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Abstract 

This paper applies an AR(1)-GARCH (1, 1) process to detail the conditional 

distributions of the return distributions for the S&P500, FT100, DAX, Hang Seng, 

and Nikkei225 futures contracts. It then uses the conditional distribution for these 

contracts to estimate spectral risk measures, which are coherent risk measures that 

reflect a user’s risk-aversion function. It compares these to more familiar VaR and 

Expected Shortfall (ES) measures of risk, and also compares the precision and 

discusses the relative usefulness of each of these risk measures in setting variation 

margins that incorporate time-varying market conditions. The goodness of fit of the 

model is confirmed by a variety of backtests.  
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1 INTRODUCTION 

 

Futures clearinghouses set margins requiring traders to pay a deposit to minimise 

default risk and acts as counterparty to all trades that take place within its exchanges.   

This ensures that individual traders do not have to concern themselves with credit risk 

exposures to other traders, because the clearinghouse assumes all such risk itself. 

However, it also means that the clearinghouse has to manage this risk, and one way it 

does so by imposing margin requirements. These consist of an initial margin (deposit) 

and a variation or daily margin.  The initial margin represents the deposit a futures 

trader must give to a Clearinghouse to initiate a trade whereas in contrast the variation 

margin is the extra deposit required of the trader once a margin call is made. 1 

 In modelling initial margins the focus is typically on extreme confidence 

levels for extraordinary market events so as to minimise the probability that the 

associated quantile is exceeded (Longin (1999) and Cotter (2001)). This is equivalent 

to stress testing for very low probability events. It can also be thought of as requiring 

unconditional risk modelling over a long forecast horizon, and most previous 

literature has focused on initial margins modelled unconditionally.2 The variation 

margin can thought of as supporting the initial margin after it has been breached to 

help avoid trader default.3 But whereas the initial margin is intended to reflect long-

run conditions, the variation margin is intended to reflect current market conditions. 

                                                
1 See Hull (2003) for details of margin requirements for futures.  Essentially there are four elements to 
a margin account: As well as the initial margin; there is the maintenance margin that represents the 
minimum balance of the margin account that must not be breached; the margin call where an investor is 
informed that they have to top up their margin account and the variation margin representing the 
amount that the investor must add to their margin account as a result of the margin call to bring it up to 
the value of the initial margin.  If the trader defaults on paying the variation margin the broker closes 
out the position by selling the contract.    
2 Many approaches have been followed in setting initial margins.  For instance Figlewski (1984), 
Edwards and Neftci (1988), Warshawsky (1989), Booth et al (1997), and Longin (1999) use different 
unconditional statistical distributions (Gaussian, historical or extreme value distribution).  In contrast, 
Brennan (1986) proposes an economic model for broker cost minimization where margins are 
endogenously determined, and Craine (1992) and Day and Lewis (2004) model the distributions of the 
payoffs to futures traders and the potential losses to the futures clearinghouse in terms of the payoffs to 
barrier options. 
3 For illustrative purposes we assume that the initial margin is zero and that the variation margin 
represents the full margin requirement deposit of traders.  In reality the variation margin represents the 
extra funds required to bring the traders deposit back to the value of the initial margin but would vary 
relative to the benchmark initial margin by the extent of the price dynamics for the conditional 
distribution of futures.   
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This means that variation margins should be modelled conditionally (so that they can 

take account of current market dynamics) and at more conventional (i.e., non-

extreme) confidence levels. The need to take account of current market conditions 

suggests that we should use some sort of GARCH process (e.g., as in Barone-Adesi et 

al. (1999), McNeil and Frey (2000), Giannopoulos and Tunaru (2005) and Cotter 

(2006)). We want conventional confidence levels because the clearinghouse is 

concerned about the prospect of possible default in the near future, but the confidence 

levels should not be too low because that would involve very frequent changes in 

variation margins, and this would be difficult to implement in practice.   

In the literature margins have been typically modelled as a quantile or VaR.4  

The clearinghouse then selects a particular confidence level, and sets the margin as 

the VaR at this confidence level.5 However, the VaR has been heavily criticised as a 

risk measure as it does not satisfy the properties of coherence and, most particularly, 

because the VaR is not subadditive (Artzner et al. (1999), Acerbi (2004)).6  

This paper examines how one may obtain variation margins using a 

conditional modelling framework, but using risk measures that are superior to the 

VaR. The model used is a AR(1)-GARCH(1,1), and the other risk measures 

considered are the Expected Shortfall (ES), which is the average of the worst p losses, 

where p is the tail probability or 1 minus the confidence level, and Spectral Risk 

Measures (SRMs), which are risk measures that take account of the user’s (in this 

case, the clearinghouse’s) degrees of risk aversion. Both these types of risk measure 

are coherent and, from a theoretical point of view, demonstrably superior to the VaR.  

                                                
4 An exception is Bates and Craine (1999) who estimate a measure for the expected additional funds 
required assuming the futures price move has exhausted the initial margin.  These additional funds fund 
however would not just include the variation margins but would come from a variety of sources 
including the remaining assets of losing futures traders, the remaining assets of the Clearinghouse and 
possibly fund arising from central bank intervention.   
5 The Clearinghouse has a difficult balancing act for the margin system introduced between minimising 
counterparty risk and remaining competitive for trades: too high a margin implies low counterparty risk 
but also an uncompetitive environment for futures traders and vice versa.   
6 The failure of VaR to be subadditive can then lead to strange and undesirable outcomes: in the present 
case, the use of the VaR to set margin requirements takes no account of the magnitude of possible 
losses exceeding VaR, and can therefore leave the clearinghouse heavily exposed to very high losses 
exceeding the VaR. For instance, because VaR is not-subadditve, using the VaR to set margin 
requirements might encourage investors to break up their accounts to reduce overall margin 
requirements, and in so doing leave the clearinghouse exposed to a hidden residual risk against which 
the clearinghouse has no effective collateral from its investors.   
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This paper provides estimates of conditional VaR, ES and spectral risk 

measures for long positions in 6 index futures contracts: S&P500, the FTSE100, the 

DAX, the Hang Seng, and the Nikkei225 indexes. The adequacy of the fits is 

confirmed by the results of a variety of backtests. The estimated risk measures 

illustrate the prevailing price dynamics of the conditional distributions of the futures. 

The paper also evaluates the precision of these estimates using a number of different 

ways of estimating their precision.  

 This paper is organised as follows. Section 2 reviews the risk measures to be 

examined and explores their properties. Section 3 looks at conditional risk modelling 

where returns follow an AR(1)-GARCH(1,1) process. Section 4 discusses data issues 

and model estimation, and section 5 evaluates the fitted model. Sections 6, 7 and 8 

present results for the VaR, ES and SRM risk measures in turn. Section 9 discusses 

our findings and section 10 concludes. The paper is then followed by two appendices, 

one discussing the parametric bootstrap used in the simulations and the other 

discussing how numerical integration methods may be used to estimate Spectral Risk 

Measures.  

 

2. MEASURES OF RISK   

 

We are interested in risk measures that are weighted-averages of the quantiles of the 

return distribution. If pq  is the 100p% quantile of the return distribution, then we can 

specify our risk measure φM  as: 

 

                                                �−=
1

0

)( dpqpM pφφ                                               (1) 

 

for some arbitrary weighting function )( pφ . The specification of )( pφ  then 

determines the risk measure itself.  

 The best-known risk measure in this class is the Value-at-Risk (VaR). The 

VaR at the 100α% confidence level is equal to α−− 1q , so the risk measure (1) is 

equivalent to the VaR when )( pφ  takes the form of a Dirac delta function that gives 
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the α−1q  quantile an infinite weight (such that � =
1

0

1)( dppφ ) and gives every other 

quantile a weight of zero. This means that that the VaR weighting function places no 

weight on tail quantiles, and implies that a VaR user is (in some sense) held to ‘care 

more’ about the prospect of a loss equal to VaR than about the prospect of a loss 

greater than the VaR. This is of course a rather strange property and one that leads the 

VaR to be non-subadditive7 and therefore not coherent (see Acerbi (2004, p. 174); see 

also Artzner et alia (1999)).8 

 A second risk measure is the Expected Shortfall (ES), which is the average of 

the worst ( α−1 )100% of losses, i.e.: 
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The ES is therefore based on a weighting function that gives each tail quantile the 

same weight, and gives every other quantile a weight of zero: 
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7 Let A and B represent any two portfolios, and let (.)ρ  be a measure of risk over a given horizon. The 

risk measure (.)ρ  is subadditive if it satisfies )()()( BABA ρρρ +≤+ . Subadditivity reflects risk 
diversification and is the most important a priori criterion we would expect a ‘respectable’ risk measure 
to satisfy. However, it can be demonstrated that VaR is not subadditive unless we impose the 
empirically implausible requirement that returns are elliptically distributed. Its non-subadditivity makes 
it very difficult to regard the VaR as a ‘respectable’ measure of risk.   
8 There are also other reasons to believe that VaR does not sit well with ‘well-behaved’ utility or risk 
aversion functions. For example, the VaR is not consistent with expected utility maximisation except in 
the very unusual case where risk preferences are lexicographic (Grootveld and Hallerbach, 2004, p. 
33). Another example emerges from the downside risk literature (see, e.g., Bawa (1975) and Fishburn 
(1977)), which suggests that we can think of downside risk in terms of lower-partial moments (LPMs), 
where the LPM of order 0≥k  around a below-target return *r  is equal to E[max(0, krr )*− ]. The 
parameter k  reflects the degree of risk aversion, and the user is risk-averse if 1>k , risk-neutral if 

1=k , and risk-loving if 10 << k . From the LPM perspective, we would choose the VaR as our 
preferred risk measure only if 0=k  (Grootveld and Hallerbach, 2004, p. 35), and this suggests that the 
use of the VaR as a preferred risk measure indicates a strong degree of negative risk aversion. 
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Unlike the VaR, the ES has the attraction of being a coherent risk measure. However, 

since the ES weighting function gives the same weight to all tail quantiles, the choice 

of the ES as a risk measure would imply that the user is risk-neutral at the margin 

between better and worse tail outcomes, and this is inconsistent with risk-aversion.9 

Furthermore, like the VaR, the ES is conditioned on a parameter, the confidence level, 

whose value is typically difficult to establish and is often selected arbitrarily.  

 If we wish to have a risk measure that takes account of user risk-aversion, 

we can use a spectral risk measure in which )( pφ  is obtained from the user’s risk-

aversion function. In practice, this requires that we specify the form this function 

takes, but a plausible choice is an exponential risk-aversion function which implies 

the following weighting function: 

 

                                               
k

kp

e
ke

p −

−

−
=

1
)(φ                 (4) 

 

where ),0( ∞∈k  is the user’s coefficient of absolute risk-aversion (see Acerbi (2004, 

p. 178)) or Cotter and Dowd (2006)). This function depends on a single conditioning 

parameter, the coefficient of absolute risk aversion, the value of which reflects the 

risk aversion of the user. A spectral risk-aversion function is illustrated in Figure 1. 

This shows how the weights rise as we encounter the prospect of higher losses and 

the rate of increase depends on k: the more risk-averse the user, the more rapidly the 

weights rise.  

 

Insert Figure 1 here 

 

 Unlike the case with the VaR or ES confidence level, the value of the risk-

aversion parameter is in principle known or at least ascertainable, and this means that 

spectral risk measures avoid the conditioning parameter arbitrariness implicit in using  

                                                
9 Again from the downside risk literature the ES is the ideal risk measure if k=1, implying that the user 
is risk-neutral (Grootveld and Hallerbach, 2004, p. 36). 
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the other two risk measures. Given the risk-aversion function, setting the value of the 

user’s risk-aversion parameter ensures that the spectral risk measure takes a unique 

value: 

 

 dpqe
e
k

dpqpM p
kp

kp ��
−

−−
−=−=

1

0

1

0 1
)(φφ           (5) 

 

which would typically be estimated using some form of numerical integration or 

quadrature method (e.g., a trapezoidal rule, Simpson’s rule, pseudo or quasi Monte 

Carlo, etc.).10 The fact that an SRM takes account of the user’s attitude to risk also 

means that an SRM is a subjective risk measure in a way that the VaR or ES are not: 

so two users with the same portfolio but differing degrees of risk-aversion would face 

SRMs of different values, but still face the same VaR or ES.  

 As well as reflecting user risk-aversion, a spectral risk measure is also 

coherent provided )( pφ  is nonnegative for all ]1,0[∈p , provided 1)(
1

0
=� dppφ  and 

provided )( pφ  satisfies the weakly increasing property of giving higher losses 

weights that are no smaller than those of lower losses. In terms of Figure 1, this latter 

property means that )( pφ  must never fall as we go from left to right along the x-axis 

(Acerbi (2004, proposition 3.4) This property indicates that the key to coherence is 

that a risk measure must give higher losses at least the same weight in (1) as lower 

losses. This also helps explain why the ES is coherent and why the VaR is not, and 

tells us that the VaR’s most prominent inadequacies are closely related to its failure to 

satisfy the weakly increasing property (see also Acerbi (2004, p. 173)).    

  

3. MODELLING CONDITIONAL RISK  

 

Following McNeil and Frey (2000) and Cotter (2006), we model the daily return 

process by a normal AR(1)-GARCH(1,1) process. This process supposes that daily 

returns tr  are conditionally normal, i.e.,  

                                                
10 More details on such methods can be found in standard references (e.g., Kreyszig (1999, pp. 869-
878) or Miranda and Fackler (2002, chapter 5).  
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tr  ~ ),( 2
ttN σµ                                                   (6)  

 

where the mean tµ  obeys an AR(1) process: 

 

tttt rrE ερµ +== −1][    ;   1|| <ρ                                     (7) 

 

and tε  is iid zero-mean normal, and where the variance 2
tσ  obeys a GARCH(1,1) 

process: 

 
2

1
2

1
2

−− ++= ttt r βσαωσ   ;   0≥ω  , 0, ≥βα  , 1<+ βα                       (8)                     

 

The AR(1)-GARCH(1,1) is a popular and parsimonious model which often provides a 

reasonable fit to daily return data. This model allows daily returns to have some 

degree of persistence, to have a volatility that exhibits persistence but also alternates 

between periods of low and high volatility, and to have moderate degrees of skewness 

and excess kurtosis.    

 Now let ),(, tttM σµφ  be our time-varying forecast of a risk measure for day t. 

Note that this is written as a function of the forecasts of the day-t mean and volatility, 

tµ  and tσ , and these two parameters are sufficient to calibrate the forecast of the risk 

measure forecast because we have assumed that returns are conditionally normal. For 

any of the three types of risk measure – VaR, ES or SRM – it is easy to show that the 

following relationship holds:  

 

                      )1,0(),( ,, tttttt MM φφ σµσµ +−=                                   (9) 

 

This relationship is handy computationally, because it reduces the task of risk 

forecasting to the two very simple smaller tasks – calculating the standard normal risk 

measure )1,0(,tMφ , and forecasting the parameters tµ  and tσ  - and this can 
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sometimes lead to major gains in computational efficiency.11 Once we specify the 

relevant conditioning parameter, then the first task becomes straightforward and we 

can focus on the second. To illustrate, suppose that for the VaR and the ES we set the 

confidence level α  to be 95%. And if the risk measure is the VaR, then the standard 

normal risk measure )1,0(,tMφ  becomes: 

 

6449.1)1,0( 95.0, === zzM t αφ                                    (10)  

 	 6449.1),(, ×+−= tttttM σµσµφ  

 

If the risk measure is the ES, then  

 

 0627.2
05.0

)(
1

)(
)1,0( 95.0

, ==
−

= zz
M t

φ
α

φ α
φ                                (11) 

	 0627.2),(, ×+−= tttttM σµσµφ  

 

where (.)φ  is the value of the standard normal density. On the other hand, if the risk 

measure is an SRM and we take the ARA coefficient to be, say, 50, then )1,0(,tMφ  

becomes: 

 

2403.2
1

)1,0(
1

0
, ≈

−
= �

−
− dpze

e
k

M p
kp

ktφ                               (12) 

	 2403.2),(, ×+−= tttttM σµσµφ  

 

In each case risk forecasting now boils down to the task of forecasting tµ  and tσ . 

 Table 1 gives a set of alternative values of )1,0(,tMφ  for different risk 

measures and conditioning parameters. So, for instance, if one was interested in the 

ES at the 99% confidence level, one would use (11) with )1,0(,tMφ =2.6652 and the 

only information then needed to estimate the ES would be forecasts of the parameters 

                                                
11 This issue is discussed further in Appendix 1.  
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tµ  and tσ . Similarly, if one was interested in the SRM with ARA=100, one would 

use (12) with )1,0(,tMφ =2.4916, and so forth.  

 

Insert Table 1 here 

 

4. DATA AND MODEL ESTIMATION 

 

Our data set consists of daily geometric returns (taken as the difference between the 

natural logarithms of consecutive end-of-day prices) for the most heavily traded index 

futures – that is, the S&P500, FTSE100, DAX, Hang Seng and Nikkei 225 futures – 

between January 1 2000 and December 31 2002. Daily price data was obtained from 

Datastream representing the full calendar period excluding weekends giving 782 

close-of-day returns.  This sample period is then split into two subsamples: an initial 

estimation period (covering all of 2000 and 2001) to provide an initial GARCH fit; 

and a rolling estimation period (encompassing all of 2002) over which the model is 

updated on a daily basis. 

As a preliminary, Table 2 provides some descriptive statistics for the full 

sample period are outlined in Table 2. The mean returns are near zero but negative, 

and the standard deviations of returns are in excess of 1% per day for all indexes. 

Most returns have a small negative skew, and all returns exhibit moderate degrees of 

excess kurtosis. The Ljung-Box statistics applied to the return series give a mixed 

picture – two of them appear to have a significant dependence structure, and the other 

three do not. These results suggest that we might wish to take account of possible 

dependence in the return process, and are the reason why we chose to model returns 

using an AR(1) process. For their part, the Ljung-Box statistics applied to squared 

returns indicate that these have very significant dependence structures, and this 

finding is reinforced by the significant ARCH effects indicated by the results of 

Engle’s (1981) LM test.  These latter test results support the existence of time-varying 

volatility dynamics and suggest that some form of GARCH-type process is called for.  

 

Insert Table 2 here 
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The AR(1)-GARCH(1,1) was first applied to each futures index daily returns 

for 2000-2001. Estimation was by Maximum Likelihood. We then obtain forecasts for 

each week day in 2002 by updating parameters on a daily rolling window basis giving 

259 sets of time-varying conditional parameters. 

Table 3 reports the average values of the parameters and of their associated 

diagnostics. Our results are very much as expected: GARCH effects are significant 

and parameter values across the different indices are similar to each other and to those 

reported by many other studies.12 The residual diagnostic results also suggest that the 

residuals are independent and that the model is well-specified.  

 

Insert Table 3 here 

 

 Figure 3 shows plots of the estimated GARCH daily volatilities in each of our 

five futures indices over 2002.13 The volatility of the S&P is a little more than 1% for 

most of the first half of 2002, but then it rises afterwards and twice peaks at around 

2.5%. The FTSE volatility is similar, but peaks at greater values and is noticeably 

higher in the second half of the year. The DAX volatilities show a similar pattern but 

are a little higher than the FTSE ones. The Asian markets are much more tranquil: the 

Hang Seng volatility is generally a little under 1.5% in early 2002 and then rises a 

little quite different for most of the second half of the year, but is always well under 

2%; the Nikkei is mostly between 1% and 2% and peaks a little beyond 2% in early 

March, but then falls back again is stable for the rest of the year. Thus, Figure 3 shows 

that conditions varied somewhat across different markets, and perhaps the most 

noticeable difference is that western markets exhibited much less tranquillity in later 

2002 than did their east Asian counterparts.  

 

Insert Figure 2 here  

                                                
12 We present average values only for brevity, but there was relatively little fluctuation in parameter 
estimates on a day-to-day basis. Further summary statistics details (deviations etc) are available on 
request. 
13 We only show results for long positions because there is little asymmetry in the index returns: 
explicitly addressing the VaRs of short positions would therefore provide little substantial additional 
information.  
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5. MODEL EVALUATION  

 

In order to provide a more formal evaluation of the model, we must first set out its 

main predictions. One useful prediction relates to the model’s probability integral 

transform (PIT) values. The PITs are the values of the realised returns after they have 

been put through the following transformation: 

 

)( ttt rFp =                                                (13) 

 

where (.)tF  is the forecasted cumulative density function made the previous day. A 

sample of PIT values is predicted to be distributed as standard uniform under the null 

hypothesis of model adequacy.14 Accordingly, Diebold et alia (1998, p. 869) suggest 

that a useful diagnostic of model adequacy is to plot the PITs and check visually if 

they are ‘close’ to the predicted uniform distribution. The PIT values from our model 

applied to the futures returns are presented in Figure 3. The fitted lines are very close 

to the 45° line predicted under the null, and this strongly suggests that the fits are 

good ones.  

 

Insert Figure 3 here 

 

 Another prediction of the model is that the frequency of exceedances – that is, 

the frequency of observed losses exceeding VaR – should be compatible with the 

predictions of the model. This lead to the Kupiec test: for the 95% VaR, the model 

predicts that 5% of observations should be exceedances. With 259 observations, a 

predicted 5% exceedance probability means that there are 1305.0259 ≈×  predicted 

exceedances, so we would test the hypothesis that the number of exceedances is 

acceptably close to 13. We can test this prediction using a binomial test.  

                                                
14 A formal proof of this prediction is provided by Diebold et alia (1998, pp. 865, 867-869).  
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 A third prediction relates to the standardized residuals. Combining and 

rearranging (6) and (7) leads to the prediction that the standardized residuals tt σε /  

should be iid N(0,1), viz.: 

 

tt σε / ~iid N(0,1)                                             (14) 

 

Thus, tt σε /  are predicted to be both iid and standard normal. However, the results of 

Table 3 have already established that tε  are independent, so we can work on the basis 

of that the iid prediction is satisfied. We therefore focus on textbook tests of standard 

normality taking iid for granted. These include: 

• a z-test of the prediction that tt σε /  has a mean of zero; 

• a t-test of the prediction that tt σε /  has a mean of zero; 

• a variance-ratio test of the prediction that tt σε /  has a unit variance; and  

• a Jarque-Bera test of the prediction that tt σε /  has zero skewness and a kurtosis 

of 3. 

 The results of these tests are presented in Table 4. For each futures index, this 

Table presents the number of exceedances, the mean, standard deviation, skewness 

and kurtosis of tt σε / , and the prob-values of each of the above tests. Going through 

these results one index at a time: 

• The S&P does well by all tests except perhaps the Kupiec one, which yield a 

prob-value of 3.7%. This latter result suggests that the number of exceedances 

(19) might be rather high, which might indicate that the model under-estimates 

the 95% VaR. The FTSE results are similar, except that the prob-value of the 

Kupiec test is now 0.003. This presents strong evidence that the number of 

exceedances (23) is too high, and that the model under-estimates the 95% VaR.  

• The DAX does well with the possible except of the z-test and t-test, which are 

both significant at under the 5% level. This might indicate a problem with the 

prediction that standardised residuals should have a zero mean.  
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• The Hang Seng does well for all tests except the Jarque-Bera. The Jarque-Bera 

is significant at under the 1% level, and this suggests that the standardized 

residuals are not normal. 

• The Nikkei passes all tests easily.  

In sum, of 25 test results, 20 are not significant, 3 are significant at the 5% level and 2 

are significant at the 1% level. Overall, we would suggest that this is a reasonably 

good performance which suggests that the model’s forecasts are fairly accurate. 

 

Insert Table 4 here 

 

6. RESULTS FOR VALUE-AT-RISK 

 

Figure 4 shows plots of the estimated 95% VaRs and the estimated bounds of their 

90% confidence intervals for long positions in each of our five futures indices over 

2002. Broadly speaking, the estimated VaRs show much the same patterns as the 

GARCH volatilities and paint a similar picture about market conditions. For their part, 

the confidence bounds in Figure 4 suggest that the uncertainty in VaR forecasts had a 

tendency to move with the VaR forecasts themselves. This tendency is particularly 

pronounced with the FSTE, where the confidence bounds are initially quite narrow 

but become much wider when the forecasted VaR peaks in August and then again in 

October. We see comparable increases in the widths of the S&P and DAX confidence 

bounds when they also peak at much the same times.    

 

Insert Figure 4 here 

 

 Table 5 gives VaR results computed for the 2002 average daily values of the 

input parameters. The Table reports estimated VaRs and a variety of precision metrics 

for our VaR estimates: these are the VaR standard error (SE); the standardized VaR 

SE, which is the SE divided by the estimated VaR; the 90% confidence interval for 

the VaR; and the standardized 90% confidence interval for the VaR, which is same 

confidence interval divided by the estimated VaR. The first and the third of these give 
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estimates of precision in absolute terms, whereas the second and fourth give estimates 

of precision relative to the size of the estimated VaR.  

 These precision metrics are based on a fully parametric bootstrap applied to 

the AR(1)-GARCH(1,1) process. This bootstrap gives estimates of precision metrics 

based on simulated VaRs (or other risk measures) based on information available the 

previous day. Since the volatility follows a GARCH process, this means that the 

current-day volatility is already known (from (8)). Hence it is important to appreciate 

that the only noise in the bootstrap process is the sampling variation of the daily 

mean, and this means that the noisiness of the simulated VaRs is driven entirely off 

the noise in the simulated means. Further details of the bootstrap are given in 

Appendix 1.  

 Before examining the results, it is also important to appreciate that if tσ  is 

given in any bootstrap simulations (as is the case here), then (9) tells us that the 

standard error of any of the risk measures considered here must be equal to the 

standard deviation of the tµ . This also means that, for any given sets of parameters, 

the VaR, ES and SRM must all have the same SE.  We would emphasise that these 

predictions are not a product of any ‘strangeness’ in our algorithm, because the 

algorithm fully reflects the structure of the AR(1)-GARC(1,1) process and our 

assumptions about the information available at any point in time. Instead, these 

predictions are generated by the underlying structure of the model itself.  

 The Table shows that the VaRs are generally quite close. The S&P, FTSE, 

Hang Seng and Nikkei are quite close in the region 2.3% to 2.6%. The Hang Seng 

lowest at 2.338%, and the DAX is an outlier at 3.557%. The other three are close to 

the Hang Seng, so the DAX is an outlier. The Table reports that the VaR SEs are 

proportional to the VaRs, and the standardized SEs are all the same at 0.303%. The 

Table also shows that the bounds of the confidence interval reflect the sizes of the 

estimated VaRs, but the standardized confidence intervals – the confidence intervals 

divided by the estimated VaRs – are the same: the standardized 90% confidence 

interval is always [0.501,1.499], i.e., plus or minus 50% of the estimated VaR. The  

‘precision story’ is therefore that in absolute terms, the level of precision varies 

inversely with the size of the VaR, but in relative or standardized terms, the level of 

precision is always the same. 
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Insert Table 5 here 

 

7. RESULTS FOR EXPECTED SHORTFALL 

 

The corresponding ES results are presented in Table 6. Perhaps the most striking 

feature in this Table is that the estimated ES is always approximately 25.5% greater 

than the comparable earlier VaR. This suggests that whatever the values of tµ  and tσ  

might be, the normal ES estimated with these parameter values will be close to 1.255 

times the normal VaR estimated with these same parameter values.15 It is therefore 

not surprising to discover that the ES plots in Figure 5 have the same shape as the 

early VaR ones, and therefore have the same interpretations. However, we would 

emphasise that this relationship is approximate rather than exact: if we plot the ratio 

of the ES to the VaR over time, we do not get a straight line, but noisy process that 

oscillates around a straight line and is close to it.  

  

Insert Table 6 here 

Insert Figure 5 here 

  

 The precision metrics in Table 6 are also as expected: the ES has the same SE 

as the VaR, and therefore has a small standardized SE. The bounds of the ES 

confidence level are then pushed out by the extent of the difference between the ES 

and the VaR, but the ES confidence interval has the same width as the VaR one. And 

because the ES exceeds the ES, the ES must have a narrower standardised SE than the 

VaR: the standardized ES confidence interval is now plus or minus 40%. Thus, in 

absolute terms, the ES is estimated with the same precision as the VaR, but in relative 

terms, it is estimated more precisely than the VaR. And, if we compare the ES results 

to each other, results show that in absolute terms precision varies inversely with the 

                                                
15 For any given confidence level and given empirically plausible parameter values, the normal ES is a 
slightly varying greater-than-one multiple of the normal VaR. The multiple itself can be seen in the 
ratio of the standard normal ES to the standard normal VaR. So, for example, with a confidence level 
of 95% the ratio of the standard normal ES to the standard normal VaR can be seen from Table 1 to be 
2.0627/1.6449=1.2540≈1.2555 as in Table 6.    
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size of the estimated ES, but in relative terms, the level of precision is always the 

same.   

 

8. RESULTS FOR SPECTRAL RISK MEASURES 

 

The corresponding SRM results are presented in Table 7.16 These show that the SRM 

calibrated on an ARA coefficient of 50 is now in the region of 1.361 times the value 

of its 95% VaR counterpart,17 and this implies (and Figure 6 confirms) that the SRM 

plots have much the same shapes as the VaR ones in Figure 3. Of course, we should 

keep in mind that whereas the normal ES always exceeds the normal VaR predicated 

on a given confidence level, the normal SRM predicated on a chosen ARA does not 

always exceed the normal VaR predicated on a given confidence level: if the ARA is 

relatively low, and the confidence level high, then the SRM can be lower than the 

VaR (as is evident from Table 1). 

 

Insert Table 7 here 

Insert Figure 6 here 

 

 The precision metrics in Table 7 are also as expected: the SRM has the same 

SE as the VaR, and therefore has a smaller standardized SE. The bounds of the SRM 

confidence level are pushed out by the difference between the SRM and the VaR, and 

the SRM confidence interval has the same width as the VaR one; and the standardized 

SRM confidence interval is now plus or minus 36%. In absolute terms, the SRM is 

estimated with the same precision as the VaR, but in relative terms, it is estimated 

more precisely. (However, for reasons that will be apparent from the previous 

paragraph, we would expect the SRM to be relatively less precisely estimated than the 

VaR in cases where the ES is smaller rather than larger than the VaR.) Comparing the 

                                                
16More details on the estimation of the SRMs are provided in Appendix 2.    
17 Reminiscent of the last note but one, the SRM predicated on a particular ARA coefficient is a 
slightly varying but not-necessarily-greater-than-one multiple of the α VaR, where the multiple can 
again be inferred from the results of Table 1. In this case, Table 1 tells us that the standard normal 
SRM predicated on an ARA of 50 is equal to 2.2376, and the 95% standard normal VaR is 1.6449. The 
ratio 2.2376/1.6449=1.360≈1.361, which is the value reported in Table 7.      
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SRM results to each other, we find (as with the VAR and ES) that absolute precision 

varies inversely with the size of the estimated risk measure, but in relative terms, the 

level of precision is always the same.   

 

9. DISCUSSION  

 

For all three risk measures, we therefore get the same ‘precision story’: in absolute 

terms precision varies inversely with the size of the estimated risk measure, but in 

relative terms, the level of precision is always the same.  

Second, all risk measures indicate the relative riskiness of different contracts 

and how the risk changes over time.  For instance, each of the conditional risk 

measures show the time varying nature of volatility for the respective indices during 

2002.  All indices exhibit specific dynamics reflecting high conditional volatility at a 

certain time and thereby having large associated risk estimates followed by decreasing 

conditional volatility towards the end of the sample as indicated by the decreasing risk 

estimates.  However as all the risk estimates are driven by the same conditional 

process the same pattern emerges for each risk measure.  Clearly they all suggest that 

the Hang Seng contract is the least risky index and that the DAX is the most risky. 

Thus, the use of any of these measures for setting variation margins would therefore 

lead to the former ones having the lowest margins and the DAX the highest.  

Third, both estimates of ES and VaR are directly comparable to each other as 

their key parameter is the confidence level, unlike the SRM, whose key parameter is 

the degree of risk aversion.  

Moreover there are also distinctions in terms of the interpretation and 

usefulness of the risk measures.  First, the use of VaR to estimate variation margins 

only allows the Clearinghouse to estimate a quantile and the associated default 

probability.  Thus, the conditional VaR is limited as it gives the Clearinghouse no idea 

of the size of their exposure beyond the probability level chosen.  However, 

estimating a conditional VaR (and the other measures) allows the Clearinghouse to 

estimate their variation margins based on the time-varying dynamics prevalent at any 

time.   
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Second, in principle the ES is more useful to the clearinghouse than the VaR 

because it takes account of the sizes of losses higher than the VaR itself. It also has 

the helpful interpretation that it tells the clearinghouse the loss an investor can expect 

to make on it experiencing a loss that exceeds a chosen VaR threshold. So if the 

clearinghouse sets a VaR-based variation margin, then the ES tells the clearinghouse 

the expected default loss for the investor experiencing a loss that exceeds its margin.  

Also, by estimating a conditional ES the clearinghouse has an indication of the 

expected losses assuming a quantile has been breached based on the prevailing price 

dynamics.    

Third, in setting variation margins, the spectral risk measures are in principle 

the most useful, because they alone take account of the user’s degree of risk aversion.  

 

10. SUMMARY AND CONCLUSIONS 

 

Clearinghouses manage counterparty risk through a margin account.  In addition to 

the initial margin, a trader must add a variation margin if a margin call takes place.  

The modelling of variation margins encompasses the price dynamics of the 

conditional distribution during the lifetime of the futures contract.  This paper 

estimates variation margins using an AR(1)-GARCH (1, 1) process that models both 

the conditional mean and volatility using three different risk measures: the VaR, the 

Expected Shortfall (ES), and spectral-coherent risk measures.  Although the time-

varying approach allows for a daily update of variation margins based on each risk 

measure, the Clearinghouse may have variation margins that reflect the prevailing 

dynamics but updated less frequently, thereby exploiting the volatility persistence in 

futures.   

 Previous studies have estimated margins for futures returns using a VaR 

measure where margins are associated with quantiles measured at confidence levels.  

In contrast, the use of ES allows the Clearinghouse to get an estimate of the expected 

losses assuming the margin level is breached.  Moreover, the use of SRMs allows the 

Clearinghouse to incorporate risk aversion into the margin estimates.  This paper 

illustrates the properties and the associated relative merits of the measures 

underpinned by the conditional distribution of futures. 
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APPENDIX 1: AN EFFICIENT PARAMETRIC BOOTSTRAP 

 

The precision metrics (i.e., standard errors and confidence intervals) reported in the 

paper were estimated using a parametric bootstrap: this bootstrap is motivated by the 

idea that our precision metrics we should make full use of the structure of the model. 

Now imagine the following problem. We would like to estimate precision metrics for 

a risk measure ),(, tttM σµφ  for day t, using information available for day t-1. To do 

so, we need a bootstrap procedure that gives us a set of, say, m randomly chosen 

values of ),(, tttM σµφ , where these simulated values make use of the information we 

have about day t-1 and are generated in a way that reflects the AR(1)-GARCH(1,1) 

model, i.e., we want a fully parametric bootstrap.  

 The logic behind this bootstrap is as follows: we first note from (9) that we 

can construct a value of ),(, tttM σµφ  if we have values of the parameters tµ  and tσ . 

We also know from the GARCH(1,1) process (8) that tσ  is determined by our 

information from the previous day, i.e., tσ  is already given. Any randomly simulated 

value of ),(, tttM σµφ  must then be driven by a randomly simulated value of tµ . This 

means that we need to simulate values of tµ  and (7) tells us that tµ  is a zero-mean 

normal with an unknown variance. Let us suppose for the moment that we know this 

variance. We now simulate a value of tµ  from this normal distribution and input this 

value and our given value of tσ  into (9) to simulate a random value of the risk 

measure ),(, tttM σµφ . We then do this a large number of times m to give us a large 

sample of simulated ),(, tttM σµφ  values.  

 Our precision metrics then follow naturally: if we want the standard error of 

),(, tttM σµφ , we estimate this as the standard deviation of ),(, tttM σµφ ; and if we 

want a confidence interval, we can use a conventional textbook formula.  

 It remains to show how we obtain the variance of tµ . The easiest way to 

obtain this numerically is to first assume an arbitrary variance for tµ  and use this in 

(6) to simulate a set of returns. (We can actually use the same set of simulated random 

numbers as before, but this is just an issue of computational efficiency.) We then 
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estimate the variance of these returns and find this to be, say, *
tσ . However, the 

returns should have a variance of tσ . To get the correct variance for both returns and 

tµ , we therefore have to multiply the original assumed variance by */ tt σσ . The ‘true’ 

value of the variance of tµ  is then equal to */ tt σσ  times the original assumed 

variance.  

 We should note two other points about this bootstrap. First, the random noise 

in our simulated ),(, tttM σµφ  values is driven off the random noise in the tµ  process. 

Since (9) also tells us that ),(, tttM σµφ  moves pari passu with tµ , this implies that the 

standard error of ),(, tttM σµφ  must be equal to the volatility of tµ . This latter 

prediction also means that for any given set of parameters, the VaR, ES and SRM all 

have the same standard error, and the results in Tables 5 to 7 reflect these 

implications. 

 The final point to note is that we use (9) in our algorithm in order to ensure 

that we only ever ‘directly’ estimate the standard normal risk measure )1,0(, ttMφ , and 

that we do this only once in each bootstrap exercise; all estimates of ),(, tttM σµφ  are 

then obtained ‘indrectly’ by inserting the standard normal estimate )1,0(, ttMφ  and the 

parameters tµ  and tσ  into (9). This is much more efficient computationally than 

estimating ),(, tttM σµφ  directly (i.e., by inputting parameter values into the relevant 

version of (1)). So, for example, if we are dealing with an SRM, the former approach 

requires us to invoke a numerical integration routine only once, but the latter requires 

us to invoke it a large number of times. The former approach is much faster 

computationally. Thus, our bootstrap algorithm is computationally efficient as well as 

fully parametric.  
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APPENDIX 2 : ESTIMATING SPECTRAL RISK MEASURES USING 

NUMERICAL INTEGRATION 

 

Unlike the case with the estimation of VaR or ES, the estimation of spectral risk 

measures typically requires us to compute the value of an integral. Where returns are 

normal with mean tµ  and standard deviation tσ , then equations (9) and (12) tell us  

that the SRM predicated on a coefficient of absolute risk aversion equal to k is given 

by: 

 

)1,0(),( ,, tttttt MM φφ σµσµ +−=                              (A2.1) 

where 
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e
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M p
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−−
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)1,0(φ                                (A2.2) 

 

where pz  is the 100p% quantile of the standard normal distribution. We therefore 

have to calculate the integral in (A2.2). We can do so using a numerical integration or 

quadrature method, in which we approximate the continuous integral by a discrete 

equivalent: we discretise the continuous variable p into a number N of discrete slices, 

where the approximation gets better as N gets larger. To apply numerical intergration, 

we have to select a value of N and choose a suitable numerical integration method, 

and our choices include trapezoidal and Simpson’s rules, quasi-Monte Carlo methods 

(e.g., such as those using Niederreiter or Weyl algorithms) and pseudo-Monte Carlo 

methods. 

 To evaluate the accuracy of these methods, Figure A2.1 shows plots of 

estimated standard normal SRMs against N, where the SRM is predicated on an ARA 

coefficient of 50, using the trapezoidal rule, Simpson’s rule, Niederreiter and Weyl 

quasi-Monte Carlo, and pseudo-Monte Carlo numerical integration methods. We 

consider N values from 100 to 50000. The first four converge upwards towards the 

‘true’ value of 2.2403 and are all more or less accurate when N reaches 50000. By 

contrast, the pseudo-Monte Carlo gives very volatile estimates, and converges much 

more slowly. We can therefore eliminate the pseudo-Monte Carlo method as very 
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unreliable compared to the others. Of the remaining four, the trapezoidal and 

Simpson’s rule estimates are smoother and converge somewhat faster than the quasi-

Monte Carlo methods. There is very little difference between the trapezoidal and 

Simpson’s rule estimates, and both are very accurate for N values of 20000 or more. 

However, the trapezoidal rule is easier computationally. Taking on board issues of 

both accuracy and computational efficiency, we then selected the trapezoidal rule with 

N=30000 as the combination of N value and integration method to be used to produce 

the SRM estimates in the paper: this combination produces highly accurate results 

fairly quickly.  

 

Insert Figure A2.1 here 
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TABLES  
  
 
 

Table 1: Values of Standard Normal Risk Measures 
α  VaR ES ARA SRM 

0.75 0.6745 1.2711 1 0.2779 
0.8 0.8416 1.3998 5 1.0809 
0.85 1.0364 1.5544 10 1.5031 
0.9 1.2816 1.7550 15 1.7139 

0.925 1.4395 1.8874 20 1.8509 
0.95 1.6449 2.0627 25 1.9514 

0.975 1.9600 2.3378 50 2.2376 
0.99 2.3263 2.6652 100 2.4916 

0.995 2.5758 2.8919 500 2.9671 

Notes: ‘VaR’, ‘ES’ and ‘SRM’ are Value-at-Risk, Expected Shortfall and Spectral Risk 
Measures for standard normally distributed returns, ‘α ’ is the confidence level and 
‘ARA’ is the coefficient of absolute risk aversion. The SRM measures are estimated using 
the trapezoidal numerical integration method with N=30000.  

 
 
 

Table 2: Summary Statistics for Daily Return Data 
 S&P FTSE  DAX HANG SENG NIKKEI 

Mean -0.067 -0.074 -0.113 -0.077 -0.101 
Std Dev 1.474 1.440 1.898 1.790 1.616 

Skewness 0.148 -0.121 -0.004 -0.126 0.143 
Kurtosis 4.296 4.590 4.495 4.998 4.593 

Minimum -6.271 -6.062 -9.243 -8.712 -7.599 
Maximum 5.755 5.350 7.289 6.431 8.004 

Q(12)  33.706 62.075** 49.811* 31.279 32.897 
Q(12)2  168.122** 712.201** 561.477** 95.414** 74.666** 

ARCH(12)  92.935** 190.816** 162.925** 60.997** 60.726** 

Notes: Based on the 782 close-of-day % returns for each of the stated indexes over the period 
January 1 2000 to December 31 2002.  Mean, standard deviation, minimum and maximum are in 
percentage form. Q(12) is the 12-lag Ljung-Box test statistic applied to the returns series, Q2(12) is 
the same test statistic applied to the squared returns series, and ARCH(12) is the Engle (1981) LM 
test for up to twelve-order ARCH effects. * represent significant at 5% level and ** represents 
significance at 1% level. 
 
 



 
 
 
 
 

 28 

 
 

Table 3: Mean GARCH Parameter Estimates and Diagnostics for 
Futures Indexes 

 S&P500 FTSE100 DAX Hang Seng Nikkei 225 
ρ  -0.058 -0.046 -0.057 -0.066 -0.101 
 (0.592) (0.362) (0.411) (0.383) (0.179) 

tω  0.089 0.067 0.098 0.105 0.161 

 (0.097) (0.025) (0.098) (0.105) (0.066) 

tα  0.083 0.128 0.108 0.059 0.059 

 (0.001) (0.000) (0.000) (0.010) (0.011) 

tβ  0.872 0.829 0.859 0.905 0.883 

 (0.000) (0.000) (0.000) (0.000) (0.000) 
Q(12) – R 29.461 61.032 42.412 36.229 27.893 

 (0.339) (0.004) (0.061) (0.134) (0.452) 
Q(12)2 – R 68.020 339.280 230.680 74.101 79.639 

 (0.000) (0.000) (0.000) (0.003) (0.001) 
ARCH(12) - R 45.039 110.406 107.643 54.560 61.669 

 (0.016) (0.000) (0.000) (0.018) (0.006) 
AIC 1770.164 1651.647 1976.771 2034.182 2001.613 
BIC 1787.187 1668.676 1993.800 2051.210 2018.643 
JB-Z (45.039) 13.829 5.635 43.234 39.573 

 (0.016) (0.006) (0.130) (0.001) (0.004) 
Q(12) – Z 13.330 13.617 11.749 15.473 6.071 

 (0.345) (0.349) (0.471) (0.266) (0.883) 
Q(12)2 – Z 14.020 5.611 10.634 4.297 20.213 

 (0.299) (0.927) (0.562) (0.970) (0.190) 
ARCH(12) - Z 13.270 6.057 10.442 4.428 20.952 

 (0.350) (0.901) (0.579) (0.968) (0.173) 

Notes: The Table presents average GARCH model coefficients and average diagnostics. Marginal 
significance levels using Bollerslev-Wooldridge standard errors are displayed in parentheses. Pre-model 
diagnostics are applied to the returns series R and post model diagnostics are applied to the standardised 
filtered return series Z.  Q(12) is the Ljung-Box test applied to the indicated series, and Q2(12) is the 
Ljung-Box test applied to the squared indicated series. ARCH(12) is the Engle (1981) LM test for up to 
twelfth order ARCH effects. Marginal significance levels for the model diagnostics are given in 
parentheses.   
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Table 4: Model Evaluation Results 
 S&P FTSE DAX Hang Seng Nikkei 
 Numbers of exceedances 
 19 23 18 11 9 
 Summary statistics for standardized residuals 

Mean -0.0981 -0.1036 -0.128 -0.0632 -0.0546 
Std 1.0368 1.0174 1.0312 0.9437 0.9639 

Skewness 0.1017 -0.1199 0.0797 0.1849 0.2848 
Kurtosis 3.2819 3.0305 2.7114 3.9219 3.1070 

Test Prob-values of test statistics 
Kupiec 0.0373* 0.0030** 0.0629 0.3531 0.1624 
z-test 0.1144 0.0954 0.0394* 0.3088 0.3800 
t-test 0.1291 0.1024 0.0468* 0.2818 0.3632 

Variance ratio 0.3896 0.6723 0.4630 0.2073 0.4264 
Jarque-Bera 0.5209 0.7297 0.5562 0.0049** 0.1633 

Notes: The results apply to 259 daily observations over 2002. The number of exceedances refers to the 
number of loss returns exceeding forecasted VaR. The standardized residuals are the residuals of (6) 
divided by forecasted tσ . The tests are two-sided version of: the Kupiec binomial test that the 
frequency of exceedances equals 1 minus the confidence level of 95%, z- and t-tests of the prediction 
that standardized residuals have a mean equal to 0, a variance-ratio test of the prediction that 
standardized residuals have a variance equal to 1, and a Jarque-Bera test that the standardized residuals 
are normal. * indicates significance at 5% level and ** indicates significance at 1% level.  

 
 
 
 
 

Table 5: Value-at-Risk Results 
90% CI St. 90% CI  VaR SE St. SE LB UB LB UB 

S&P 2.491 0.759 0.303 1.254 3.752 0.501 1.499 
FTSE 2.512 0.765 0.303 1.265 3.782 0.501 1.499 
DAX 3.557 1.085 0.304 1.791 5.361 0.501 1.499 
HS 2.338 0.712 0.303 1.177 3.519 0.501 1.499 

Nikkei 2.605 0.794 0.303 1.312 3.924 0.501 1.499 

Notes: Estimates of VaR are in daily % return terms and VaR is predicated on a 95% confidence level. 
‘SE’ is the VaR standard error, ‘St. SE’ is the standard error of the standardized VaR (i.e., VaR SE 
divided by the mean VaR), ‘90% CI’ is the 90% confidence interval for the VaR, ‘St. 90% CI’ is the 
90% confidence interval for the standardized VaR, and ‘LB’ and ‘UB’ refer to the lower and upper 
bounds of confidence intervals. Standard errors and confidence intervals are estimated using a 
parametric bootstrap applied to the 2002-average values of the 259 sets of daily parameters of the 
AR(1)-GARCH(1,1) model. To facilitate comparability of results across Tables 5 to 7, simulations are 
carried out using the same sets of seed numbers for the pseudo-random number generator. 
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Table 6: Expected Shortfall Results 
(a) Results in comparable form to those of Table 5 

90% CI St. 90% CI  ES SE St. SE LB UB LB UB 
S&P 3.126 0.759 0.242 1.889 4.387 0.602 1.398 
FTSE 3.151 0.765 0.242 1.904 4.421 0.602 1.398 
DAX 4.464 1.085 0.242 2.698 6.268 0.602 1.398 
HS 2.933 0.712 0.242 1.772 4.115 0.602 1.398 

Nikkei 3.269 0.794 0.242 1.975 4.587 0.602 1.398 
(b) Above results divided by those of Table 5 

S&P 1.255 1.000 0.798 1.506 1.169 1.201 0.933 
FTSE 1.255 1.000 0.798 1.506 1.169 1.201 0.933 
DAX 1.255 1.000 0.798 1.506 1.169 1.202 0.933 
HS 1.255 1.000 0.798 1.506 1.169 1.201 0.933 

Nikkei 1.255 1.000 0.798 1.506 1.169 1.201 0.933 

Notes: Estimates of ES are in daily % return terms and ES is predicated on a 95% confidence level. 
‘SE’ is the ES standard error, ‘St. SE’ is the standard error of the standardized ES (i.e., ES SE divided 
by the mean ES), ‘90% CI’ is the 90% confidence interval for the ES, ‘St. 90% CI’ is the 90% 
confidence interval for the standardized ES, and ‘LB’ and ‘UB’ refer to the lower and upper bounds of 
confidence intervals. Standard errors and confidence intervals are estimated using a parametric 
bootstrap applied to the 2002-average values of the 259 sets of daily parameters of the AR(1)-
GARCH(1,1) model. To facilitate comparability of results across Tables 5 to 7, simulations are carried 
out using the same sets of seed numbers for the pseudo-random number generator. 

 
 

Table 7: Spectral Risk Measure Shortfall Results 
(a) Results in comparable form to those of Table 5 

90% CI St. 90% CI  SRM SE St. SE LB UB LB UB 
S&P 3.391 0.759 0.223 2.154 4.652 0.633 1.367 
FTSE 3.419 0.765 0.223 2.172 4.689 0.633 1.367 
DAX 4.843 1.085 0.223 3.077 6.647 0.633 1.367 
HS 3.182 0.712 0.223 2.021 4.364 0.633 1.367 

Nikkei 3.546 0.794 0.223 2.253 4.865 0.633 1.367 
(b) Above results divided by those of Table 5 

S&P 1.361 1.000 0.736 1.718 1.240 1.263 0.912 
FTSE 1.361 1.000 0.736 1.717 1.240 1.263 0.912 
DAX 1.362 1.000 0.735 1.718 1.240 1.264 0.912 
HS 1.361 1.000 0.736 1.717 1.240 1.263 0.912 

Nikkei 1.361 1.000 0.736 1.718 1.240 1.263 0.912 

 Notes: Estimates of the spectral risk measure (SRM) are in daily % return terms and the SRM is 
predicated on a coefficient of absolute risk aversion equal to 50. SRMs are estimated using the 
Miranda-Fackler ‘CompEcon’ trapezoidal numerical integration MATLAB program with the number 
of slices equal to 30000. ‘SE’ is the SRM standard error, ‘St. SE’ is the standard error of the 
standardized SRM (i.e., SRM SE divided by the mean SRM), ‘90% CI’ is the 90% confidence interval 
for the SRM, ‘St. 90% CI’ is the 90% confidence interval for the standardized SRM, and ‘LB’ and 
‘UB’ refer to the lower and upper bounds of confidence intervals. Standard errors and confidence 
intervals are estimated using a parametric bootstrap applied to the 2002-average values of the 259 sets 
of daily parameters of the AR(1)-GARCH(1,1) model. To facilitate comparability of results across 
Tables 5 to 7, simulations are carried out using the same sets of seed numbers for the pseudo-random 
number generator. 
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FIGURES 
 
 
 
 

Figure 1: Spectral Loss Weighting Functions 
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Notes: ‘SRM’ is the spectral risk measure based on equation (4) in the text, predicated on 
coefficients of absolute risk aversion (ARA) equal to 10 and 50. 
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Figure 2: Plots of Daily GARCH (1,1) Volatilities 
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Notes: Volatilities are based of GARCH(1,1) process in daily % return terms.  Results based 
on 259 daily observations over 2002.  
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Figure 3 Probability Integral Transform Plots of Fitted AR(1)-GARCH(1,1) 
Process 
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Notes: Plots show Probability Integral Transform (PIT) values for forecasts over each of 
259 trading days in 2002 plotted against the unit interval [0,1].  
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Figure 4: Plots of Daily AR(1)-GARCH (1,1) 95% VaR 
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Notes: The VaR is that of a long position in the relevant index. Estimates of VaR are in 
daily % return terms and VaR is predicated on a 95% confidence level.  Results based on 
259 daily observations over 2002. Each plot shows estimated VaR plus estimated 90% 
confidence bounds for VaR.   
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Figure 5: Plots of Daily AR(1)-GARCH (1,1) 95% Expected Shortfall 
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Notes: The ES is that of a long position in the relevant index. Estimates of ES are in 
daily % return terms and ES is predicated on a 95% confidence level.  Results based on 
259 daily observations over 2002. Each plot shows estimated ES plus estimated 90% 
confidence bounds for ES. 
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Figure 6: Plots of Daily AR(1)-GARCH (1,1) Spectral Risk Measure  
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Notes: The SRM is that of a long position in the relevant index. Estimates of SRM are 
in daily % return terms and the SRM is predicated on a coefficient of absolute risk 
aversion equal to 50. SRMs are estimated using a trapezoidal numerical integration 
method with the number of slices equal to 30000. Results based on 259 daily 
observations over 2002. Each plot shows estimated SRM plus estimated 90% 
confidence bounds of SRM.   
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Figure A2.1: Plots of Estimated Standard Normal Risk Measures Against the 
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Notes: Each plot shows the estimated spectral-exponential risk measure against N, where N 
covers the range 100 to 50000 in steps of 100, obtained using the numerical integration 
routines shown on each plot. The spectral risk measure is predicated on a coefficient of 
absolute risk aversion equal to 50, and returns are assumed to be distributed as standard 
normal. Calcuations were carried out using the Miranda-Fackler ‘CompEcon’ numerical 
integration programs written in MATLAB.   

 
 
 

 


