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We present a novel procedure for scaling relatively high frequency tail probability 

and quantile estimates for the conditional distribution of returns.   

 

Introduction 

A key issue for risk management in practice is to decide the relevant horizon 

associated with risk measurement.  Many different horizons may be relevant from 

short (eg. daily) to long (eg. monthly) timeframes and the risk manager must be able 

to provide measures across a range of horizons.
1
  This article measures risk at 

different horizons using volatility forecasts at high frequency as inputs that are then 

scaled for longer horizons.  

 

In terms of risk measurement probability and quantile risk estimation has developed 

enormously in the past decade from Value at Risk (VaR) measures to coherent 

measures such as Expected Shortfall.  These measures allow the investor to determine 

their risk profile accounting for losses (quantiles) at a given likelihood (probability) 

and a given time frame (holding period).   

 

Within risk estimation two key modelling features attracting enormous attention 

throughout time are the fat-tailed (eg. see Mandelbrot, 1963) and volatility clustering 

(eg. see Bollerslev, 1986) properties inherent in financial data. These features exist for 

different holding periods albeit in an inconsistent manner. 
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Here we present a framework that addresses these features and allows for applying a 

simple scaling rule for the risk measures across different (eg. lower frequency) 

holding periods.  We refer to this framework as conditional EVT.  To begin we use an 

AR (1)-GARCH (1, 1) specification with student-t innovations to model the 

conditional distribution (such models have attracted considerable success in 

forecasting volatility for short horizons).  Our choice of the specific GARCH model 

follows McNeil and Frey (2000) and is similar in objective to the use of the ARMA-

GARCH model by Barone-Adesi et al (1999).  First by fitting this model to returns we 

obtain forecasts of the conditional mean through the AR component of the filter and 

the conditional variance through the GARCH component.  We choose the commonly 

applied t-distribution to model fat-tail innovations from a range of candidate 

distributions (eg. stable distribution).  Second, our GARCH conditional volatility 

series is also used to filter the returns series resulting in identical and independently 

distributed (iid) filtered returns.   

 

We then apply Extreme Value Theory (EVT) to the conditional filtered series to 

model the tail returns allowing us to examine low probability (out-of-sample) events 

for single-period horizons.  These estimates are scaled with the EVT α-root scaling 

law that require iid realisations to give risk measures for multi-period horizons.
2
 We 

illustrate our modelling approach with a simulation study and an application to daily 

S&P500 index returns.   

 

Why use conditional risk measures? 

Conditional risk measures are important as investors have an interest in obtaining risk 

measures from the conditional return distribution as part of their risk management 

strategy.  The conditional measures provide time-varying risk estimates updated by 

current volatility dynamics thereby allowing the investor manage the ongoing and 

                                                                                                                                                                      
1
 For instance Christoffersen and Diebold (2000) note that the relevant horizon will vary by position 

(eg. trading desk vs. Chief Financial Officer), by motivation (eg. private vs. regulatory) and by other 

concerns such as industry type (banking vs. insurance) etc. 
2 A referee has quite rightly pointed out that scaling GARCH volatility estimates may result in an 

estimation problem if volatility was to deviate substantially from current levels.  However, other 

alternative approaches such as using average volatility or assuming mean reversion results in the same 

potential estimation problem.  The approach followed here does allow the risk manager to have multi-

period risk forecasts based on current GARCH volatility that have been found to model time-varying 
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changing risk of their investment as the distribution of returns changes over time. 

Investors are interested in obtaining these risk estimates for different frequencies that 

correspond to potential holding periods (for instance they may need to meet 

regulatory requirements such as a 10-day VaR or support trading activity by having a 

1-day VaR).     

 

We benchmark our modelling approach of conditional EVT risk measures (note we 

are not suggesting that we scale the GARCH volatility estimates directly) against 

those obtained from the thin-tailed Gaussian distribution.  The Gaussian benchmark is 

chosen as it is a commonly applied model for financial time series (eg. RiskMetrics 

VaR measures assume conditional normality) but does not account for fat-tails.  Both 

approaches have a number of similarities such as having a scaling rule for obtaining 

multi-period risk estimates from single-period estimates and allowing for 

extrapolation to out-of-sample probability levels.  In an unconditional setting, EVT 

has been found to dominate Gaussian (and other) measures in modelling tail risk as it 

(through the Fréchet distribution) is more accurate in dealing with fat-tails 

(Danielsson and de Vries, 2000) and results in increased accuracy as you move to 

lower probability events.  Specifically, a Gaussian distribution results in 

underestimated (overestimated) unconditional risk estimates for single-period (multi-

period) settings. 

 

Our fitting of the GARCH process results in iid filtered returns, and predictors of 

conditional returns and volatility through iteration.  We then apply the EVT α-root 

scaling law that only requires the existence of a finite variance and an iid series. The 

scaling procedure advantageously requires no further estimation of any additional 

parameters and obtains efficiency in the scaling operation by using the highest 

frequency realisations.  Moreover from a modelling procedure, tail estimation for low 

frequency observations is associated with small sample bias and the alternative of 

scaling high frequency to low frequency tail estimates reduces the bias.  

 

Scaling is important as it allows one to overcome the lack of non-overlapping returns 

for low frequency horizons.  A number of previous studies have examined scaling. 

                                                                                                                                                                      

volatility adequately.  More important it is the risk measures of the conditional distribution that are 

scaled after they are estimated using EVT. 
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Most common has been the use of the square root rule assuming a Gaussian 

distribution and this has been found to underestimate volatility as you move to longer 

horizons (Danielsson and Zigrand, 2006). Moreover, Drost and Nijman (1993) 

demonstrate scaling for GARCH processes whereas Reiss and Thomas (2007) discuss 

the use of EVT scaling laws.  The approach presented here uses the EVT scaling law 

after first using a GARCH model to give forecasts of conditional volatility and 

filtering the returns series resulting in iid residuals.  By using a semi-parametric tail 

estimator it avoids the pitfall of assuming that that the initial modelling process 

exactly fits the data, as Drost and Nijman do in their aggregation of GARCH 

processes.   

 

Risk measures and modelling procedure 

Before we outline our modelling procedure we provide details of our risk measures 

and the environment facing the investor.  We define separate probability, PQ,h,t, and 

quantile, QP,h,t, risk measures for the conditional distribution for any holding period, h, 

and time period, t.  The first measure estimates the probability of exceeding a certain 

loss quantile whereas the second measure estimates the loss quantile for a given 

probability level.  These risk measures provide risk managers with dynamic risk 

information on prospective losses occurring in a time-varying fashion for single, h = 

1, and multi-period, h > 1, settings.   

 

These conditional risk estimates are based on the assumption that the returns series 

exhibits fat-tails and volatility clustering in line with financial returns (see figure 1).  

In the time series plots we see periods of high and low volatility.  Also in the QQ plot 

we see from the conditional distribution the existence of fat-tails with both upper and 

lower tail values diverging from the corresponding Gaussian values and the 

divergence increasing the further you move out the tail. Thus an investor’s risk 

management strategy would benefit from using risk measures that incorporate these 

two properties.     

 

INSERT FIGURE 1 HERE 
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Turning to the modelling procedure we begin by fitting an AR (1)-GARCH (1, 1) 

model underpinned by student-t innovations with 4 degrees of freedom to the returns 

series (our choice of degrees of freedom was based on Hill estimator values for the  

S&P500 returns series).  The approach has two aims: to obtain a description of the 

conditional distribution for both mean and variance and to obtain iid residuals from 

standardising returns with the GARCH model.  Previous studies (eg. McNeil and 

Frey, 2000) have followed a similar approach.  The choice of student-t innovations 

recognises the fat-tailed property already outlined.  Assume that a sequence of returns, 

R, is related to the residual series Z, mean returns are modelled with and AR(1) 

process and volatility is modelled with a GARCH (1, 1) process: 

Rt = µt  + σt Zt          (1) 

µt  = φ Rt-1 

σ2
t = α0 + α1Rt - 1

2
 + β1σ

2
t - 1   

for α0, α1, and β > 0; 0 < α1 + β1 < 1 and β measures the persistence in volatility.   

  

The conditional mean, µt, and variance, σt, parameters of the returns distribution are 

obtained through iterations of the AR and GARCH components of the model 

respectively.  In practice it is the volatility forecasts that are important as daily 

expected returns are often assumed to be zero.  The model also filters the returns 

series by the conditional volatility series to obtain an iid residual series, Z.   

 

The main assumption of the GARCH model is that the conditional second moment, 

σt, has a degree of persistence resulting in volatility clustering. Our conditional risk 

measures are explicitly adapted for this feature by continuously updating for time 

varying volatility.   

 

Turning to the application, details of fitting the AR-GARCH (1, 1) model with 

student-t innovations are given in table 1.  We see strong persistence of past volatility 

indicating the tendency to form volatility clusters over time.  Prior to fitting the 

GARCH model the returns series exhibit serial correlation but the filter works well 

resulting in iid filtered returns (see series Z) allowing the use of the extreme value 

scaling law.   

 

INSERT TABLE 1 HERE 
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Second, we detail our conditional risk measures that generate a set of time varying 

probability and quantile estimates.  The probability measure for a single-period is 

obtained with:  

PQ, t =   µt + 1 + σt + 1 PQ[Zt]       (2) 

And the quantile measure is given by: 

QP, t =   µt + 1 + σt + 1 QP[Zt]       (3)         

Where the conditional variables, µt + 1 and σt + 1, give predictive risk estimates 

accounting for the conditional mean and volatility environment facing the investor. 

 

We obtain the tail conditional probability and quantile risk estimates from using EVT 

on the filtered iid series, Z.  EVT relies on order statistics where the set of filtered 

returns {Z1, Z2,..., Zn} associated with days 1, 2…, T, are assumed to be iid, and 

belonging to the true unknown distribution F.    We examine the maxima, MT = Max{ 

Z1, Z2,..., ZT}, of the iid variables where the asymptotic behaviour of tail values is 

given by the Fisher-Tippett theorem. This theorem separates out three limiting 

distributions (Fréchet, Gumbell and Weibull) based on α, the tail index, where 

asymptotic convergence occurs using Gnedendko’s theorem. As we have seen 

financial returns exhibit fat-tails (eg. the kurtosis statistic for our S&P500 data is 

12.17) and this corresponds to a fat-tailed extreme value distribution, the Fréchet 

distribution.  The tail of a Fréchet distribution (eg. Student-t) has a power decline 

where not all moments are necessarily defined.  In contrast, the tail declines 

exponentially for a Gumbell distribution (eg. Gaussian) with all moments defined, and 

no tail is defined for a Weibull distribution (eg. Uniform) beyond a certain threshold.  

For the Fréchet distribution Gnedenko’s theorem allows for unbounded moments and 

represents a tail having a regular variation at infinity property that behaves like the 

fat-tailed pareto distribution (Feller, 1972).   

 

Other approaches could be applied that follow a similar procedure with a GARCH 

filter such as filtered historical simulation (Barone-Adesi et al, 1998).  However EVT 

is beneficial as it allows for low probability events that are out-of-sample, and more 

importantly, it allows for formal scaling across different holding periods.   We could 
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also scale GARCH volatility estimates directly but GARCH volatility for one horizon 

(due to time variation) may not give good estimates for multi-period horizons. 

 

Our tail probability measure is obtained from the tail of the conditional distribution, 

F(z) for a single-period: 

PQ, t  =  (Zm, T /Zp)
1/γ

m/T        (4) 

And the associated quantile measure is given by  

QP, t =    Zm, T (m/Tp)
γ
                  (5) 

 

Tail estimation 

In order to estimate the probability and quantile measures we need to estimate their 

key input, the tail measure, γ, for a given tail threshold, m, and we employ the 

commonly applied Hill (1975) semi-parametric tail estimator, γ = 1/α, that operates 

analogously with EVT by dealing with order statistics.  Beneficially this estimator 

describes the number of defined moments of a distribution and we need the variance 

to exist to allow the use of the EVT α-root scaling law.  Moreover, Kearns and Pagan 

(1997) find that the Hill estimator is the most efficient semi-parametric tail estimator 

when they compare it to both Picklands and de Haan and Resnick estimators.  In 

contrast much of the literature on EVT follows parametric modelling by fitting a 

Generalised Pareto Distribution (GPD) to the data, but our approach only relies on the 

assumption that the data is fat-tailed as our financial returns series are, and thus use a 

semi-parametric estimator. 

 

The Hill estimator has the same properties as the probability and quantile estimators 

and these are given in table 2.  A weakness of the estimator is the lack of stability 

(often presented as a ‘Hill horror-plot’).  In essence estimation of the tail threshold, m, 

is non-trivial with potential small sample bias, and we use a number of approaches to 

ensure that stable estimates are obtained for the risk measures.   We report values 

from using an ad hoc procedure of estimating the tail index for 1% and 5% of the 

data.  We also present values using the modified Hill tail estimator, γhkkp, following 

Huisman et al. (2001) that minimises small sample bias and the impact of tail clusters.  

Huisman et al. (2001) find that their approach minimises overestimation of tail-

fatness.  The approach uses a weighted least squares regression of Hill estimates 

against associated numbers of tail estimates, γ(m) = β0 + β1 + ε(m) for m = 1,….,η, 
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and extrapolates the associated number of tail estimates, mhkkp. We find the Hill 

values are reasonably stable regardless of approach used suggesting that the 

inferences from using any of these approaches to get probability and quantile 

estimators would be stable also.  Moreover, regardless of the approach used the 

existence of a finite variance is confirmed with tail values in excess of 2 thereby 

supporting our use of the EVT scaling law.   

 

INSERT TABLE 2 HERE 

 

Scaling procedure 

Thus far we have examined risk measurement for any (single) holding period.  Our 

approach is extended for any time-frame using the EVT scaling law, known as the α-

root of time.  This scaling law acts analogously to the Gaussian square root of time 

scaling factor and does not require estimation of any additional parameters.  Also 

there are efficiency gains in measuring the tail index at the highest frequency possible 

that minimises possible small sample bias.   

 

Applying the scaling rule requires two conditions to hold: the data is iid and it 

exhibits a finite variance.  Illustrating the scaling law we can adjust the asymptotic 

distribution of the fat-tailed Fréchet distribution by applying Feller’s theorem (Feller, 

1972, VIII.8): 

( )zqFzZP
T

t

t =







≤∑

=1

         (6) 

Where q is the scaling factor (for q = h
1/α

).  Our multi-period risk measures for any 

timeframe, h, assume that our risk measures in (4) and (5) are adjusted by the factor q.  

So our single-period probability measure in (4) becomes  

PQ, h, t  =  h
1/α

 [(Zm, T /Zp)
1/γ

m/T]       (7) 

And the related multi-period quantile in (5) becomes 

QP, h, t =    h
1/α

 [Zm, T (m/Tp)
γ
]                  (8) 

These probability and quantile estimators are then incorporated into (2) and (3) to 

give multi-period measures. We thus extend the conditional risk measures to any 

relevant holding period of interest.   
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It has been found (Cotter, 2007) that the EVT scaling law is more accurate than the 

Gaussian scaling law for conditional tail modelling.  In particular, prior to scaling, 

there is an underestimation problem with assuming normality.  Moreover, this 

underestimation becomes an overestimation problem when scaling to lower 

frequency.  This is due to the fat-tailed distribution exhibiting a finite variance (α > 2) 

and resulting in h  > h
1/α

. In a related paper McNeil and Frey (2000) use EVT to 

obtain the single-period estimates and they then use a Monte Carlo simulation to 

generate multi-period risk measures. Our approach is more efficient and easier to 

implement and exploits EVT to obtain high frequency tail estimates that are easily 

scaled for relatively low frequency tail estimates.    

 

To summarise, our conditional EVT approach involves the following steps: 

• Fit an AR-GARCH model to the returns series to get forecasts of the 

conditional mean and variance, and use the conditional volatility series to filter 

the returns resulting in iid residuals. 

• Use EVT and obtain Hill tail estimates from the filtered iid series and 

associated single-period conditional risk measures. 

• Scale the single-period conditional risk estimates by the EVT α-root scaling 

law to obtain multi-period risk estimates. 

 

Simulation 

We now examine the properties of this approach through simulation and follow this 

with an application.  We create a simulation for a sample size of 2000 with 200 

replications of a GARCH (1, 1) model with parameters α0 = 0.1, α1 = 0.15, and β1 = 

0.8 underpinned by student-t innovations with 4 degrees of freedom.  Thus the 

simulation encompasses volatility clusters and heavy-tails.  We provide estimates of 

the probability and quantile measures for a single-period and for multi-periods (h = 2, 

4 and 5) using the modified small sample hill estimator and the EVT α-root scaling 

law.  

 

Average estimates are given in table 3 where we present in-sample quantiles and out-

of sample probability estimates.  We also present the expected and actual number of 

violations for the quantiles to determine their accuracy.  The precision of the findings 
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is very favorable with the predicted values close to the true values both for single-

period and multi-period settings.  Moreover, the number of violations is close to what 

is expected.  Generally the bias of the probability estimates is low when examining 

relatively low quantiles and this increases somewhat in moving to higher quantile 

losses.  Furthermore, the multi period estimates see an increase in the bias in general 

from the single period estimates and this is most pronounced for the most extreme 

quantile threshold.  Thus, the bias tends to result in an underestimation of the 

probability of experiencing very large losses and these are negatively related to the 

quantile estimates.  Overall however it is important to stress that the bias is small. 

 

INSERT TABLE 3 HERE 

 

An application 

Using the approach on daily S&P500 index returns, single-period and multi-period 

conditional probability and quantile risk estimates based on returns upto February 27, 

2009, are given in table 4.  To illustrate, the probability for any given day of having a 

negative return in excess of 5% for the S&P500 is 0.68%. This increases to a 1.04% 

likelihood over a weekly interval. Moving to the lower loss levels of 2% results in a 

higher probability estimate.  Also, the multi-period forecasts have the advantage that 

the conditional environment is not measured at lower frequencies thereby avoiding 

losing the unique stylised features of relatively high frequency realisations and 

avoiding the dampening of volatility estimates.  The scaled forecasts use iid returns as 

evidenced by the dependence structure of the S&P500 filtered series.  Their accuracy 

is shown by the Monte Carlo study in table 3.
3
   

 

Given the accuracy of the approach from the simulation study we also compare our 

scaled conditional estimates to that from assuming Gaussianity.  We confirm that the 

single-period conditional normal estimates underestimate tail risk measures.  

Moreover this underestimation is reversed when we use the Gaussian h scaling in 

comparison to those from applying the α-root scaling law.  For instance the 

probability of exceeding a return threshold of 2% is 8.84% (6.35%) for extreme value 

                                                           
3
 The Monte Carlo results are very supportive of the approach.  However we do not formally backtest 

the risk estimates for the S&P500 due to lack of data.  For instance if we had a backtest using 1000 

days we would need 5000 non-overlapping day returns to determine adequacy for the 5-day scaling 

rule.   
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(Gaussian) values over a single day and this scales upwards to 13.58% (26.74%) for 

weekly intervals using the extreme value (Gaussian) scaling laws.  As we have seen 

the simulation study suggests that the extreme value estimates are very accurate but 

suffer from a slight overestimation bias.  Hence the multi-period estimates result in an 

overestimation bias that is far greater for the Gaussian estimates. 

INSERT TABLE 4 HERE 

 

Summary 

In summary we present conditional tail probability and quantile measures that account 

for fat-tails and volatility clustering.  Investors can obtain risk measures that are 

updated for current mean and volatility values. Our conditional risk measures use an 

AR (1)- GARCH (1, 1) filter that results in iid returns and also allows for updating of 

conditional mean and volatility.  We apply EVT methods to the iid filtered returns 

series using a modified Hill tail index estimate.  The approach allows us to scale these 

risk measures for any holding period in an efficient and parsimonious manner using 

the EVT α-root scaling law. We illustrate the benefits of the approach through a 

simulation study and application to futures data.  In particular the approach illustrates 

the estimation bias that exists when assuming normality is minimised for the 

conditional EVT approach both for single-period and multi-period settings (using the 

respective scaling laws). 
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Figure 1 

Plots of S&P500 Futures Contract 
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This figure shows the time series for returns and QQ-plot for the conditional 

distribution.  The timeframe is January 1995 through February 2009. 
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Table 1 
Conditional Modelling of S&P500 Index 

φφφφ αααα0000 αααα1111 ββββ1111 R(12) R
2
(12) Z(12) Z

2
(12) 

-0.030 0.006 0.066 0.924 56.723 3563.359 14.100 8.737 

(0.084) (0.004) (0.000) (0.000) [0.000] [0.000] [0.294] [0.725] 

The AR (1) -GARCH (1, 1) specification assumes student-t innovations with 4 

degrees of freedom.  Marginal significance levels using Bollerslev-Wooldridge 

standard errors are displayed by parentheses.  Serial correlation is examined using the 

Ljung-Box test on the returns (R), filtered (Z), squared returns (R
2
), and squared 

filtered (Z
2
) series.    Marginal significance levels for the Ljung-Box tests given in 

brackets.  * denotes significance at the 5% level.   

 

 

 

 

Table 2 
Downside Tail Estimates for AR(1)-GARCH(1, 1) Filtered S&P500 Index 

m1% γγγγ1% m5% γγγγ5% mhkkp γγγγhkkp 

37 4.03 185 3.59 145 3.29 

  (0.66)   (0.26)   (0.27) 

Hill tail estimates, γ, are calculated for each futures index using the AR(1)-GARCH(1, 

1) filtered returns.  The threshold values, m1% and m5% relate to the one and five 

percentiles are used to calculate the associated tail estimates γ1% and γ5%.  The 

number of values in the respective tails, mhkkp, and the associated Hill estimates, γhkkp, 

follows Huisman et al. (2001).  Standard errors are presented in parenthesis. 
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Table 3 
Simulated GARCH (1, 1) with Student-t innovations and Scaling Procedure 

  

Single-

period 

Multi- 

period     

 h = 1 h = 2 h = 4 H = 5 

Probability    

P25% 0.0019 0.0024 0.0032 0.0034 

 (0.0020) (0.0024) (0.0028) (0.0030) 

P50% 0.0003 0.0004 0.0005 0.0006) 

  (0.0005) (0.0006) (0.0007) (0.0007) 

     

Quantile     

Q95% 7.0413 9.1925 12.0010 13.0764 

 (7.0900) (8.4315) (10.0268) (10.6020) 

Q99% 13.0764 17.0714 22.2869 24.2842 

 (13.6000) (16.1732) (19.2333) (20.3367) 

     

No. Violations     

Q95% 100 52 28 24 

 (100) (50) (25) (20) 

Q99% 24 13 4 4 

 (20) (10) (5) (4) 

The values in this table represent averages of 200 replications from a sample size of 

2000.  The blocks for the multi-periods used are h = 2, h = 4 and h = 5 loosely 

corresponding to 2 days, 4 days and weekly intervals.  The probability and quantile 

estimates are based on Huisman et al (2001) tail estimates for the simulated data.  The 

theoretical probability and quantile estimates are in parentheses. Values are expressed 

in percentages.  The actual number of violations for each quantile is given with the 

expected number in parenthesis. 
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Table 4 
Single-period and Multi-period Conditional Probability and Quantile Estimates for the 

S&P500 Index 

  

Single-   Multi- 

    

      

period  period    

 h = 1   h = 2 h = 4 h = 5 h = 2 h = 4 h = 5 

Probability P5 P2  P5   P2  

 0.68 8.84 0.82 0.98 1.04 10.63 12.79 13.58 

 (0.00) (6.35) (0.12) (1.64) (2.81) (12.21) (23.12) (26.74) 

         

Quantile Q95 Q99.5 Q95   Q99.5  

 2.55 5.65 3.07 3.69 3.92 6.79 8.17 8.67 

 (2.47) (4.12) (3.49) (4.93) (5.52) (5.83) (8.24) (9.22) 

The values in this table represent the conditional probability and quantile estimates for 

different confidence intervals.  For example, P5 is the probability of having a return 

exceed 5 percent and Q95 is the quantile at the 95% probability level.  The estimates 

use Hill estimators based on the Huisman et al (2001) procedure from the AR(1)-

GARCH(1, 1) filtered returns.  The blocks of returns used are two days h = 2, four 

days h = 4 and five days (weekly) h = 5.  Conditional estimates from fitting a 

GARCH (1, 1) model with normal innovations are in parentheses.  Values are 

expressed in percentages.   


