhlmann (1980) shows that, 

under weak conditions, all equilibrium prices are locally like the ones that 

would arise if agents had exponential utilities but where risk aversion is 

also dependent on net wealth (see also Wang (2003)). This suggests that 

the exponential utility function might be plausible in circumstances where 

we were dealing with a hypothetical ‘representative agent’ and were trying 

to infer this agent’s risk-aversion parameters from financial market prices.  

Users of exponential SRMs therefore need to make sure that they use them in 

circumstances that are empirically plausible. 

 

4. Power Spectral Risk Measures: 1γ <  

 

We can also obtain SRMs based on other utility functions, and a popular 

alternative to the exponential utility function is the power utility function:  
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(11)                                              
1

1
( )

1

x
U x

γ

γ

− −
=

−
  

 

for some positive parameter 0γ > , and where  

 

(12)                                                ( ) ln( )U x x=  

 

in the limiting case where 1γ = . Its coefficients of absolute and relative risk 

aversion are: 

 

(13a)                                      
( )

( )
( )

A

U x
R x

U x x

γ′′
= − =

′
  

(13b)                                     
( )

( )
( )

R

xU x
R x

U x
γ

′′
= − =

′
 

 

Thus, the power utility function has a constant coefficient of relative risk aversion 

equal to our parameter γ . This function therefore belongs to the family of 

Constant Relative Risk Aversion (CRRA) utility functions. 

 Our next task is to specify the weighting function, and one choice is the 

following: 

 

(14)                                             
1

(1 )
( )

1

p
p

γ

ϕ λ
γ

−−
=

−
 

 

where λ  is another unknown constant.
3
 We can easily show that this function 

satisfies property 2 if we set:  

 

(15)                                                  (1 )λ γ γ= −  

 

                                            
3
 Apropos note 2, a weighting function of the form given in (14) is a natural choice for the power 

utility function with 1γ <  - and the same goes for (20) or (21) below for the power utility function 

with 1γ >  - as it reflects the structure of the utility function. And, as with the earlier exponential 

case, we do not assert that this weighting function is unique, but are unable to find any alternatives 

that also satisfy the necessary criteria. 
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Substituting (15) into (14) then gives:  

 

(16)                                             1( ) (1 )p p γϕ γ −= −  

 

It is then obvious that property 1 always holds, and property 3' holds if 1γ < . We 

note at this point that this latter restriction might be a problem, because there is no 

a priori reason why γ  should be less than 1, and there may be circumstances 

where we are dealing with γ  values that exceed 1 (see, e.g., Dowd et al., 2008). 

We shall come back to this issue presently.  

To investigate its properties, the power weighting function (16) is plotted 

in Figure 3 for illustrative  γ  values equal to 0.7 and 0.9. This shows that, as we 

move right, the higher RRA- )( pφ  curve is initially higher than the lower RRA-

)( pφ  curve, but then falls below it once p  reaches a certain level. This tells us 

that with higher risk aversion, relatively more weight is placed on the lower losses 

and relatively less weight is placed on the higher losses! This is clearly odd, even 

though the )( pφ  function satisfies properties 1-3' set out above. 

 

Insert Figure 3 here 

 

The resulting risk measure (obtained by substituting (16) into (1)) is then 

 

(17)                             

1

0

( ) pM p q dpϕ ϕ= ∫
1

1

0

(1 ) pp q dp
γγ −= −∫  

 

and again the values of the risk measure can be found using numerical integration. 

 This SRM satisfies the following two properties which are sufficiently 

obvious that they do not need any explicit proof: 

 

(18)                                          0Mφ →  as 0γ →  

(19)                                     

1

0

pM q d pφ → ∫  as 1γ →  
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The first property, (18), indicates that the PSRM approaches a ‘singular point’ of 

0 as 0γ → . This implies that the PSRM is totally insensitive to market conditions 

and to the form of the loss distribution function in the limit when 0γ = . The 

second property, (19), tells us that the value of the PSRM approaches the mean of 

the loss distribution as 1γ → , i.e., we have a ‘near singular point’ at 1γ = .  This 

implies that the PSRM becomes completely insensitive to the market volatility or 

to the form of the loss distribution in the limit as 1γ → . Thus, as we move from 

γ =0 towards 1γ = , the PSRM always starts at one value, 0, and always ends at 

another value, the mean of the loss distribution, and this is the case for all possible 

loss distributions. From the risk measurement point of view, these ‘singular’ and 

‘near-singular’ points are bizarre features that cast further doubt on the suitabilty 

of PSRMs as risk measures.  

 To illustrate their properties further, Figure 4 shows plots of the power 

SRMs (PSRMs) against γ  and Table 2 gives some numerical values, each 

obtained under the same alternative illustrative loss distributions as before (i.e., 

that losses are respectively standard normal, Cauchy, standard uniform, beta and 

Gumbel distributed). In each case, the SRM starts at zero (as it must), then 

quickly rises, peaks and falls back down. Thus, once it passes its peak, the SRM 

subsequently falls as the user becomes more risk-averse. A risk measure that falls 

as the user becomes more risk-averse is, to say the least, rather odd.   

 

Insert Figure 4 here 

Insert Table 2 here 

 

 Thus, we have a spectral risk measure that satisfies Acerbi’s conditions, 

and yet the weighting function and resulting risk measure are manifestly ‘badly-

behaved’. Properties 1 to 3 (or 1 to 3') are clearly not sufficient to ensure that we 

get a ‘well-behaved’ risk aversion function or a ‘well-behaved’ SRM, at least not 

with power utility and 1γ < . 

 

5. Power Spectral Risk Measures: 1γ >  
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We turn now to seek a weighting function for a power utility function compatible 

with 1γ > . Following Dowd et al (2008), we now postulate an alternative 

weighting function that also has power utility properties, viz.: 

 

(20)                                                1( )p p
γϕ λ −=  

 

where λ  is again an unknown constant. It is easily demonstrated that (20) 

satisfies property 2 if we set λ γ= . Our weighting function then becomes:  

 

(21)                                               1( )p p
γϕ γ −=  

 

and it is easily shown that this function always satisfies property 1 and satisfies 

property 2 provided 1γ > . Accordingly, we now impose this restriction and 

assume 1γ > .  

 The power weighting function (21) is plotted in Figure 5 for illustrative γ  

values equal to 1.5 and 5. In each case, the weighting function starts at 0 for 

0p =  and ends up equal to the relevant value of γ . The two cases differ, 

however, in that ( )pφ  rises at a decreasing rate with p  if 2γ < ; but if 2γ > , 

then ( )pφ  rises at a increasing rate. Nonetheless, the shapes of both curves are 

still ‘well-behaved’.  

 

Insert Figure 5 here 

 

The resulting PSRM is obtained by substituting (21) into (1), viz.: 

 

(22)                              
1 1

1

0 0

( ) p pM p q dp p q dp
γ

φ φ γ −= =∫ ∫  

 

 As with the 1γ <  PSRM, the sign of /Mφ γ∂ ∂  for the 1γ >  PSRM is 

theoretically ambiguous. (This claim is also proven in the Appendix.) To illustrate 
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their properties, Figure 6 shows plots of these PSRMs against γ , and Table 3 

gives some numerical examples, each based on our earlier set of alternative loss 

distributions. In each case considered, the PSRM rises with γ  but at a decreasing 

rate: in this respect (and for at least these particular loss distributions), the 1γ >  

PSRMs seem to behave more like the exponential SRMs rather than their 1γ <  

relatives.  

 

Insert Figure 6 

Insert Table 3 

 

 In addition, it is immediately apparent that the 1γ >  PSRM always goes to 

the mean loss as γ  declines to 1, viz: 

 

(23)                                           

1

0

pM q d pφ → ∫  as 1γ →  

 

Thus, the PSRM for 1γ >  has a ‘near singular point’ at 1γ =  where it is totally 

insensitive to market volatility or to the form of the loss distribution. 

 If we compare these results with the earlier power results for the 1γ <  

case, we can see that these are better – because the shapes of the weighting 

function curves are much better, because the SRM rises with γ  (at least with the 

illustrative distributions we considered) and because we have only one singular 

point instead of a singular point and a near-singular point – but this singular point 

is still a problem.  

 There are also other problems when we consider the full possible range of 

values that γ  might take, i.e., when we consider the full range 0γ > . One 

problem is that we have to apply two different kinds of power SRM depending on 

whether γ  is less than 1 or greater than 1. This is clearly unsatisfactory, but we 

are unable to find any ‘generic’ PSRM that can be applied to both 1γ <  and 

1γ > . 
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 Now consider a hypothetical agent whose risk aversion changes over time. 

More precisely, let us suppose that this agent starts off with a γ  that is initially 0, 

but then rises over time, breaches the 1γ =  boundary and then continues to rise. 

Putting our results together, we then end up with the following story: our agent 

starts with a PSRM of 0 and the PSRM will approach the mean of the loss 

distribution as 1γ → . (With the specific distributions we considered, this 

involved the PRSM rising, then peaking and falling back as 1γ → , but other 

behaviour may be possible for other distributions, although in every case the 

PSRM must start at 0 and approach the mean loss as 1γ → .) It then passes 

through the 1γ =  ‘black hole’ point and rises thereafter.   

 If this sounds strange, now consider the same history viewed from the 

perspective, not of the value of the PSRM, but of the PSRM’s sensitivity to 

market conditions. The story now goes as follows: at first the PSRM has 

absolutely no sensitivity to either the market mean or volatility; it then gradually 

becomes sensitised to these factors, but as γ  gets larger and starts to approach 1 it 

loses its sensitivity to the market volatility; it then passes through the ‘black hole’ 

at 1γ = ; however, as γ  continues to rise, its sensitivity to market volatility starts 

to grow again.  

 We would suggest that such bizarre properties seriously undermine the 

suitability of SRMs based on power utility functions.  

 

5. Conclusions 

 

This paper has examined spectral risk measures based on exponential and power 

utility functions. We find that the exponential utility function leads to risk-

aversion functions and spectral risk measures with some intuitive properties. They 

are admittedly subject to the drawback that the value of the exponential SRM 

always goes to the mean loss as the coefficient of absolute risk aversion goes to 

zero, but even with this restrictive property, one could imagine users choosing to 

adopt the exponential SRM because of its ‘nice’ features, and an example would 

be a futures clearinghouse that might choose an SRM to determine margin 

requirements (Cotter and Dowd, 2006). The selection of the exponential utility 
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function and the value of the ARA parameter would then be matters of 

clearinghouse corporate policy.  

 When dealing with power utility functions, on the other hand, we find two 

quite different cases depending on whether the coefficient of relative risk 

aversion, γ , is less than 1 or greater than 1. In the former case, the weighting 

functions ( )pφ  have counter-intuitive properties, and a plot of the SRM against γ  

will show the risk measure starting from 0 before approaching the mean loss as 

1γ → . For its part, the 1γ >   always starts from the mean loss at the point where 

1γ = . In neither case can we rule out the possibility that the risk measure falls as 

the coefficient of risk aversion rises, but in the illustrative distributions we 

examined, we found cases where this occurred only where 1γ < . In addition, the 

fact that we have two different types of power SRM corresponding to two 

mutually exclusive ranges of γ  is another limitation of power SRMs.  

 In short, our investigation reveals that SRMs can have some curious and 

surprising properties – some of which undermine their usefulness for practical 

risk management – and this is especially the case for power SRMs. The general 

lesson is that users of spectral risk measures must be careful to ensure that they 

pick utility functions that fit the features of the particular problems they are 

dealing with, and they should be especially careful when using power SRMs. 

 Finally, we reiterate two important caveats. First, the results reported in 

this paper were obtained using a small set of alternative loss distributions, so we 

cannot rule out the possibility that we might get qualitatively different results with 

other distributions that we have not examined. And, second, we cannot rule out 

the possibility that there exist alternative weighting functions compatible with the 

utility functions considered here – although we have no reason to suspect that 

such weighting functions actually exist – and that these might produce 

substantially different results from those reported here. Nonetheless, our results 

are quite revealing and give us some sense of the properties of these risk 

measures.
4
  

                                            
4
 There is also another problem with all the SRMs considered here. If we examine the partial 

derivative of any SRM with respect to its coefficient of risk aversion, we find that these are 

collections of integrals all ending in pq dp  terms. (Two of these are illustrated in the Appendix, 

and the other one is straightforward.) We can now add or subtract any fixed amount to all the 
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Appendix: Proofs 

 

Proof that the sign of  /M kφ∂ ∂  is ambiguous. 

 

Differentiating (9), we obtain 

1 1

(1 ) (1 )

0 0

[ ]
1 1

k p k p

p pk k

M k k
e q dp e q dp

k k e e k

φ − − − −

− −

∂ ∂ ∂   
= +   ∂ ∂ − − ∂   

∫ ∫  

1 1

(1 ) (1 )

0 0

1 (1 ) (1 )
1

k k p k p

p pk

k
k e e q dp e p q dp

e

− − − − −

−

  = − − − −   − 
∫ ∫  

1 1 1

(1 ) (1 ) (1 )

0 0 0

(1 ) (1 )
1

k k p k k p k p

p p pk

k
e e q dp ke e q dp e p q dp

e

− − − − − − − −

−
= − + − −

−∫ ∫ ∫  

1

(1 )

0

1 1
1 1

k k k p

pk k

k k
e ke e p q dp

e e

− − − −

− −

   
= − + − +   

− −   
∫  

Whatever the sign of this expression, we can now add or subtract any fixed 

amount to each of the quantiles pq , and if the amount added or subtracted is large 

enough, this will change the sign of the expression. Hence, the sign of /M kφ∂ ∂  

is ambiguous.  

 

Proof of (10): 

1

0

pM q d pφ → ∫  as 0k →  

 

As 0k →  in (9), 

1 1

0 0

lim
1

p pkk

k
M q d p q d p

e
φ −→∞

 
→ = − 

∫ ∫  

applying L’Hôspital’s rule. 

 

 

Proof that the sign of /Mφ γ∂ ∂  for 1γ >  is ambiguous 

 

Differentiating (22), we obtain 

1 1

1 2

0 0

(1 )p p

M
p q dp p q dp

φ γ γγ γ
γ

− −
∂

= + −
∂ ∫ ∫ = ( )

1

1 2

0

(1 ) pp p q dp
γ γγ γ− −+ −∫  
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As with the first proof, we can now add or subtract any fixed amount to each of 

the 
pq , and if the amount added or subtracted is large enough, the sign of 

/Mφ γ∂ ∂  will change. Hence, the sign of  /Mφ γ∂ ∂  must be ambiguous. 
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FIGURES 

 

 

Figure 1: Exponential Weighting Functions 

Notes: The Figure shows the value of the exponential weighting function (8) 
(1 )( ) / (1 )k p k

p ke eφ − − −= −  for values of the coefficient of absolute risk aversion, k , equal to 5 and 

25, plotted against the cumulative probability p .  
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Figure 2: Plots of Exponential Spectral Risk Measure Against the Coefficient 

of Absolute Risk Aversion for Various Illustrative Loss Distributions 

Notes: The Figure shows the value of the exponential spectral risk measure (9) 
1

(1 )

0
1

k p

pk

k
M e q dp

e
φ

− −

−
=

− ∫  plotted against the coefficient of absolute risk aversion, k , under the 

alternative assumptions that losses are distributed as: standard normal, Cauchy, standard uniform, 

beta(2,4) and standard Gumbel. p  is the cumulative probability, and results are based on 

numerical quadrature using Simpon’s rule with p  divided into 10,001 ‘slices’. The calculations 

were carried out using the CompEcon functions in MATLAB given in Miranda and Fackler 

(2002).  
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Figure 3: Power Risk Aversion Functions: 1γ <  

Notes: The Figure shows the value of the power weighting function (16) 1( ) (1 )p p
γϕ γ −= −  for the 

case where γ , the coefficient of relative risk aversion, is less than 1, for values of γ  equal to 0.7 

and 0.9, plotted against the cumulative probability p .  
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Figure 4: Plot of Power Spectral Risk Measure Against Relative Risk 

Aversion: Standard Normal Loss Distribution, 1γ <  

Notes: The Figure shows the value of the power spectral risk measure (17) 

1

1

0

(1 )c

pM p q dpϕ γ −= −∫  

plotted against the coefficient of relative risk aversion, γ , for the case where 1γ < , under the 

alternative assumptions that losses are distributed as: standard normal, Cauchy, standard uniform, 

beta(2,4) and standard Gumbel. p  is the cumulative probability, and results are based on 

numerical quadrature using the trapezoidal rule with p  divided into 10,000  ‘slices’. The 

calculations were carried out using the CompEcon functions in MATLAB given in Miranda and 

Fackler (2002). 
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Figure 5: Power Risk Aversion Functions: 1γ >  

Notes: The Figure shows the value of the power weighting function (21) 1( )p p
γϕ γ −=  for the case 

where γ , the coefficient of relative risk aversion, exceeds 1, for values of γ  equal to 1.5 and 5, 

plotted against the cumulative probability p .  
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Figure 6: Plot of Power Spectral Risk Measure Against Relative Risk 

Aversion: Standard Normal Loss Distribution, 1γ >  

Notes: The Figure shows the value of the power spectral risk measure (22) 

1

1

0

pM p q dp
γ

φ γ −= ∫  

plotted against the coefficient of relative risk aversion, γ , for the case where 1γ > , under the 

alternative assumptions that losses are distributed as: standard normal, Cauchy, standard uniform, 

beta(2,4) and standard Gumbel. p  is the cumulative probability, and results are based on 

numerical quadrature using the trapezoidal rule with p  divided into 10,000  ‘slices’. The 

calculations were carried out using the CompEcon functions in MATLAB given in Miranda and 

Fackler (2002). 

0 50 100
0

1

2

3

Standard normal

Relative risk aversion coefficient

S
R

M

0 50 100
0

50

100

150

Cauchy

Relative  risk aversion coefficient

S
R

M

0 50 100
0.4

0.6

0.8

1

Uniform

Relative  risk aversion coefficient

S
R

M

0 50 100
0

0.5

1

Beta  

Relative  risk aversion coefficient

S
R

M

0 50 100
-1

0

1

2

Gumbel

Relative  risk aversion coefficient

S
R

M

 



 
 
 
 

 26 

  

Table 1: Values of Exponential Spectral Risk Measure under Alternative 

Illustrative Loss Distributions 

Notes: Estimates are of exponential spectral risk measure (9) 

1

(1 )

0
1

k p

pk

k
M e q dp

e
φ

− −

−
=

− ∫  where k  

is the coefficient of absolute risk aversion and p  is the cumulative probability, under the 

alternative assumptions that losses are distributed as: standard normal, Cauchy, standard uniform, 

beta(2,4) and standard Gumbel. Results are based on numerical quadrature using Simpon’s rule 

with p  divided into 10,001  ‘slices’. The calculations were carried out using the CompEcon 

functions in MATLAB given in Miranda and Fackler (2002).  
Coefficient of 

Absolute Risk 

Aversion 

Standard 

normal 

Cauchy Standard 

uniform 

Beta Gumbel 

1 0.278 2.341 0.582 0.384 -0.249 

5 1.080 10.955 0.806 0.538 0.599 

25 1.945 43.166 0.958 0.706 1.275 

100 2.467 128.930 0.980 0.789 1.594 

 

 

Table 2: Values of Power Spectral Risk Measure under Alternative 

Illustrative Loss Distributions: 1γ <  

Notes: Estimates are of power spectral risk measure (17) 

1

1

0

(1 )c

pM p q dpϕ γ −= −∫  where 1γ <  is 

the coefficient of relative risk aversion and p  is the cumulative probability under the alternative 

assumptions that losses are distributed as: standard normal, Cauchy, standard uniform, beta(2,4) 

and standard Gumbel. Results are based on numerical quadrature using trapezoidal rule with p  

divided into 10,000  ‘slices’. The calculations were carried out using the CompEcon functions in 

MATLAB given in Miranda and Fackler (2002).  
Coefficient of 

Relative Risk 

Aversion 

Standard 

normal 

Cauchy Standard 

uniform 

Beta Gumbel 

→ 0 0 0 0 0 0 

0.1 1.062 157.980 0.514 0.394 0.597 

0.5 0.664 31.707 0.657 0.454 0.093 

0.9 0.096 1.697 0.526 0.351 -0.472 

→ 1 0 0 0.500 0.333 -0.576 
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Table 3: Values of Power Spectral Risk Measure under Alternative 

Illustrative Loss Distributions: 1γ >  

Notes: Estimates are of power spectral risk measure (22) 

1

1

0

pM p q dp
γ

φ γ −= ∫  where 1γ >  is the 

coefficient of relative risk aversion and p  is the cumulative probability, under the alternative 

assumptions that losses are distributed as: standard normal, Cauchy, standard uniform, beta(2,4) 

and standard Gumbel.. Results are based on numerical quadrature using trapezoidal rule with p  

divided into 10,000  ‘slices’. The calculations were carried out using the CompEcon functions in 

MATLAB given in Miranda and Fackler (2002).  

 
Coefficient of 

Relative Risk 

Aversion 

Standard 

normal 

Cauchy Standard 

uniform 

Beta Gumbel 

1.1 0.085 1.096 0.524 0.347 -0.461 

1.5 0.343 3.258 0.600 0.393 -0.134 

5 1.161 11.276 0.833 0.553 0.689 

20 1.860 36.503 0.950 0.690 1.219 

 


