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Abstract

A risk-neutral method is always used to price and hedge contingent claims in complete

market, but another method based on utility maximization or risk minimization is wildly

used in more general case. One can find all kinds of special risk measure in literature. In

this paper, instead of using market modified risk measure, we use a kind of risk measure

induced by gΓ-solution or the minimal solution of a Constrained Backward Stochastic

Differential Equation (CBSDE) directly when constraints on wealth and portfolio process

comes to our consideration. Such gΓ-solution and the risk measure generated by it is well

defined on appropriate space under suitable conditions. We adopt the inf-convolution of

convex risk measures to solve some optimization problem. A dynamic version risk measures

defined through gΓ-solution and some similar results about optimal problem can be got in

our new framework and by our new approach.

Keywords: CBSDE, convex risk measure, inf-convolution, gΓ-solution, optimal investment.

1 Introduction

The theory of Backward Stochastic Differential Equation (shortly BSDE) and risk measure are

two wonderful tools to price and hedge claims in financial market. Useful reference about these

can be found in Pardox and Peng [9] and Artzner et al. [2] and Delbaen [3]; Föllmer and Schied

[5], [6], [7] and Frittelli and Rosazza [8], [9]. Unsurprisingly, one may wonder if there is some

relationship between them, fortunately, Rossazza [4] has done this work, that is some kind of

useful risk measure can be induced by g-expectation.

In a complete market, a kind of risk-neutral method is always used to price and hedge

claims via equivalent martingale measure. However, when the market is incomplete or more

generally when some constraints were put on wealth and portfolio process, one need to use

super-hedging strategy to get upper price. In this paper, we define a risk measure via gΓ-

solution, which is a newly notation given by the author in Peng and Xu [14], to investigate

optimal problem in financial market. Interestingly, We can prove such risk measure satisfies

the important Fatou-property and this make it more convenient to use.

The risk measure induced by gΓ-solution is different from the market modified risk measure

used in Pauline Barrieu., Nicole El Karoui [11], [12]. In their paper, a market modified risk

measure was defined as a inf-convolution of some risk measure and the risk measure generated

by some convex set of terminal value which usually can be viewed as some constraints in hedging

problem. To make the risk measure generated by some set be well defined, one always ask the

set to satisfy some additional conditions. A convenience to use the risk measure induced by

gΓ-solution is that we need not such conditions any more.

This paper is organized as follows: In section 2, we state the framework in Peng[13] and

some propositions about gΓ-solution. Under some mild assumptions, gΓ-solution is well defined

on L∞(F), the space of (P)-essentially bounded functions on some probability space (Ω,F , P ).

Some results about the risk measure induced by such solution and some applications of it are

given in section 3.

+ Corresponding author.
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2 BSDE and gΓ-solution of CBSDE

Given a probability space (Ω,F , P ) and Rd-valued Brownian motion W (t), we consider a se-

quence {(Ft); t ∈ [0, T ]} of filtrations generated by Brownian motion W (t) and augmented by

P-null sets. P is the σ-field of predictable sets of Ω× [0, T ]. We use L2
T (R

d) to denote the space

of all FT -measurable random variables ξ : Ω → Rd for which

‖ ξ ‖2= E[|ξ|2] < +∞.

and use H2
T (R

d) to denote the space of predictable process ϕ : Ω× [0, T ] → Rd for which

‖ ϕ ‖2= E[

∫ T

0

|ϕ|2] < +∞.

The backward stochastic differential equation (shortly BSDE ) driven by g(t, y, z) is given by

−dyt = g(t, yt, zt)dt− z∗t dW (t) (2.1)

where yt ∈ R and W (t) ∈ Rd. Suppose that ξ ∈ L2
T (R) and g satisfies

|g(ω, t, y1, z1)− g(ω, t, y2, z2)| ≤ M(|y1 − y2|+ |z1 − z2|), ∀(y1, z1), (y2, z2) (A1)

for some M > 0 and

g(·, 0, 0) ∈ H2
T (R) (A2)

Pardoux and Peng [10] proved the existence of adapted solution (y(t), z(t)) of such BSDE.

We call (g, ξ) standard parameters for the BSDE.

The following definitions is necessary to help us go on with our study.

Dfinition 2.1. (super-solution) A super-solution of a BSDE associated with the standard pa-

rameters (g, ξ) is a vector process (yt, zt, Ct) satisfying

−dyt = g(t, yt, zt)dt+ dCt − z∗t dW (t), yT = ξ, (2.2)

or being equivalent to

yt = ξ +

∫ T

t

g(s, ys, zs)ds−

∫ T

t

z∗sdWs +

∫ T

t

dCs, (2.2′)

where (Ct, t ∈ [0, T ]) is an increasing, adapted, right-continuous process with C0 = 0 and z∗t is

the transpose of zt. When Ct ≡ 0, we call (yt, zt) a g-solution.

Constraints like

(y(t), z(t)) ∈ Γ (C)

where Γ = {(y, z)|φ(y, z) = 0} ⊂ R × Rd and φ(y, z) : R × Rd → R+ is always considered in

this paper. In such case, we give the following definition,

Dfinition 2.2. ( gΓ-solution or the minimal solution ) A g-supersolution (yt, zt, Ct) is said

to be the the minimal solution, given yT = ξ, subjected to the constraint (C) if for any other

g-supersolution (y′t, z
′
t, C

′
t) satisfying (C) with y′T = ξ, we have yt ≤ y′t a.e., a.s.. The minimal

solution is denoted by Eg,φ
t (ξ) and for convenience called as gΓ-solution.

For any ξ ∈ L2
T (R), we denote Hφ(ξ) as the set of g-supersolutions (yt, zt, Ct) subjecting to

(C) with yT = ξ. When Hφ(ξ) is not empty, Peng [13] proved that gΓ-solution exists.

The convexity of Eg,φ
t (ξ) can be easily deduced from the same proposition of solution of

BSDE with convex generator function.
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Proposition 2.1. Let φ(t, y, z) be a function: [0, T ]×R×Rd → R+ and g(t, y, z) be a function:

[0, T ]×R×Rd → R. Suppose φ(t, y, z) and g(t, y, z) are both convex in (y, z) and satisfy (A1)

and (A2), then

Eg,φ
t (aξ + (1− a)η) ≤ aEg,φ

t (ξ) + (1− a)Eg,φ
t (η) ∀t ∈ [0, T ]

holds for any ξ, η ∈ L2
T (R) and a ∈ [0, 1].

Proof According to Peng [13], the solutions ymt (ξ) of

ymt (ξ) = ξ +

∫ T

t

g(yms (ξ), zms , s)ds+Am
T −Am

t −

∫ T

t

zms dWs.

is an increasing sequence and converges to Eg,φ
t (ξ), where

Am
t := m

∫ t

0

φ(yms , zms , s)ds.

For any fixed m, by the convexity of g and φ, ymt (ξ) is a convex in ξ, that is

ymt (aξ + (1− a)η) ≤ aymt (ξ) + (1− a)ymt (η),

taking limit as m → ∞, we get the required result. 2

By the same method of penalization, we can get the comparison theorem of Eg,φ
t (ξ) .

Proposition 2.2. Under the same assumptions as above proposition, we have

Eg1,φ
t (η) ≥ Eg2,φ

t (ξ), ∀t ∈ [0, T ] P − a.s.

for any ξ, η ∈ L2
T (R) when P (η ≥ ξ) = 1 and g1 ≥ g2.

3 Risk measure via gΓ-solution and its applications

In this section, we study convex risk measure induced by gΓ-solution. First we give the concept

of convex risk measure which can be got from many papers such as Föllmer and Schied [5].

Dfinition 3.1. Let L∞(P ) be the space of (P)-essentially bounded functions on some probability

space (Ω,F , P ). A functional ρ : L∞(P ) −→ R is a (moneytary) convex risk measure if, for

any ξ and η in L∞(P ), it satisfies the following properties:

a)Convexity: ∀λ ∈ [0, 1] ρ(λξ + (1− λ)η) ≤ λρ(ξ) + (1 − λ)ρ(η);

b) Monotonicity: ξ ≤ η a.s(P ) ⇒ ρ(ξ) ≥ ρ(η);

c)Translation invariance: ∀m ∈ R ρ(ξ +m) = ρ(ξ)−m.

A convex risk measure ρ is coherent if it satisfies also:

d)Homogeneity: ∀λ ∈ R+ ρ(λξ) = λρ(ξ).

In order to generate a convex risk measure by gΓ-solution, we need some additional assump-

tions such as

g is independent of y and g(·, 0) = 0 (A3)

When g satisfying conditions A(i), i = 1, 2, 3, just as Rosazza [4] noted, some useful risk

measure can be generated by g-expectation.

First, we prove a result that gΓ-solution can be well defined on the space L∞(FT ) of (P)-

essentially bounded functions on some probability space (Ω,FT , P ).
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Proposition 3.1. Suppose that g and φ satisfy assumptions A(i), i = 1, 2, 3, then Eg,φ
t (·) is

well defined on L∞(FT )

Proof Since g is independent of y and g(t, 0) = 0, φ(t, 0) = 0, then for any fixed C0 > 0, µ > 0,

we have

g(t, y, 0) ≤ C0 + µ|y|, (y, 0) ∈ Γt, ∀y ≥ C0.

By Peng and Xu [14], the gΓ-solution with terminal condition yT = ξ exists for any ξ ∈

L2
+,∞(FT ), where

L2
+,∞(FT ) := {ξ ∈ L2(FT ), ξ

+ ∈ L∞(FT )}.

It is obvious L∞(FT ) ⊂ L2
+,∞(FT ), thus E

g,φ
t (ξ) exists for any L∞(FT ). 2

Remark 3.1. This result can also be proved as theorem 5.11 in Susanne Klöppel and Martin

Schweizer [15] by skillful tools.

We first consider the case t = 0, then ρ(ξ) = Eg,φ
0 (−ξ) generated a static convex risk measure

when both g and φ are convex functions satisfying assumptions A(i), i = 1, 2, 3. Furthermore,

we can prove ρ satisfies the important Fatou property.

Theorem 3.1. When both g and φ satisfy assumptions A(1) and A(2), then Eg,φ
0 (ξ) is contin-

uous from below, etc, when {ξn ∈ L∞(FT ), n = 1, 2, · · · } is an increasing sequence comes from

L∞(FT ) and converges almost surely to ξ ∈ L∞(FT ), then

lim
n→∞

Eg,φ
0 (ξn) = Eg,φ

0 (ξ).

Proof Taking ymt (ξ) as in proposition 2.1. By proposition 2.2, {Eg,φ
t (ξn), n = 1, 2, · · · } is an

increasing sequence. We denote its limit at t = 0 as a, then a ≤ Eg,φ
0 (ξ). Since ξn converges

almost surely increasingly to ξ ∈ L∞(FT ), by dominated convergence theorem, it also converges

strongly in L2
T (P ), then by the continuous dependence property of g-supersolution, the limit of

{ym0 (ξn)}
∞
n=1 is ym0 (ξ) for any fixed m.

We want to show that a = Eg,φ
0 (ξ). If on the contrary on has a < Eg,φ

0 (ξ), then there is

some δ > 0 such that Eg,φ
0 (ξ) − Eg,φ

0 (ξn) > δ for any n. On the other hand, for any ǫ > 0,

0 ≤ Eg,φ
0 (ξ)−ym0 (ξ) ≤ ǫ holds for some larger m0. Fixing m0, ǫ, there is some n0 which depends

on m0 and ǫ such that 0 ≤ ym0

0 (ξ) − ym0

0 (ξn0
) ≤ ǫ, so Eg,φ

0 (ξ) − ym0

0 (ξn0
) ≤ 2ǫ, but we have

Eg,φ
0 (ξ)− ym0

0 (ξn0
) ≥ Eg,φ

0 (ξ)− Eg,φ
0 (ξn0

) > δ, this is impossible for ǫ < δ
2 . 2

Thanks to this property and the work done by Föllmer, H., Schied [6], [7], the convex risk

measure can be represented by a family of probabilities which are absolutely continuous with

P .

We then go to some applications of gΓ-solution. Here we use some notations in Pauline Bar-

rieu., Nicole El Karoui [11]. Let ξ ∈ L∞
T (P ), ρ(ξ) = Eg,φ

0 (−ξ) be a convex risk measure when

both g and φ are convex, our first problem is a minimizing problem by inf-convolution. More ex-

plicitly, suppose two agents who have convex risk measure generated by ρi(ξ) = Egi,φi

0 (−ξ), i =

1, 2 respectively, we want to find an optimal value in L∞
T (P ) to attain

inf
ξ∈L∞(FT )

{ρ1(η − ξ) + ρ2(ξ)}. (3.1)

This problem can be interpreted as an optimal risk transfer problem or an optimal hedging

problem.

We first consider two simple cases.
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Theorem 3.2. If both g and φ satisfy assumptions A(i), i = 1, 2, 3 and

h(z1 + z2) ≤ h(z1) + h(z2), ∀z1, z2

holds for h = g, φ, then ξ = 0 is a optimal value for problem (3.1) when gi = g, φi = φ, i = 1, 2.

Proof Suppose that (y(t) = Eg,φ
t (ξ − η), z(t), C(t)) and (ỹ(t) = Eg,φ

t (−ξ), z̃(t), C̃(t)) are gΓ-

solutions with terminal value ξ − η and −ξ respectively, that is

yt = ξ − η +

∫ T

t

g(s, zs)ds−

∫ T

t

z∗sdWs +

∫ T

t

dCs, (3.2)

ỹt = −ξ +

∫ T

t

g(s, z̃s)ds−

∫ T

t

z̃∗sdWs +

∫ T

t

dC̃s. (3.3)

Add (3.2) and (3.3) together, we have

Eg,φ
t (ξ−η)+Eg,φ

t (−ξ) = −η+

∫ T

t

(g(s, zs)+g(s, z̃s))ds−

∫ T

t

(z∗s+z̃∗s )dWs+

∫ T

t

d(Cs+C̃s). (3.4)

By the assumption, we have furthermore that

y(t) + ỹ(t) ≥ ȳ(t) := −η +

∫ T

t

g(s, zs + z̃s)ds−

∫ T

0

(z∗s + z̃∗s )dWs +

∫ T

t

d(Cs + C̃s). (3.5)

and 0 ≤ φ(zs + z̃s) ≤ φ(zs) + φ(z̃s) = 0.

This means that (ȳ(t), z(t) + z̃(t), C(t) + C̃(t)) is a super-solution with terminal value −η.

By (3.5) and the definition of gΓ-solution, we have

Eg,φ
t (ξ − η) + Eg,φ

t (−ξ) ≥ Eg,φ
t (−η).

Take t = 0, we have

ρ(η − ξ) + ρ(ξ) ≥ ρ(η), ∀ξ ∈ L∞
T (P ).

This means ξ = 0 is an optimal value for problem (3.1). 2

The result above tells us that if two agents having the same risk measure induced by same

coefficients, then one rational way of them to transfer risk is doing nothing.

We then go to consider another interesting case concerning a useful operator of risk measure.

For any λ > 0, which always be considered as the risk tolerance coefficient, we define the

dilatation of convex risk measure ρ(ξ) as ρλ = λρ(ξ/λ). Under some mild assumptions, for the

purpose of using some well-known result in dilation of risk measure, we want to establish the

following theorem.

Theorem 3.3. Suppose g and φ satisfy the assumptions A(i), i = 1, 2, 3, φ(λz) = λφ(z) holds

for any 0 < λ. Let ρ(ξ) = Eg,φ
0 (−ξ), gλ(z) = λg(z/λ), then we have

λρ(ξ/λ) = Egλ,φ
0 (−ξ)

Proof Suppose that (y(t), z(t), C(t)) is the gΓ-solution with terminal value ξ/λ,

Eg,φ
t (ξ/λ) = yt = ξ/λ+

∫ T

t

g(s, zs)ds−

∫ T

t

z∗sdWs +

∫ T

t

dCs. (3.6)
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then

λEg,φ
t (ξ/λ) = λyt = ξ +

∫ T

t

λg(s, zs)ds−

∫ T

t

λz∗sdWs +

∫ T

t

dλCs (3.7)

At the same time we suppose that (ỹ(t), z̃(t), C̃(t)) is the minimal solution with coefficient

gλ = λg(z/λ) and terminal value ξ satisfying constraint (C),

Egλ,φ
t (ξ) = ỹt = ξ +

∫ T

t

gλ(s, z̃s)ds−

∫ T

t

z̃∗sdWs +

∫ T

t

dC̃s. (3.8)

By (3.7), we can see that (λyt, λzt, λCt) is a gλ-supersolution with terminal value ξ satisfying

constraint (C), thus we have

λEg,φ
t (ξ/λ) ≥ Egλ,φ

t (ξ) a.e a.s. (3.9)

Similarly, by (3.8), (ỹ(t)/λ, z̃(t)/λ, C̃(t)/λ) is a g-supersolution with terminal value ξ satisfying

constraint (C), thus we have

Eg,φ
t (ξ/λ) ≤ Egλ,φ

t (ξ)/λ a.e a.s. (3.10)

Put (3.9) and (3.10) together, we get

λEg,φ
t (ξ/λ) = Egλ,φ

t (ξ) a.e a.s.

Specially

λρ(ξ/λ) = Egλ,φ
0 (−ξ)

holds. 2

Thanks to this result and the wonderful result in Pauline Barrieu., Nicole El Karoui [11],

we have the following result.

Theorem 3.4. Suppose g and φ satisfy the assumptions A(i), i = 1, 2, 3, φ(λz) = λφ(z) holds

for any 0 < λ, if two agents have risk measure with different risk tolerance coefficient gλ and

gγ respectively, then one optimal value of problem (3.1) is

ξ =
γ

γ + λ
η.

When one consider the optimal problem (3.1) with general coefficients gi, i = 1, 2, we need

more concepts.

Dfinition 3.2. Let X be a Banach space, X∗ is its dual space and ϕ : X → R is a convex

functional. For any ξ ∈ X, define

∂ϕ(ξ) , {f ∈ X∗, f(η) ≤ ϕ(ξ + η)− ϕ(ξ), ∀η ∈ X}

as the subdifferential of ϕ at ξ, every member of ∂ϕ(ξ) is called a subgradient of subdifferential

of ϕ at ξ.

The following result is basic in convex analysis, for convenience, we write down its proof

here.

Proposition 3.2. Suppose ϕ is a continuous convex functional on X, then for any ξ ∈ X,

∂ϕ(ξ) is not empty.
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Proof In the product space X × R, let D , {(ξ, t)|ϕ(ξ) ≤ t} be the upper semi-graph of ϕ.

For any fixed point ξ0 ∈ X , since ϕ(·) is continuous at ξ0, (ξ0, ϕ(ξ0) + 1) is a interior point of

D. Note that

{(ξ0, ϕ(ξ0))}
⋂

D̊ = Ø,

then by separating theorem of convex sets in Banach space, there is some no zero point (g, a) ∈

X∗ ×R such that

g(ξ0) + aϕ(ξ0) 6 g(x) + at ∀(x, t) ∈ D.

It is not hard to check that a > 0, then if we take f = −g/a, then f ∈ ∂ϕ(ξ). 2

The next result gives us a sufficient condition for a convex functional to be continuous, for

its proof, we refer to Aubin[1].

Proposition 3.3. Let X be a Banach space, ϕ : X → R be a convex functional. If ϕ is lower

semi-continuous on X, then it is continuous on X.

A useful result has been obtained in our previous paper, since the result has not been

published, we give its shortly proof here.

Theorem 3.5. Suppose g and φ satisfy the assumptions A(i), i = 1, 2, 3, then Eg,φ
0 (ξ) is lower

semi-continuous on L∞(FT ).

Proof Define the k-level set of Eg,φ
0 (ξ) as Ak , {ξ ∈ L∞(FT )|E

g,φ
0 (ξ) ≤ k}.

Suppose a sequence {ξn, n = 1, 2 · · · } ⊂ Ak converges under norm to some ξ ∈ L∞(FT ).

For any ξn, we take ym0 (ξn) as in proposition 2.1. Since ym0 (ξn) converges increasingly to

Eg,φ
0 (ξn) ≤ k as m → ∞, ym0 (ξn) ≤ k holds for any n and m.

For any fixed m, take gm = g+mφ, by the continuous dependence property of gm-solution,

we have ym0 (ξn) → ym0 (ξ) as n → ∞ and ym0 (ξ) ≤ k is obtained for any m. Again, for the fixed

ξ ∈ L∞(FT ), y
m
0 (ξ) → Eg,φ

0 (ξ) as m → ∞. Thus one has Eg,φ
0 (ξ) ≤ k, this means Ak is closed

under norm in L∞(FT ) and Eg,φ
0 (ξ) is lower semi-continuous .

2

We then have a general result when two agents have risk measure generated by general

coefficients gi, φi, i = 1, 2.

Theorem 3.6. Suppose gi, φi, i = 1, 2 are convex functions satisfying the assumptions A(i), i =

1, 2, 3 and there is some a, b ∈ R such that gi(t, z) ≥ az + b, i = 1, 2. If there is some ξ∗ ∈

L∞(FT ) and some finite additive measure Q ∈ ∂ρ̂(η)
⋂
∂ρ1(η−ξ∗)

⋂
∂ρ2(ξ

∗), then ξ∗ is optimal

for problem (3.1), where

ρi(·) = Egi,φi

0 (−·), i = 1, 2; ρ̂(·) = inf
ξ∈L∞(FT )

{ρ1(· − ξ) + ρ2(ξ)}.

Proof By the assumption that gi(z) ≥ az + b, i = 1, 2, we have that the inf-convolution ρ̂ is

well defined on L∞(FT ). By Theorem 3.5 and Proposition 3.2, 3.3, ∂ρ̂(η), ∂ρ1(η − ξ), ∂ρ2(ξ)

are not empty for any η, ξ ∈ L∞(FT ). The rest proof is similar to Pauline Barrieu., Nicole El

Karoui [12]. 2

At last, we state a dynamic version of inf-convolution of gΓ-solution.

Theorem 3.7. Suppose gi, i = 1, 2, φ are convex functions satisfying the assumptions A(i), i =

1, 2, 3, φ(t, z1 + z2) ≤ φ(t, z1) + φ(t, z1), ∀z1, z2 and there is some a, b ∈ R such that gi(t, z) ≥

az + b, i = 1, 2. The inf-convolution of g1 and g2 is given by

g3(t, z) = g1�g2(t, z) = inf
y
{g1(t, z − y) + g2(t, y)}.
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Let (Eg3,φ
t (η), ẑ3(t), Ĉ3(t)) be the gΓ-solution with terminal value ξ ∈ L∞(FT ) satisfying con-

straint (C) and ẑ be a measurable process such that ẑ = argminy{g1(t, ẑ3(t)−y)+g2(t, y)} dt×

dP − a.s., then the following results hold:

(1) For any t ∈ [0, T ] and any ξ ∈ L∞(FT ),

Eg3,φ
t (η) ≤ Eg1,φ

t (η − ξ) + Eg2,φ
t (ξ).

(2) If φ(t, ẑ(t)) = 0, φ(t, ẑ3(t)− ẑ(t)) = 0 and

ξ∗ :=

∫ T

0

g2(s, ẑs)ds−

∫ T

0

ẑ∗sdWs ∈ L∞(FT ),

then ξ∗ is an optimal value for problem (3.1), furthermore, we have

Eg3,φ
t (η) = Eg1,φ

t �Eg2,φ
t (η), ∀t ∈ [0, T ].

Proof (1) By the same argument of proposition 3.1, Eg3,φ
t (η) exists for any η ∈ L∞(FT ).

Suppose that (yi(t), zi(t), Ci(t)), i = 1, 2 is the minimal solution with terminal value η − ξ

and ξ for CBSDE with coefficients gi satisfying constraint (C), that is

Eg1,φ
t (η − ξ) = y1(t) = η − ξ +

∫ T

t

g(s, z1(s))ds−

∫ T

t

z∗1(s)dWs +

∫ T

t

dC1(s). (3.11)

Eg2,φ
t (ξ) = y2(t) = ξ +

∫ T

t

g(s, z2(s))ds −

∫ T

t

z∗2(s)dWs +

∫ T

t

dC2(s). (3.12)

Put (3.11) and (3.12) together, by the comparison property of proposition 2.2, we have

Eg1,φ
t (η − ξ) + Eg2,φ

t (ξ) ≥ y3(t) = η +

∫ T

t

g3(s, z3(s))ds −

∫ T

t

z∗3(s)dWs +

∫ T

t

dC3(s).

where z3(t) = z1(t) + z2(t), C3(t) = C1(t) + C2(t).

But (y3(t), z3(t), C3(t)) is a g3-supersolution satisfying constraint (C), we have

Eg3,φ
t (η) ≤ Eg1,φ

t (η − ξ) + Eg2,φ
t (ξ). (3.13)

(2)

Since

Eg3,φ
t (η) = η +

∫ T

t

g3(s, ẑ3(s))ds−

∫ T

t

ẑ∗3(s)dWs +

∫ T

t

dĈ3(s). (3.13)

But g3(t, ẑ3(t)) = g1(t, ẑ3(t)− ẑ(t)) + g2(ẑ(t)). Let

ŷ(t) = −

∫ t

0

g2(s, ẑ(s))ds+

∫ t

0

ẑ∗(s)dWs,

that is

ŷ(t) = ξ∗ +

∫ T

t

g2(s, ẑ(s))ds −

∫ T

t

ẑ∗(s)dWs

and it is obvious that Eg2,φ
t (ξ∗) = ŷ(t). By (3.14), (Eg3,φ

t (η)− Eg2,φ
t (ξ∗), ẑ3(t)− ẑ(t), Ĉ3(t)) is a

g1-supersolution with terminal value η − ξ∗ satisfying constraint (C), so

Eg3,φ
t (η)− Eg2,φ

t (ξ∗) ≥ Eg1,φ
t (η − ξ∗). (3.15)

By (3.13) and (3.15), we get
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Eg3,φ
t (η) = Eg1,φ

t (η − ξ∗) + Eg2,φ
t (ξ∗) = Eg1,φ

t �Eg2,φ
t (η).

2
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