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Absolute Return Volatility 
The use of absolute return volatility has many modelling benefits says John 
Cotter.  An illustration is given for the market risk measure, minimum capital 
requirements.   
 
Volatility modelling is a key issue for the finance industry from an academic and 

practitioner perspective.  This is understandable given the importance that volatility 

plays in risk management and the development of accurate risk measures.  To 

illustrate, successful market risk management requires the use of accurate risk 

measures such as minimum capital requirements.  These risk measures are 

underpinned the input of volatility estimates.1   

 

An important key question thus arises: How do we obtain accurate volatility measures 

that can be used in market risk management?  This paper addresses this by exploring 

the asymptotic and finite sample properties of absolute return volatility.  Absolute 

return volatility is obtained by aggregating high frequency absolute returns into 

relatively low frequency, for example, daily volatility estimates.  The use of these 

measures is illustrated by obtaining the commonly used market risk measure, 

minimum capital requirements.  We advocate the use of absolute return volatility 

gives desirable time series properties and provides accurate measures of volatility.    

 

We begin by noting that standard risk management practices postulate that market 

returns belong to a gaussian distribution.  As we know this is not so and leads to 

inadequate risk measurement.  For example, commonly cited deviations from 

normality in financial time series are the existence of fat-tails and of serial correlation 

in the volatility series, leading to a bias in minimum capital requirement estimates.2  If 

however, volatility can be adequately modelled, the risk manager can filter out these 

properties from the returns series leading to a gaussian series.  These standardised 

gaussian returns allow the risk manager to provide conservative and accurate risk 

measures.   

                                                
1 Minimum capital requirements represent reserves that are used to protect financial firms against 
losses arising from the volatility of their holdings (see Cotter, 2004; for a discussion).   
2 A key focus of many studies in market risk measurement is to explore alternative volatility processes.  
For instance, a number of conditional based approaches using Generalised Autoregressive Conditional 
Heteroskedastic (GARCH) and related univariate or multivariate process have been advocated (Brooks 
et al, 2002).  In addition, unconditional approaches that rely on separate risk measures for the upside 
and downside of a distribution have been supported such as the use of Extreme Value Theory (Longin 
1996, 2000).   
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Absolute returns, overlooked in comparison to the use of squared returns, have many 

advantages in modelling volatility.  First, absolute returns are robust in the presence 

of extreme or tail movements (Davidian and Carroll, 1987).  Tail returns with their 

noted fat-tailed characteristic in financial time series are of particular importance in 

market risk management and in associated risk measures such as Value at Risk and 

minimum capital requirements.  Second, accurate measures of unobservable latent 

volatility are obtained from absolute return volatility asymptotically through the 

theoretical framework of realised power variation.  Moreover, absolute return 

volatility gives desirable finite sample properties that are applicable in practice for the 

risk manager.  In particular, the properties match those found in market returns 

including serial correlation and by standardising the return series we eliminate these 

features.3  Also, absolute return volatility measurement uses data with the highest 

frequency and this is beneficial in getting more precise estimates of risk measures 

(Merton, 1980). 

 

The theoretical framework of realised power variation that underpins absolute return 

volatility is now outlined.  This is followed by an illustration of the use of absolute 

return volatility in the calculation of minimum capital requirements for long and short 

trading positions on the FTSE100 futures contract. 

 

Realised power variation: 

One recent major innovation in the volatility literature has been the employment of 

realised power variation where realised volatility converges in probability to 

integrated volatility.  Accurate model free volatility estimates are thus obtained.  This 

theory relied on in the continuous time literature results in gaussian return innovations 

being a standard assumption of the pricing models presented.   

 

The theoretical developments have evolved in conjunction with vast improvements in 

high frequency data allowing the continuous time framework to be realistically 

examined in a discrete context.  The price process is assumed to follow Brownian 

                                                
3 Also absolute return modelling has a number of other attractive features.  For instance, absolute return 
modelling is more reliable than squared returns for the non-existence of a fourth moment commonly 
associated with financial returns (Mikosch and Starcia, 2000).   
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motion and allows for accurate estimates of unobservable volatility at the limit.  

Discrete approximations of the price process using high frequency data have rm, t = pt - 

pt-1/m as the continuously compounded returns with m evenly spaced observations per 

day.  Brownian motion is generalized to allow the volatility to be random but serially 

dependent exhibiting the stylized finding for financial return series of volatility 

clustering with fat-tailed unconditional distributions.4   

 

Volatility of this price process as measured by integrated volatility is unobservable.  

However, realised power variation that incorporates realised absolute variation, 

namely the sum of absolute realisations, �|rm|, of a process captured at very fine 

intervals equate with integrated volatility.   This theory of realised power variation 

given in Barndorff-Nielsen and Shephard (2003) and Barndorff-Nielsen et al (2003) 

extends the framework of quadratic variation presented for different square powers.5  

Thus for returns that are white noise and σ2
t with continuous sample paths, the 

limiting difference between the unobserved volatility estimate and the realised 

observed absolute variation is zero.   

 

Barndorff-Nielsen and Shephard (2003) and Barndorff-Nielsen et al (2003) show that 

when the framework is for limiting intervals with m → ∞, and with power variations, 

0.5 > n < 3, realised power variation converges in probability to integrated volatility.          

p d rm t H

t

m t j m
j m

lim , /
,...,

→ ∞ − +
=

� �−
�
��

�
�� =σ ττ

2

1

0| |     (1) 

Implying for m sampling frequency, the realized absolute variation is consistent with 

integrated volatility.  Asymptotically the returns process scaled by realised power 

variation is normally distributed, N (0, 1).     

 

                                                
4 A number of semi-martingales can be utilised, and volatility modelling in this way allow for any 
number of characteristics documented for financial time series such as long memory and non-
stationarity.   
5 The use of squared returns relying on quadratic variation has become a tour de force in the recent 
volatility literature with many studies completed.  A flavour of the use of these related measures and a 
synopsis of the prevailing literature is in Andersen et al (2003).  Similar to realised power variation the 
theory of quadratic variation implies that after assuming sample returns are white noise and σ2

t has 
continuous sample paths, the limiting difference between the unobserved volatility estimate and the 
observed realizations of the squared returns process is zero (Karatzas and Shreve (1991)). 
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Notwithstanding the derivation of the limiting distribution, our interest in the 

modelling process for risk measurement is in terms of its ability to capture financial 

return finite-sample properties.  Thus, the finite-sample properties and their 

consequences especially for relatively small samples that match the investment 

horizon of risk managers need exploration. 

 

The practical implementation of the theory simplifies into developing volatility 

estimators using aggregated absolute returns, �|rm| and its’ variants for any day t with 

m intraday intervals:   

| | | |, /r rt m t j m
j

m

= +
=
�

1

      (2) 

For n = 2, this represents the quadratic variation result where squared returns are 

equated to integrated volatility.    

 

The number of intervals chosen is asset dependent impacted on by such factors as 

levels of trading activity and of inherent volatility.  However, there is a trade-off as m 

increases the precision of realized power variation increases but microstructure effects 

such as bid-ask bounce increasing at finer intervals can impair the modelling process.  

This study follows the standard interval choice of 5-minute intervals throughout the 

trading day.   

 

As well as directly comparing different volatility series using absolute and squared 

reaslisations the study examines the ability of the respective measures to filter out the 

time-varying dynamics associated with asset prices.  Daily Returns, rt, obtained by 

aggregating the high frequency intraday returns, rm, t, are rescaled by the respective 

daily volatility series: 

 zt = rt/σt 

 

where the standardised returns series, zt, are obtained from scaling returns, rt, with 

each of the volatility proxies, σt. 
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Characteristics of volatility series: 

Turning to the application of this method we take high frequency prices for the 

FTSE100 futures contract traded on LIFFE, for a relatively short time frame between 

January 1, 1999 through June 30, 2000 using the most actively traded delivery month 

data from a volume crossover procedure.  For each 5-minute interval log closing 

prices are first differenced to obtain each period’s return.  The full trading day is 

between 08.35 and 17.35 entailing 107 5-minute intervals.  All non-trading periods 

and holidays are removed resulting in 375 full trading days for analysis. 

 

Daily returns and daily volatility series are generated from aggregating intraday 

values such as absolute returns and power variations across the trading day.  In order 

to examine the unconditional distributional properties of the daily return and risk 

measures summary statistics are estimated detailing four distributional moments 

presented in table 1.  A subset of findings for power coefficients between 0.5 and 1.5 

are given.6    Also, some distributional plots for the returns series, and the volatility 

and standardised returns series with the most attractive distributional characteristics 

are given in figure 1.  The latter series are of particular interest as we are determining 

the extent to which we can filter out the non-gaussian features of financial returns 

using the two sets of volatility series. 

INSERT TABLE 1 HERE  

INSERT FIGURE 1 HERE 

 

The usual finding for the unconditional distribution of financial returns is evident, 

namely they are leptokurtotic implying too many realisations bunching around the 

peak and tails of the distribution relative to gaussianity.  In particular the 

distributional plots indicate the fat-tailed characteristic of financial returns with too 

many large extreme observations relative to a normal distribution.     

 

In table 1 panel B absolute return volatility and squared return volatility are analysed.  

Absolute return volatility clearly dominates squared return volatility in terms of 

desirable time series properties.  Whilst the coefficients for third and fourth moments 

of the volatility series with the most attractive distributional characteristics appear 

                                                
6 The main distributional inferences are contained within the results in table 1 and figures 1 and 2.  
Further results for different power coefficients are available on request. 
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similar, squared returns volatility is more prone to outliers as shown by a very long 

right tail in figure 1.  In general absolute return volatility is more closely associated to 

a normal distribution than squared return volatility at all power transformations.7   

 

The standardised returns series, rescaling daily returns by the different volatility is 

presented in panel C.  We are interested in determining whether we can obtain 

gaussian standardised returns and also identify the volatility processes that allow us to 

achieve this aim.  We find a positive outcome to this endeavour if we standardise by 

absolute volatility only.  Thus unconditionally, returns rescaled by absolute return 

volatility clearly dominate their squared return counterparts in closely approximating 

gaussian features.  A number of the standardised returns series rescaled by absolute 

returns exhibit no excess skewness and kurtosis and others show a vast improvement 

in their characteristics.  In fact, the fat-tailed property disappears to the extent that 

platykurtotic features exist.  These rescaled series can now give appropriate risk 

measures that can be extended further, by for example, incorporating the gaussian 

square root of time multiplier.      

 

In contrast, the standardised returns rescaled by squared return volatility, with the 

exception of [zt] = [rt]/[rt
2] 0.50 representing realised standard deviation, still exhibit 

strong excess skewness and kurtosis.  Interestingly this squared return measure, 

realised standard deviation, is equivalent to absolute return volatility, |rt|, and is 

equated to unobservable integrated volatility from the theory of realised power 

variation.   

 

Other squared return volatility series are unable to capture the dynamics of the returns 

series adequately.  For instance, the much-used realised variance is unable to remove 

the excess kurtosis of the FTSE100 returns series.  Thus for relatively small finite 

samples it is clear that whilst a spectrum of standardised returns using variants of 

absolute returns allow the risk manager to present conservative and accurate risk 

measures that adequately model the time-varying dynamics of asset returns this is not 

the case for their squared return counterparts. 

                                                
7 Logarithmic transformations are also analysed and confirm these findings.  Results available on 
request 
 



 7 

 

The theory of realised power variation asymptotically allows the conditional 

distribution of volatility to be random but serially dependent and to exhibit the 

stylized finding for financial data of volatility clustering.  Furthermore, the rescaling 

of the returns series by the different volatility proxies should produce a white noise 

series devoid of temporal dependence. 

 

To investigate the finite-sample properties of the use of absolute and squared return 

volatility and their power variations to match the conditional distribution 

characteristics of financial time series, figure 2 presents time series plots and sample 

autocorrelation plots for the returns series, volatility and standardised returns series.  

The overall finite-sample results suggest that whilst the use of squared realisations 

meets only some of the criteria to adequately model financial returns, aggregated 

absolute realisations meet all criteria. 

 

INSERT FIGURE 2 HERE 

 

The returns series exhibit time-varying dynamics along with a very large negative 

return for August 9, 1999 but is essentially white noise with no significant 

dependence for 20 lags.   

   

As seen in table 1 both volatility series have unconditional distributions that are fat-

tailed and in figure 2 both conditional volatility series vary across time and volatility 

clusters are clearly evident for the absolute returns series.  Volatility clustering is less 

evident in the squared returns volatility series as a large outlier dominates it on 

August 9 resulting in a single day’s volatility that is more than six times the size of 

the next largest realisation.  Furthermore, the memory of the volatility series using 

absolute realisations indicates strong serial correlation although no such dependence 

is evident from using squared realisations, as these are also white noise.  Absolute 

return volatility thus matches the stylized features of financial time series. 

 

Minimum capital requirements: 

Risk managers are interested in the end product of market risk measures such as 

minimum capital requirements.  The methods outlined for obtaining volatility and 
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standardised returns are now used in to calculate these market risk measures.  These 

capital reserves protect investors against losses arising from the volatility of their 

holdings and thus adequate modeling of volatility is paramount to their accurate 

measurement.   

 

Rather than using returns series that would entail an underestimation of risk measures 

assuming normality, the gaussian standardized returns are analysed.  This allows for 

conservative and consistent risk management estimates.  These are presented so as to 

cover price movements at various probability levels.  To illustrate, taking a long 

position and expressing the minimum capital requirement Lrmincap as a percentage of 

total investment that covers losses Lrloss at a certain probability:   

P L Lrloss cap[ ] .min< = 0 95      (3) 

In this case the capital deposit covers 95% of price movements and losses in excess of 

this would occur with a 5% frequency.  A one-day forecast of the capital required as a 

percentage of total investment uses chosen quantiles of the standardized returns 

updated with realized volatility measured by 

λ t qz= −1 exp(| )r |t          (4) 

 

An illustration of minimum capital requirements for long and short trading positions 

at common confidence levels is in table 2.  For instance, to cover 95% of all price 

fluctuations in the FTSE100 contract requires a capital deposit of 2.81% of the total 

investment for a long position.  Thus this capital outlay would be insufficient for 5% 

of the outcomes facing the investor and risk management strategies would be 

implemented with these capital costs in mind.  

 

INSERT TABLE 2 

 

In conclusion, this paper advocates alternative measures of volatility using aggregated 

absolute returns and their variations.  The measures are underpinned by the theory of 

realised power variation that asymptotically has absolute variation converging in 

probability to the unobservable integrated volatility.  The practical use of these 

measures is illustrated in the context of minimum capital requirement estimates, a key 

market risk measure.   
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The paper shows that the finite-sample properties of absolute return volatility 

generally dominate squared return volatility.  In particular, rescaling by absolute 

return volatility results in gaussian standardised returns for a spectrum of power 

variations.  Also, volatility clustering and strong serial correlation are evident for 

absolute return volatility series matching the properties of financial time series.  

Moreover, absolute returns are more robust in the presence of extreme returns that 

result in fat-tails.  The key to imposing appropriate risk management measures 

requires accurate modelling of volatility for different assets.  These accurate absolute 

return volatility measures are used to give conservative daily minimum capital 

requirements for the FTSE100 futures contract over a small trading period. 

 



 10 

References: 

Andersen, T. G., T. Bollerslev, and F. X. Diebold (2003). Parametric and 

nonparametric measurement of volatility. In Y. Ait-Sahalia and L. P. Hansen (Eds.), 

Handbook of Financial Econometrics. Amsterdam: North Holland. 

Barndorff-Nielsen, O. E. and N. Shephard (2003). Realised power variation and 

stochastic volatility. Bernoulli, 9, 243–265. 

Barndorff-Nielsen, O. E. Graversen, S. E., and N. Shephard (2003). Power variation 

& stochastic volatility: a review and some new results, Unpublished paper: Nuffield 

College, Oxford. 

Brooks, C., A. D. Clare and G. Persand, 2002, Estimating market-based minimum 

capital risk requirements: A multivariate GARCH approach, Manchester School, 705, 

666-681. 

Cotter, J., (2004). Minimum Capital Requirement Calculations for UK Futures, 

Journal of Futures Markets, 24, 193-220. 

Davidian, M., & R. J. Carroll (1987). Variance Function Estimation. Journal of the 

American Statistical Association. 82, 1079-1091.  

Karatzas, I., & S. E. Shreve, (1991). Brownian Motion and Stochastic Calculus (2nd 

ed.). Berlin: Springer-Verlag. 

Longin, F.M., (1996). The asymptotic distribution of extreme stock market returns, 

Journal of Business, 63, 383-408. 

Longin, F.M., (2000). From Value at Risk to Stress Testing: The Extreme Value 

Approach Journal of Banking and Finance 24(7), 1097-1130. 

Merton R.C., 1980. On Estimating the Expected Return on the Market, Journal of 

Financial Economics, 8, 323-361. 

Mikosch, T. and C. Starica (2000). Limit theory for the sample autocorrelations and 

extremes of a GARCH(1,1) process. Annals of Statistics, 28, 1427–1451. 

�

 



 11 

Table 1: Summary statistics for daily FTSE100 series 
  Panel A: Raw Returns 
Mean -0.08 
Standard Deviation 1.34 
Skewness 0.58* 
Kurtosis 2.64* 

  Panel B: Volatility 
Power  0.50 0.75 1.00 1.25 1.50 
 Absolute Returns 
Mean 24.97 13.29 7.43 4.37 2.71 
Standard Deviation 3.43 2.65 2.01 1.63 1.62 
Skewness 0.11 0.63* 1.12* 2.23* 6.52* 
Kurtosis 3.72* 2.42* 3.12* 10.55* 74.08* 
 Squared Returns 
Mean 7.43 2.71 1.33 1.12 1.76 
Standard Deviation 2.01 1.62 3.23 8.69 24.06 
Skewness 1.12* 6.52* 16.75* 18.85* 19.23* 
Kurtosis 3.12* 74.08* 306.01* 361.21* 371.40* 

  Panel C: Standardised Returns 
 Absolute Returns 
Mean 0.00 0.00 0.00 0.00 0.00 
Standard Deviation 0.05 0.10 0.17 0.29 0.49 
Skewness 0.44* 0.22 0.04 0.17 0.24 
Kurtosis 2.22* 1.01* -0.12 -0.28 -0.07 
 Squared Returns 
Mean 0.00 0.00 0.02 0.07 0.21 
Standard Deviation 0.17 0.49 1.34 3.58 9.58 
Skewness 0.04 0.24 0.46* 0.86* 1.30* 
Kurtosis -0.12 -0.07 1.35* 4.63* 9.25* 
Notes: The daily series are outlined in the text.  Normal iid skewness and kurtosis 
values should have means equal to 0, and variances equal to 6/T and 24/T 
respectively.  Standard errors for the skewness and kurtosis parameters are 0.253 and 
0.506 respectively.  Significant kurtosis and skewness coefficients are given by *.   
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Table 2: Minimum capital requirement estimates for daily FTSE100 series 
Probability 95% 96% 97% 98% 99% 
Long  2.81 2.96 3.01 3.40 3.95 
 [2.53 3.09] [2.67 3.26] [2.69 3.33] [3.74 3.05] [3.55 4.34] 
            
Short 2.87 3.06 3.42 3.66 4.09 
  [2.59 3.15] [2.77 3.36] [3.10 3.74] [3.31 4.01] [3.69 4.49] 
Notes: The minimum capital requirements are expressed as a percentage of the total 
investment.  Results are presented individually for the long and short positions using 
the methodology outlined in the text.  Confidence intervals are given in [].  
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 Figure 1: Distributional plots for daily FTSE100 series 
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Notes: Density plots followed by q-q plots for the returns, volatility and standardised 
returns series are presented.  The volatility and standardised returns series chosen 
relying on absolute and squared returns are based on those with the optimal skewness 
and kurtosis coefficients vis-à-vis normality.  Specifically, the volatility series are 
|rt|0.75 and [rt

2] and the standardised returns series are [zt] = [rt]/|rt| and [zt] = 
[rt]/[rt

2]0.75. 
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Figure 2: Time series and Autocorrelation plots for daily FTSE100 series 
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Notes: Time series plots followed by ACF plots for the returns, volatility and 
standardised returns series are presented.  The sample autocorrelations are for a 
displacement of 20 days from a full sample of 375 days with confidence bands of 
0.10.  The volatility and standardised returns series chosen relying on absolute and 
squared returns are based on those with the optimal skewness and kurtosis coefficients 
vis-à-vis normality.  Specifically, the volatility series are |rt|0.75 and [rt

2] and the 
standardised returns series are [zt] = [rt]/|rt| and [zt] = [rt]/[rt

2]0.75.  The ACF plots for 
the standardised returns series examine squared variations. 
 
 


