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Abstract

A simple iteration methodology for the solution of a set of a linear algebraic equations is pre-

sented. The explanation of this method is based on a pure geometrical interpretation and pictorial

representation. Convergence using this method is obtained and a simple numerical example is

provided.
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I. INTRODUCTION

In various scientific fields there is a need to reduce the initial problem to a set of linear

algebraic equations. This is true in physics when solving eigenstates or eigenfunction prob-

lems in quantum mechanics. Also, it is applicable in applied physics and mathematics in

the areas of linear programming, optimization methods and the root mean square method.

Therefore this reduction of the initial problem to a set of linear algebraic equations can be

viewed as a critical step in obtaining the correct solution to the initial problem.

The methods used in obtaining a solution for a set of the linear algebraic equations are well

known. Typically, the process begins with Cramer’s formulas, deriving a final solution from

the linear systems coefficients or similar numerical methods, then using a Gaussian method

to obtain further improvement and modifications or even applying the Jacobi method to

obtain further refinement.

However, the real problem starts with the attempt to effectively solve a set of linear

equations containing a large number of variables in which Cramer’s method is not effective,

because we need to calculate determinants, which in itself is a problem when a large number

of variables are involved because there will be a loss of accuracy and the numerical stability

of the calculation procedure is reduced. This would also apply in the application of both

the Gaussian and Jacobi methods as well. In obtaining practical solutions we may also have

observed linear algebraic set coefficients with error bars which makes the solution obtained

even more sensitive to the method used in obtaining a numerical solution.

In practice one of the main requirements desired in the numerical method selected is

its stability and fast convergence in obtaining the final solution. In this paper the goal is

to present a simple and rather convenient blueprint to describe the programming iteration

method that could be used to solve the linear algebraic equation problem mentioned above.

II. PROBLEM REFORMULATION. GEOMETRIC PICTURE

In this section we want reformulate the algebraic problem involving the linear system

solution using a geometrical language. Therefore, we need to obtain a number such as xk,
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which satisfies the set of the linear system:

A11x1 + A12x2 + ...+ A1nxn = B1

A21x1 + A22x2 + ...+ A2nxn = B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An1x1 + An2x2 + ...+ Annxn = Bn (1)

which can be written in a more convenient way, as:

n
∑

k=1

Aikxk = Bi . (2)

where Aik and Bi completely define the set of linear equations and have the following bounds

1 ≤ i ≤ N . From a geometrical point of view we can consider every line in the set of linear

equations, for any fixed number i, as a hyperplane in the n - dimensional space of the solution

set. This means, that we can consider the solution as a vector, defined by ~X = (x1, x2, ..., xn),

such that the matrix Aik transforms the vector ~X into the vector ~B which can be defined as

~B = (B1, B2, ..., Bn). For instance, let’s take some fixed point P ∈ (αi), where αi is a i-th

hyperplane, such that P (xp
1, x

p
2, ..., x

p
n) ∈ (αi). Then for the arbitrary point Q ∈ (αi) which

also belongs to this hyperplane, we can write, that the scalar product ~Ai · ~QP = 0, where

~Ai, is defined as ~Ai ≡ (Ai1, Ai2, ..., Ain) is ⊥ to the (αi) vector. This case can be described

as:
n

∑

k=1

Aik(xk − x
p
k) = 0←→

n
∑

k=1

Aikxk =

n
∑

k=1

Aikx
p
k = Bi . (3)

Therefore, we can see, that from a geometrical point of view the solution of a linear set of

algebraic equations is some point in n space, which is an intersection of all n hyperplanes.

One of the possibly solutions therefore, is the construction of an iterative process, which will

allow convergence at this point.

III. NORMALIZATION PROCEDURE

For the simplification of the numerical procedure, we can rewrite the set of the linear

equations in the following way:

n
∑

k=1

Aikxk = Bi ⇒

n
∑

k=1

A
′

ikxk = B
′

i . (4)
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where we delineate, that:

A
′

ik =
Aik

√

∑n

k=1A
2
ik

≡ Aik, B
′

i =
Bi

√

∑n

k=1A
2
ik

≡ Bi . (5)

Here we want to underline, that within the normalization procedure, the i index is fixed.

Thus, we can now rewrite the set of the linear equations using the same form, but now our

coefficients are normalized which means that for any indices pair of i, and k we observe:

|Aik| ≤ 1, which leads to the conclusion that all of our vectors which are perpendicular to

their hyperplanes are interrelated.

IV. A FIRST ARBITRARY POINT

For the iteration procedure we need to choose the first point, from which the iteration

procedure will start. It is obvious, that the iteration procedure convergence will be dependent

on this starting point. It would be preferred to derive this point as close as possible to the

final solution. Which of course is impossible to do in a general case. However, at a minimum

we can require that within the iteration procedure itself that the chosen initial starting point

must be numerically stable. In this case, we can start from a point which for example might

belong to the first hyperplane and have coordinates:(x1, 0, 0, ..., 0), where x1 =
B1

A11

.

V. AN ITERATION PROCEDURE

For the start of the iteration procedure we need in that procedure a method for the

projection of any arbitrary point A (defined by vector ~x(1)) on the i -th hyperplane. In this

case it is easy to see, that if the projection of this point is some point P (defined by vector

~x(2)), which belongs to the i-th hyperplane, then:

~x(2) = ~x(1) + λ ~Ai . (6)

here ~Ai is a unit vector, which is ⊥ to the i-th hyperplane. Because P ∈ (αi), then we can

state that:
n

∑

k=1

Aik(x
(1)
k + λAik) = λ+

n
∑

k=1

Aikx
(1)
k = Bi (7)

From where we determine:

λ = Bi −

n
∑

k=1

Aikx
(1)
k (8)
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and it follows that

| ~Ai| = 1→

n
∑

k=1

AikAik = 1 (9)

After determination of the projection parameter λ we can now describe the components of

the projection point P :

x
(2)
k = x

(1)
k + λAik (10)

where our iteration procedure consists of the following steps:

1. The first step starts from the procedure of choosing the 1-st point, which will belong

to the 1-st hyperplane and we will project it on to the next or second hyperplane.

2. The second step consists of the projection of the 2-nd point which belongs to the 2-nd

hyperplane, on to the next or 3-rd hyperplane and so forth until the last n hyperplane is

reached.

3. The third step then consists of the projection of the iteration point from the n-th

hyperplane onto the first hyperplane, in other words the one which began our iteration

procedure. After that we then can repeat all of the above listed procedures again until a

complete convergence to the final solution is reached.

VI. CONVERGENCE

Proving the convergence in the numerical procedure described above can be accomplished

in the following way. If we take some arbitrary initial point A, which belongs to a hyperplane

and its projection point P on the i-th hyperplane, then it is clear, that the distance between

projection point P and our final point of solution, noted as S, is: LPS = LAS cosϕ therefore

for the k-th number of iterations we can to write, that: Lk = Lk−1 cosϕk. Then the distance

between solution S and our projection point P after n projections can be written as:

LPS = lim
n→∞

L0(cosϕ1 cosϕ2... cosϕn)→ 0 (11)

For example, in the case, when all our hyperplanes are mutually orthogonal, then we have,

for any number k a value of cosϕk = 0 and then we can automatically obtain a solution
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after, at least for n−1 iterations. However, in a case in which the difference between vectors,

which happen to be ⊥ to the hyperplanes is ∆ϕi,k → 0 for any two given hyperplanes then in

this case the number of iteration procedures becomes n→∞. It is clear, from a geometric

point of view that in this case we have almost parallel hyperplanes and the convergence

will proceed slowly. It is possible however, to roughly estimate the approximate number of

iterations:

L = L0 < cosϕ >n≈ ε (12)

from which we arrive at:

< cosϕ >=
2

π

∫ π

2

0

cosϕdϕ =
2

π
→ n ≈

ln

(

ε
L0

)

ln

(

2
π

) = log 2

π

(

ε

L0

)

(13)

here ε - is the accuracy of the solution. This example simply shows how the number of

iterations depends on the choice of the first point selected for any arbitrary system, in

general. However, the main result is that this iteration procedure is numerically stable, it is

not dependent on the choice of the initial starting point to achieve convergence, if a solution

to the set of linear systems exists.

VII. NUMERICAL EXAMPLE

Let’s consider a simple numerical example. We will use our method to solve the following

set of the linear equations:

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 55

−2x1 + 10x2 + x3 + 3x4 + 8x5 = 73

4x1 + 5x2 + 8x3 + x4 + 12x5 = 102

x1 + 2x2 + x3 + 3x4 + 10x5 = 70

8x1 + 17x2 + x3 + 4x4 + 3x5 = 76 (14)

The exact solution for this set of the linear equations is:

x1 = 1; x2 = 2; x3 = 3; x4 = 4; x5 = 5 (15)

For the first starting point we have:

x1 = 55; x2 = 0; x3 = 0; x4 = 0; x5 = 0 (16)
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TABLE I. Demonstration of the numerical procedure convergence.

Number of iterations

10 30 50 70 100 200

x1 6.36729084 0.24225408 1.00692936 1.00648839 0.99979049 1.0

x2 -1.70446795 2.26483449 2.011421866 1.99653770 2.00010026 2.0

x3 -5.01380157 3.74870823 3.02248973 2.99148333 3.00025466 3.0

x4 13.2914602 4.28298482 3.89357617 4.00503095 3.99990957 4.0

x5 1.96186307 4.89304449 5.03535119 4.99844825 5.00002627 5.0

∆ 5.9 0.3677 0.0377 0.0046 7.073 · 10−5 1.178 · 10−9

The result of this iteration procedure is presented in Table 1. Based on these results we are

able to state that ∆ = max|
∑n

k=1Aikxk − Bi| is the maximum deviation from the solution

at the given number of iterations when i ∈ {1, 2, 3, 4, 5}.

VIII. CONCLUSION

In the current mathematical literature there exists many different and useful methods for

obtaining a solution for a set of the linear algebraic equations. The most notable include

works by Cramer, Gauss, Jacobi, Gauss - Seidel. These methods provide a very useful

solution to the problems described in the works [1–3]. However, a major problem arises in

attempts to solve problems involving a very high number of variables, for example when

the number of variables is equal to 104 − 106 or more. In this case we need to allow more

time for convergence, especially if we use an iteration method. However, at the same time

many of these existing methods become numerically unstable. For example, even a solution

of obtaining the inverse matrix to Aik becomes a non trivial problem.

The application of our method is rather simple at the programming level and it has a

transparent geometrical explanation and easy to understand pictorial representation. The

efficiency of this method is much higher in solutions involving problems with large numbers

of variables. The iteration procedure works rather quickly, for example in our case when the

number of iterations is equal to 106 it takes less then 5 sec. In other methods the number of

iterations required are sometimes much less than in our method, but they may require some
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special properties and/or conditions. This is the case of the Jacobi method. Our approach

is not sensitive to these problems.
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