
ar
X

iv
:1

01
2.

56
43

v1
  [

he
p-

th
] 

 2
7 

D
ec

 2
01

0

The Non-Compact Weyl Equation

Anastasia Doikou∗ and Theodora Ioannidou†

∗Department of Engineering Sciences, University of Patras, GR-26500 Patras, Greece

E-mail: adoikou@upatras.gr

†Department of Mathematics, Physics and Computational Sciences, Faculty of Engineering,

Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

E-mail: ti3@auth.gr

Abstract

A non-compact version of the Weyl equation is proposed, based on the spin zero rep-

resentation of the sl2 algebra. Solutions of the aforementioned equation are obtained

in terms of the Kummer functions. In this context, the ADHMN approach is used to

construct the corresponding non-compact BPS monopoles.
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1 Introduction

The Nahm equations provide a system of non-linear ordinary differential equations

dTi

ds
=

1

2
εijk [Tj , Tk] (1)

for three n×n anti-hermitean matrices Ti (the so-called Nahm data) of complex-valued func-

tions of the variable s, where n is the magnetic charge of the BPS monopole configuration.

The tensor εijk is the totally antisymmetric tensor.

In the ADHMN approach, the construction of SU(n + 1) monopole solutions of the

Bogomolny equation with topological charge n is translated to the following problem which

is known as the inverse Nahm transform [1]. Given the Nahm data for a n-monopole the

one-dimensional Weyl equation
(

I2n
d

ds
− In ⊗ xjσj + iTj ⊗ σj

)

v(x, s) = 0 (2)

for the complex 2n-vector v(x, s), must be solved. In denotes the n × n identity matrix,

x = (x1, x2, x3) is the position in space at which the monopole fields are to be calculated. In

the minimal symmetry breaking case, the Nahm data Ti’s can be cast as (see Reference [2],

for a more detailed discussion)

Ti = − i

2
fi τi, i = 1, 2, 3 (3)

where τi’s form the n-dimensional representation of SU(2) and satisfy:

[τi, τj ] = 2iεijk τk. (4)

Let us choose an orthonormal basis for these solutions, satisfying
∫

v̂†v̂ ds = I. (5)

Given v̂(x, s), the normalized vector computed from (2) and (5), the Higgs field Φ and the

gauge potential Ai are given by

Φ = −i

∫

s v̂†v̂ ds, (6)

Ai =

∫

v̂† ∂iv̂ ds. (7)
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In [3, 4], we applied the ADHMN construction to obtain the SU(n + 1) (for generic values

of n) BPS monopoles with minimal symmetry breaking, by solving the Weyl equation. In

what follows a special case of solutions of the Weyl equation will be studied. In particular,

non-compact BPS monopoles may be obtained through a generalized ADHMN construction,

using an infinite dimensional representation of the sl2 algebra.

2 The Weyl Equation

In order to construct the non-compact BPS monopole solutions of the Weyl equation, let us

consider the sl2 algebra, and focus on the non-trivial spin zero representation.

Consider the general case: i.e. the spin S ∈ R representation of sl2 of the form

τ1 =−
(

ξ2 − 1
) d

dξ
+S

(

ξ + ξ−1
)

, τ2 = −i

[

(

1 + ξ2
) d

dξ
+ S

(

ξ−1 − ξ
)

]

, τ3 = −2ξ
d

dξ
. (8)

Also take the inner product, in the basis of polynomials of ξ on the unit circle (ξ = eiθ), to

be of the form:

〈f, g〉 ≡ 1

2iπ

∫

1

ξ
f ∗g dξ (9)

and immediately obtain the formula

〈ξm, ξn〉 = δnm. (10)

Next consider the generic state

v =
∞
∑

k=−∞

hk ξ
k

(

b1
√
η +

b2√
η

)

, (11)

where hk = hk(r, s) and bi = bi(r, s) for i = 1, 2.

Notice that using the representation (8), for S being an integer or half integer; together

with the inner product (9) and an appropriate orthonormal basis {v̂1, . . . , v̂n+1}, where

n = 2S + 1 is the dimension of the representation:
∫ n+1

0

〈v̂i, v̂j〉 ds = δij (12)

one may recover the Higgs field obtained in [3] from the formula

Φij = −i

∫ n+1

0

(s− n) 〈v̂i, v̂j〉 ds. (13)
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Next, we focus on the the spin zero representation of sl2, associated to the Möbius

transformation and also relevant in high energy QCD (see for example, Reference [5, 6]).

Again we consider the spherically symmetric case (that is, xi = rδi3), where the Nahm data

are given by (3) for fi = f = −1
s
.

Substituting the Nahm data (3) (where τ ′is are defined by (8) for S = 0) to the Weyl

equation (2) and expressing σi in terms of the spin 1
2
representation; that is, equation (8)

for S = 1
2
:

σ1 =−
(

η2 − 1
) d

dη
+

(η−1 + η)

2
, σ2 =−i

[

(

1 + η2
) d

dη
+

(η−1 − η)

2

]

, σ3 = −2η
d

dη
(14)

one gets

{

d

ds
+

f (ξ2 − 1)

2

d

dξ

[

(

η2 − 1
) d

dη
− (η−1 + η)

2

]

− f (1 + ξ2)

2

d

dξ

[

(

1 + η2
) d

dη
+

(η−1 − η)

2

]

+2fξ
d

dξ

(

η
d

dη

)

+ 2rη
d

dη

} ∞
∑

k=−∞

hk ξ
k

(

b1
√
η +

b2√
η

)

= 0. (15)

Next, by setting wk = b1 hk and uk = b2 hk in (15), the following set of linear differential

equations is obtained

ẇk −
(k + 1)

s
uk+1 −

(

k

s
− r

)

wk = 0,

u̇k+1 +
k

s
wk +

(

(k + 1)

s
− r

)

uk+1 = 0, k ∈ (−∞, ∞). (16)

Here, ẇk and u̇k are the total derivatives of the functions wk and uk with respect to the

argument s. Note that our results are analogous to the ones obtained in [3].

Let us now solve these equations. The coupled equations for uk+1 and wk are equivalent

by expressing uk+1 in terms of wk:

uk+1 =
s

(k + 1)
ẇk −

(k − rs)

(k + 1)
wk, (17)

to the single second-order equation

sẅk + 2ẇk −
[

r2s− 2r (k + 1)
]

wk = 0. (18)
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Then, the solution of (18) is given in a closed form, in terms of the Kummer functions as

wk = e−rs
[

c1(r)M (−k, 2, 2rs) + c2(r)U (−k, 2, 2rs)
]

(19)

where ci(r) for i = 1, 2 are constants. M (−k, 2, 2rs) is the regular confluent hypergeometric

Kummer function and U (−k, 2, 2rs) is the Tricomi confluent hypergeometric function defined

in Table 11. These functions are widely known as the Kummer functions of first and second

kind, respectively, and are linearly independent solutions of the Kummer equation [7].

M (−k, 2, 2rs) U (−k, 2, 2rs)

k = −2 e2rs Γ (−1, 2rs) e2rs

k = −3 (1 + rs) e2rs 1+2rs
4rs − (1 + rs) Γ (0, 2rs) e2rs

k = −4 1
3

(

3 + 6rs+ 2r2s2
)

e2rs 1+5rs+2r2s2

12rs − 1
6

(

3 + 6rs+ 2r2s2
)

Γ (0, 2rs) e2rs

k = −5 1
3

(

3 + 9rs+ 6r2s2 + r3s3
)

e2rs
(3+2rs)(1+8rs+2r2s2)

144rs − 1
18

(

3+9rs+6r2s2+r3s3
)

Γ (0, 2rs) e2rs

Table 1: Explicit expressions of the Kummer functions M (−k, 2, 2rs) and U (−k, 2, 2rs) for

k = −2, . . . ,−5.

Finally, the corresponding function uk+1 given by (17) takes the simple form

uk+1 =
k

(k + 1)
e−rs

[

− c1(r)M(−k + 1, 2, 2rs) + c2(r)(k + 1)U(−k + 1, 2, 2rs)
]

(20)

The next step is to choose an orthogonal basis of the infinite dimensional space. Consider

the following functions:

vk = ξk
√
η wk +

ξk√
η
uk+1, (21)

which are orthogonal by construction. Then the norm of such a function is given by
∫ 1

−∞

< vk,vk > ds =

∫ 1

−∞

(

w2
k + u2

k+1

)

ds

= Nk. (22)

1Γ(a, z) is the complementary or upper incomplete Gamma function defined by

Γ(a, x) =

∫

∞

x

ta−1 e−t dt, ℜ(a) > 0.
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As can be observed from Table 1 the arbitrary constant c2(r) at (19) and (20) should be set

equal to zero in order to avoid the divergencies of (22) at s → −∞. Also, the norm (22) is

well-defined only for k ∈ (−∞,−2].

Some particular examples of the values of the norm Nk are

N−2 =
c21(r)

2r

(

3 + 4r + 4r2
)

e2r,

N−3 =
c21(r)

8r

(

5 + 16r + 28r2 + 16r3 + 4r4
)

e2r,

N−4 =
c21(r)

162r

(

63 + 324r + 864r2 + 960r3 + 540r4 + 144r5 + 16r6
)

e2r,

N−5 =
c21(r)

288r

(

81 + 576r + 2088r2 + 3456r3 + 3084r4 + 1536r5 + 432r6 + 64r7 + 4r8
)

e2r. (23)

Finally, similarly to the finite case the associated Higgs field may be then obtained via

the generic expression:

Φkk = − i

Nk

∫ 1

−∞

s < vk,vk > ds. (24)

3 Conclusions

We generalize the ADHMN construction in the case of the non-compact sl2 algebra. More

precisely, we propose a generalized version of the Weyl equation in terms of differential

operators. The aferomentioned generalized Weyl equation is solved explicitly for the infinite

dimensional spin-zero representation of sl2, and the associated solutions are expressed in

terms of the so-called Kummer functions. Also, a suitable infinite set of orthogonal functions

is chosen, and in analogy to the finite case (see, for example, [3] and References therein),

expressions of the relevant Higgs fields are proposed. These expressions have a simple and

elegant form, and should correspond to a kind of infinite BPS monopole configurations.

It would be interesting to investigate any possible relevance of our findings with previous

results of the classical version of the Nahm equations related to infinite monopoles [8, 9] and

SU(∞) Yang-Mills theories [10, 11]. Note that in [12] the Nahm equations are associated to

the classical sl2 algebra (Poisson bracket structure), whereas in our study we consider the
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quantum sl2 algebra and we deal with the infinite dimensional representation. We hope to

further explore these issues in forthcoming publications.
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