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Abstract—Consider a network where all nodes are distributed
on a unit square following a Poisson distribution with known
density ρ and a pair of nodes separated by an Euclidean
distancex are directly connected with probability g

(

x
rρ

)

, where
g : [0,∞) → [0, 1] satisfies three conditions: rotational in-
variance, non-increasing monotonicity and integral boundedness,
rρ =

√

log ρ+b

Cρ
, C =

´

ℜ2 g (‖x‖) dx and b is a constant,
independent of the event that another pair of nodes are directly
connected. In this paper, we analyze the asymptotic distribution
of the number of isolated nodes in the above network using the
Chen-Stein technique and the impact of the boundary effect on
the number of isolated nodes asρ → ∞. On that basis we derive
a necessary condition for the above network to be asymptotically
almost surely connected. These results form an important link
in expanding recent results on the connectivity of the random
geometric graphs from the commonly used unit disk model to
the more generic and more practical random connection model.

Index Terms—Isolated nodes, connectivity, random connection
model

I. I NTRODUCTION

Connectivity is one of the most fundamental properties of
wireless multi-hop networks [1]–[5]. A network is said to
be connected if there is a path between any pair of nodes.
In this paper we consider the necessary condition for an
asymptotically almost surely (a.a.s.) connected network inℜ2.
Specifically, we investigate a network where all nodes are
distributed on a unit square

[

− 1
2 ,

1
2

)2
following a Poisson

distribution with known densityρ and a pair of nodes sep-
arated by an Euclidean distancex are directly connected with
probabilityg

(

x
rρ

)

, independent of the event that another pair

of nodes are directly connected. Hereg : [0,∞) → [0, 1]
satisfies the properties of rotational invariance, non-increasing
monotonicity and integral boundedness [6], [7, Chapter 6]12:
{

g (x) ≤ g (y) whenever x ≥ y
0 <
´

ℜ2 g (‖x‖) dx < ∞ (1)

whererρ =
√

log ρ+b
Cρ

, 0 < C =
´

ℜ2 g (‖x‖) dx < ∞, b is a
constant and‖•‖ denotes the Euclidean norm.

This research is funded by ARC Discovery project: DP0877562.
1Throughout this paper, we use the non-bold symbol, e.g.x, to denote a

scalar and the bold symbol, e.g.x, to denote a vector.
2We refer readers to [6], [7, Chapter 6] for detailed discussions on the

random connection model.

It is shown later in Section II-B that the conditions in
(1) imply g (x) = ox

(

1
x2

)

where the symbolox is defined
shortly later. In this paper we further requireg to satisfy a
slightly more restrictive condition thatg (x) = ox

(

1
x2 log2 x

)

and the implications of such more restrictive condition become
clear in the analysis of Section II-B, particularly in Remark
1. The conditiong (x) = ox

(

1
x2 log2 x

)

is only slightly more

restrictive than the conditiong (x) = ox
(

1
x2

)

in that for an

arbitrarily small positive constantε, 1
x2+ε = ox

(

1
x2 log2 x

)

.
The reason for choosing this particular form ofrρ is that the

analysis becomes nontrivial whenb is a constant. Other forms
of rρ can be accommodated by allowingb → ∞ or b → −∞,
e.g.b becomes a function ofρ, asρ → ∞. We discuss these
situations separately in Section IV.

Denote the above network byG (Xρ, gρ). It is obvious that
under aunit disk model whereg(x) = 1 for x ≤ 1 andg(x) =
0 for x > 1, rρ corresponds to the transmission range for
connectivity [1]. Thus the above model easily incorporatesthe
unit disk model as a special case. A similar conclusion can
also be drawn for the log-normal connection model.

The following notations and definitions are used:

• f (z) = oz (h (z)) iff (if and only if) limz→∞
f(z)
h(z) = 0;

• f (z) ∼z h (z) iff limz→∞
f(z)
h(z) = 1;

• An eventξz depending onz is said to occur a.a.s. if its
probability tends to one asz → ∞.

The above definition applies whether the argumentz is con-
tinuous or discrete, e.g. assuming integer values.

The contributions of this paper are: firstly using the Chen-
Stein technique [8], [9], we show that the distribution of
the number of isolated nodes inG (Xρ, gρ) asymptotically
converges to a Poisson distribution with meane−b asρ → ∞;
secondly we show that the number of isolated nodes due to the
boundary effect inG (Xρ, gρ) is a.a.s. zero, i.e. the boundary
effect has asymptotically vanishing impact on the number of
isolated nodes; finally we derive the necessary condition for
G (Xρ, gρ) to be a.a.s. connected asρ → ∞ under a generic
connection model, which includes the widely used unit disk
model and log-normal connection model as its two special
examples.

The rest of the paper is organized as follows: Section II
analyzes the distribution of the number of isolated nodes on
a torus; Section III evaluates the impact of the boundary
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effect on the number of isolated nodes; Section IV provides
the necessary condition forG (Xρ, gρ) to be a.a.s connected;
Section V reviews related work in the area. Discussions on
the results and future work suggestions appear Section VI.

II. T HE DISTRIBUTION OF THE NUMBER OF ISOLATED

NODES ONA TORUS

Denote by GT (Xρ, gρ) a network with the same node
distribution and connection model asG (Xρ, gρ) except that
nodes inGT (Xρ, gρ) are distributed on a unit torus

[

− 1
2 ,

1
2

)2
.

In this section, we analyze the distribution of the number
of isolated nodes inGT (Xρ, gρ). With minor abuse of the
terminology, we useAT to denote both the unit torus itself
and the area of the unit torus, and in the latter case,AT = 1.

A. Difference between a torus and a square

The unit torus
[

− 1
2 ,

1
2

)2
that is commonly used in random

geometric graph theory is essentially the same as a unit
square

[

− 1
2 ,

1
2

)2
except that the distance between two points

on a torus is defined by theirtoroidal distance, instead of
Euclidean distance. Thus a pair of nodes inGT (Xρ, gρ),
located atx1 and x2 respectively, are directly connected
with probability g

(

‖x1−x2‖T

rρ

)

where ‖x1 − x2‖T denotes
the toroidal distance between the two nodes. For a unit torus
AT =

[

− 1
2 ,

1
2

)2
, the toroidal distance is given by [10, p. 13]:

‖x1 − x2‖T , min
{

‖x1 + z − x2‖ : z ∈ Z
2
}

(2)

The toroidal distance between points on a torus of any other
size can be computed analogously. Such treatment allows
nodes located near the boundary to have the same number of
connectionsprobabilistically as a node located near the center.
Therefore it allows the removal of the boundary effect that is
present in a square.The consideration of a torus implies that
there is no need to consider special cases occurring near the
boundary of the region and that events inside the region do
not depend on the particular location inside the region. This
often simplifies the analysis however. From now on, we use the
same symbol,A, to denote a torus and a square. Whenever the
difference between a torus and a square affects the parameter
being discussed, we use superscriptT (respectivelyS) to mark
the parameter in a torus (respectively a square).

We note the following relation between toroidal distance and
Euclidean distance on a square area centered at the origin:

‖x1 − x2‖T ≤ ‖x1 − x2‖ and ‖x‖T = ‖x‖ (3)

which will be used in the later analysis.

B. Properties of isolated nodes on a torus

Divide the unit torus intom2 non-overlapping squares each
with size 1

m2 . Denote theithm square byAim . Define two sets
of indicator random variablesJT

im
and ITim with im ∈ Γm ,

{1, . . .m2}, whereJT
im

= 1 iff there exists exactly one node in
Aim , otherwiseJT

im
= 0; ITim = 1 iff there is exactly one node

in Aim and that node is isolated,ITim = 0 otherwise. Obviously
JT
im

is independent ofJT
jm

, jm ∈ Γm\ {im}. Denote the center

of AT
im

by xim and without loss of generality we assume
that whenJT

im
= 1, the associated node inAim is at xim

3.
Observe that for any fixedm, the values ofPr

(

ITim = 1
)

and
Pr
(

JT
im

= 1
)

do not depend on the particular indexim on
a torus. However both the set of indicesΓm and a particular
index im depend onm. As m changes, the square associated
with ITim and JT

im
also changes. Without causing ambiguity,

we drop the explicit dependence onm in our notations for
convenience. As an easy consequence of the Poisson node
distribution,

lim
m→∞

Pr
(

JT
i = 1

)

ρ
m2

= 1 (4)

and asm → ∞, the probability that there is more than
one node inAi becomes vanishingly small compared to
Pr
(

JT
i = 1

)

. Further, using the relationship that

Pr
(

ITi = 1
)

= Pr
(

ITi = 1|JT
i = 1

)

Pr
(

JT
i = 1

)

(5)

it can be shown that

Pr
(

ITi = 1
)

= Pr
(

JT
i = 1

)

×
∏

j∈Γ\{i}

[

Pr
(

JT
j = 1

)

(

1− g

(

‖xi − xj‖T
rρ

))

+
(

1− Pr
(

JT
j = 1

)

− om
(

Pr
(

JT
j = 1

)))

+ om

(

Pr
(

JT
j = 1

)

(

1− g

(

‖xi − xj‖T
rρ

)))]

(6)

In (6), the termPr
(

JT
j = 1

)

(

1− g
(

‖xi−xj‖T

rρ

))

represents
the probability of the event that there is a node inAj and
that node is not directly connected to the node inAi, the
term

(

1− Pr
(

JT
j = 1

)

− om
(

Pr
(

JT
j = 1

)))

represents the
probability of the event that there is no node inAj and the
last term accounts for the situation that there is more than one
node inAj . It then follows that

lim
m→∞

Pr
(

ITi = 1|Ji = 1
)

= lim
m→∞

∏

j∈Γ\{i}

[

1− Pr
(

JT
j = 1

)

g

(

‖xi − xj‖T
rρ

)]

= e
−
´

A
ρg

(

‖x−xi‖T

rρ

)

dx
(7)

= e
−
´

A
ρg

(

‖x‖T

rρ

)

dx
(8)

where (8) results from (7) due to nodes being distributed on
a torus. Further, using (4), (5) and (8), it is evident that

Pr
(

ITi = 1
)

∼m

ρ

m2
e
−
´

A
ρg

(

‖x‖T

rρ

)

dx
(9)

DefineWT
m =

∑m2

i=1 I
T
i andWT = limm→∞ WT

m, where
WT has the meaning of the total number of isolated nodes in
A. It then follows that

E
(

WT
)

= lim
m→∞

E
(

WT
m

)

= ρe
−
´

A
ρg

(

‖x‖T

rρ

)

dx
(10)

3In this paper we are mainly concerned with the case thatm → ∞, i.e.
the size of the squer is varnishingly small. Therefore the actual position of
the node in the square is not important.



It can be shown that

lim
ρ→∞

ρe
−
´

D(0,r1−ε
ρ )

ρg
(

‖x‖
rρ

)

dx

= lim
ρ→∞

ρe
−ρr2ρ

´

D(0,r
−ε
ρ )

g(‖x‖)dx

= lim
ρ→∞

ρe
−ρr2ρ

(

C−
´

ℜ2\D(0,r
−ε
ρ )

g(‖x‖)dx
)

= e−b lim
ρ→∞

e
log ρ+b

C

´∞

r
−ε
ρ

2πxg(x)dx
= e−b (11)

whereD (0, x) denotes a disk centered at the origin and with
a radiusx, ε is a small positive constant, and the last step
results because

lim
ρ→∞

´∞
r
−ε
ρ

2πxg (x) dx

1
log ρ+b

= lim
ρ→∞

πεr−ε
ρ g

(

r−ε
ρ

)

r−ε−2
ρ

log ρ+b−1
Cρ2

1
ρ(log ρ+b)2

(12)

= lim
ρ→∞

πε (log ρ+ b)
2
r−2ε
ρ oρ

(

1

r−2ε
ρ log2

(

r−2ε
ρ

)

)

= 0

where L’Hï¿œpital’s rule is used in reaching (12) and
in the third step g (x) = ox

(

1
x2 log2 x

)

is used. As

a consequence of (3), (10), (11) and thate−b =

limρ→∞ ρe
−
´

ℜ2 ρg
(

‖x‖
rρ

)

dx ≤ limρ→∞ ρe
−
´

A
ρg
(

‖x‖
rρ

)

dx ≤

limρ→∞ ρe
−
´

D(0,r
1−ε
ρ )

ρg
(

‖x‖
rρ

)

dx

= e−b:

lim
ρ→∞

E
(

WT
)

= e−b (13)

The above analysis is summarized Lemma 1.
Lemma 1: The expected number of isolated nodes in

GT (Xρ, gρ) is ρe
−
´

A
ρg

(

‖x‖T

rρ

)

dx
. As ρ → ∞, the expected

number of isolated nodes inGT (Xρ, gρ) converges toe−b.
Remark 1: Using (1), it can be shown that

C =
´

ℜ2 g (‖x‖) dx ≥ limz→∞
´ z

0
2πxg (z) dx =

limz→∞ πz2g (z). Therefore limz→∞
g(z)

1

z2

≤ C
π

. It can

then be shown that the only possibility islimz→∞
g(z)

1

z2

= 0

and that the other possibilities wherelimz→∞
g(z)

1

z2

6= 0 can

be ruled out by contradiction with (1). Thus

g (x) = ox
(

1/x2
)

(14)

Further the conditiong (x) = ox

(

1
x2 log2 x

)

is only re-

quired forρr2ρ
´

ℜ2\D(0,r−ε
ρ ) g (‖x‖) dx to asymptotically con-

verge to 0, where the termρr2ρ
´

ℜ2\D(0,r−ε
ρ ) g (‖x‖) dx is

associated with (the removal of) connections between a
node at 0 and other nodes outsideD

(

0, r−ε
ρ

)

. Evalua-
tion of ρr2ρ

´

ℜ2\D(0,r−ε
ρ ) g (‖x‖) dx for an area larger than

D
(

0, r−ε
ρ

)

(but not greater thanAρ) does not remove the need
for the condition. Thus the more restrictive requirement ong

that g (x) = ox

(

1
x2 log2 x

)

is attributable to thetruncation

effect that arises when considering connectivity in a (asymp-
totically infinite) finite region instead of an infinite area.
Now consider the eventITi ITj = 1, i 6= j conditioned on the
event thatJT

i JT
j = 1, meaning that both nodes having been

placed insideAi andAj respectively are isolated. Following
the same steps leading to (8), it can be shown that

lim
m→∞

Pr
(

ITi I
T
j = 1|JT

i JT
j = 1

)

=

(

1− g

(

‖xi − xj‖T
rρ

))

× exp

[

−
ˆ

A

ρ

(

g

(

‖x− xi‖T
rρ

)

+ g

(

‖x− xj‖T
rρ

)

− g

(

‖x− xi‖T
rρ

)

g

(

‖x− xj‖T
rρ

))

dx

]

(15)

where the term
(

1− g
(

‖xi−xj‖T

rρ

))

is due to the consid-
eration that the two nodes located insideAi andAj cannot
be directly connected in order for both nodes to be isolated.
Observe also that:

Pr
(

ITi ITj = 1
)

= Pr
(

JT
i JT

j = 1
)

Pr
(

ITj I
T
j = 1|JT

i JT
j = 1

)

(16)

Now using (4), (9), (15) and (16), it can be established that

Pr
(

ITi = 1|ITj = 1
)

∼m

ρ

m2

(

1− g

(

‖xi − xj‖T
rρ

))

× e
−
´

A
ρ

(

g

(

‖x−xi‖T

rρ

)

−g

(

‖x−xi‖T

rρ

)

g

(

‖x−xj‖T

rρ

))

dx
(17)

lim
m→∞

Pr
(

ITi ITj = 1
)

Pr
(

ITi = 1
)

Pr
(

ITj = 1
)

= (1 − g(
‖xi − xj‖T

rρ
))e
´

A
ρg(

‖x−xi‖T

rρ
)g(

‖x−xj‖T

rρ
)dx(18)

Using (4), (7), (15), (16) and the above equation, it can also
be obtained that

lim
m→∞

Pr
(

ITi = 1, ITj = 0
)

Pr
(

ITi = 1
)

Pr
(

ITj = 0
)

= lim
m→∞

Pr
(

ITi = 1
)

− Pr
(

ITi I
T
j = 1

)

Pr
(

ITi = 1
)

Pr
(

ITj = 0
)

= lim
m→∞

(

1− ρ

m2
e
−
´

A
ρg

(

‖x−xj‖T

rρ

)

dx

)−1

×
[

1− ρ

m2

(

1− g

(

‖xi − xj‖T
rρ

))

× e
−
´

A
ρg

(

‖x−xj‖T

rρ

)(

1−g

(

‖x−xi‖T

rρ

))

dx

]

(19)



C. The asymptotic distribution of the number of isolated nodes

On the basis of the discussion in the last subsection, in
this subsection we consider the distribution of the number
of isolated nodes inGT (Xρ, gρ) as ρ → ∞ . Our analysis
relies on the use of the Chen-Stein bound [8], [9]. The Chen-
Stein bound is named after the work of Stein [11] and Chen
[12], [13]. It is well known that the number of occurrences of
independently distributed rare events in a region can often
be accurately approximated by a Poisson distribution [9].
In [11], Stein developed a novel method for showing the
convergence in distribution to the normal of the sum of a
number ofdependent random variables. In [12], [13] Chen
applied Stein’s ideas in the Poisson setting and derived an
upper bound on thetotal variation distance, a concept defined
in the theorem statement below, between the distribution of
the sum of a number ofdependent random indicator variables
and the associated Poisson distribution. The following theorem
gives a formal statement of the Chen-Stein bound.

Theorem 1: [9, Theorem 1.A ] For a set of indicator
random variablesIi, i ∈ Γ, defineW ,

∑

i∈Γ Ii, pi , E (Ii)

and λ , E (W ). For any choice of the index setΓs,i ⊂ Γ,
Γs,i ∩ {i} = {ï¿œ},

dTV (L (W ) , Po (λ))

≤
∑

i∈Γ







p2i + piE





∑

j∈Γs,i

Ij











min

(

1,
1

λ

)

+
∑

i∈Γ

E



Ii
∑

j∈Γs,i

Ij



min

(

1,
1

λ

)

+
∑

i∈Γ

E |E {Ii |(Ij , j ∈ Γw,i)} − pi|min

(

1,
1√
λ

)

whereL (W ) denotes the distribution ofW , Po (λ) denotes a
Poisson distribution with meanλ, Γw,i = Γ\ {Γs,i ∪ {i}} and
dTV denotes the total variation distance. The total variation
distance between two probability distributionsα andβ onZ

+

is defined by

dTV (α, β) , sup
{

|α (A)− β (A)| : A ⊂ Z
+
}

For convenience, we separate the bound in Theorem 1 into
three termsb1min

(

1, 1
λ

)

, b2min
(

1, 1
λ

)

and b3min
(

1, 1√
λ

)

where b1 ,
∑

i∈Γ

[(

p2i + piE
(

∑

j∈Γs,i
Ij

))]

,

b2 ,
∑

i∈Γ E
(

Ii
∑

j∈Γs,i
Ij

)

and b3 ,
∑

i∈Γ E |E {Ii |(Ij , j ∈ Γw,i)} − pi|.
The set of indicesΓs,i is often chosen to contain all those

j, other thani, for which Ij is “strongly” dependent onIi
and the setΓw,i often contains all other indices apart from
i for which Ij , j ∈ ΓW,i are at most “weakly” dependent on
Ii [8]. In many applications, by a suitable choice ofΓs,i the
b3 term can be easily made to be0 and the evaluation of
the b1 and b2 terms involve the computation of the first two
moments ofW only, which can often be achieved relatively
easily. An example is a random geometric network under the
unit disk model. IfΓs,i is chosen to be a neighborhood ofi
containing indices of all nodes whose distance toxi is less

than or equal to twice the transmission range, theb3 term is
easily shown to be0. It can then be readily shown that theb1
andb2 terms approach0 as the neighbourhood size of a node
becomes vanishingly small compared to the overall network
size asρ → ∞ [14]. However this is certainly not the case for
the generic random connection model where the dependence
structure is global.

Using the Chen-Stein bound, the following theorem, which
summarizes a major result of this paper can be obtained:

Theorem 2: The number of isolated nodes inGT (Xρ, gρ)
converges to a Poisson distribution with meane−b asρ → ∞.

Proof: Proof is given in the Appendix.

III. T HE IMPACT OF THEBOUNDARY EFFECTS ON THE

NUMBER OF ISOLATED NODES

On the basis of the analysis in the last section, we now
consider the impact of the boundary effect on the number of
isolated nodes inG (Xρ, gρ). Following the same procedure
that results in (9), it can be shown thatPr

(

ISi = 1
)

∼m

ρ
m2 e

−
´

A
ρg
(∥

∥

∥

x−xi
rρ

∥

∥

∥

)

dx
where the parameters in this section

is defined analogously as those in the last section. Note that
due to the consideration of a square, a relationship such as
´

A
ρg
(∥

∥

∥

x−xi

rρ

∥

∥

∥

)

dx =
´

A
ρg
(∥

∥

∥

x

rρ

∥

∥

∥

)

dx is no longer valid.
It follows that

E
(

WS
)

= lim
m→∞

E (W s
m) =

ˆ

A

ρe
−
´

A
ρg
(
∥

∥

∥

x−y

rρ

∥

∥

∥

)

dx
dy

lim
ρ→∞

E
(

WS
)

= lim
ρ→∞

ˆ

Aρ

ρr2ρe
−
´

Aρ
ρr2ρg(‖x−y‖)dx

dy

= lim
ρ→∞

ρe−Cρr2ρ = e−b (20)

whereAρ is a square of size1
r2ρ

andAρ ,
[

− 1
2rρ

, 1
2rρ

)2

. In
arriving at (20) some discussions involving dividingAρ into
three non-overlapping regions: four square areas of sizer−ε

ρ ×
r−ε
ρ at the corners ofAρ, denoted by∠Aρ; four rectangular

areas of sizer−ε
ρ ×

(

r−1
ρ − 2r−ε

ρ

)

adjacent to the four sides
of Aρ, denoted byℓAρ; and the rest central area, are omitted
due to space limitation, whereε is a small positive constant
andε < 1

4 .
Comparing (13) and (20), it is noted that the expected num-

bers of isolated nodes on a torus and on a square respectively
asymptotically converge to the same nonzero finiteconstant
e−b as ρ → ∞. Now we use the coupling technique [6] to
construct the connection betweenWS andWT . Consider an
instance ofGT (Xρ, gρ). The number of isolated nodes in that
network isWT , which depends onρ. Remove each connection

of the above network with probability1−
g
(

x
rρ

)

g
(

xT

rρ

) , independent

of the event that another connection is removed, wherex
is the Euclidean distance between the two endpoints of the
connection andxT is the corresponding toroidal distance. Due

to (3) and the non-increasing property ofg, 0 ≤ 1−
g
(

x
rρ

)

g
(

xT

rρ

) ≤
1. Further note that only connections between nodes near
the boundary withxT < x will be affected. Denote the
number ofnewly appeared isolated nodes byWE . WE has



the meaning of beingthe number of isolated nodes due to the
boundary effect. It is straightforward to show thatWE is a
non-negative random integer, depending onρ. Further, such
a connection removal process results in a random network
with nodes Poissonly distributed with densityρ where a pair
of nodes separated by anEuclidean distancex are directly
connected with probabilityg

(

x
rρ

)

, i.e. a random network on
a square with the boundary effect included. The following
equation results as a consequence of the above discussion:
WS = WE +WT . Using (13), (20) and the above equation,
it can be shown thatlimρ→∞ E

(

WE
)

= 0. Due to the non-
negativeness ofWE : limρ→∞ Pr

(

WE = 0
)

= 1. The above
discussion is summarized in the following lemma, which forms
the second major contribution of this paper.

Theorem 3: The number of isolated nodes inG (Xρ, gρ) due
to the boundary effect is a.a.s.0 asρ → ∞.

IV. T HE NECESSARYCONDITION FOR ASYMPTOTICALLY

CONNECTEDNETWORKS

We are now ready to present the necessary condition for
G (Xρ, gρ) to be a.a.s. connected asρ → ∞. The following
theorem can be obtained using Theorems 2 and 3:

Theorem 4: The number of isolated nodes inG (Xρ, gρ)
converges to a Poisson distribution with meane−b asρ → ∞.
Corollary 1 follows immediately from Theorem 4.

Corollary 1: As ρ → ∞, the probability that there is no
isolated node inG (Xρ, gρ) converges toe−e−b

.
With a slight modification of the proof of Theorem 2, it can be
shown that Theorems 2 and 4 and Corollary 1 can be extended
to the situation whenb is a function ofρ andlimρ→∞ b = B,
whereB is a constant. Now we further relax the condition in
Theorem 2 onb and consider the situation whenb → −∞
or b → ∞ as ρ → ∞. When b → ∞, the number of
connections inG (Xρ, gρ) increases. Unsurprisingly, isolated
nodes disappear. In fact, using the coupling technique, Lemma
1, Theorem 3 and Markov’s inequality, it can be shown that
if b → ∞ asρ → ∞, limρ→∞ Pr

(

WS = 0
)

= 1.
Now we consider the situation whenb → −∞ asρ → ∞.

For an arbitrary network, a particular property isincreasing
if the property is preserved when more connections (edges)
are added into the network. A property isdecreasing if
its complement is increasing, or equivalently a decreasing
property is preserved when connections (edges) are removed
from the network. It follows that the property that the network
G (Xρ, gρ) has at least one isolated node, denoted byΛ, is
a decreasing property. The complement ofΛ, denoted by
Λc, viz. the property that the networkG (Xρ, gρ) has no
isolated node, is an increasing property. In fact the network
G1 (Xρ, gρ) whereb = B1 can be obtained from the network
G2 (Xρ, gρ) where b = B2 andB2 < B1 by removing each
connection inG1 (Xρ, gρ) independently with a probability

g

(

x
√

log ρ+B2
Cρ

)

/g

(

x
√

log ρ+B1
Cρ

)

with x being the distance

between two endpoints of the connection. The above obser-
vations, together with Corollary 1, lead to the conclusion that
if b → −∞ asρ → ∞,

lim
ρ→∞

Pr (Λ) = lim
ρ→∞

1− Pr (Λc) = 1

The above discussions are summarized in the following
theorem and corollary, which form the third major contribution
of this paper:

Theorem 5: In the networkG (Xρ, gρ), if b → ∞ as ρ →
∞, a.a.s. there is no isolated node in the network; ifb → −∞
asρ → ∞, a.a.s. the network has at least one isolated nodes.

Corollary 2: b → ∞ is a necessary condition for the
networkG (Xρ, gρ) to be a.a.s. connected asρ → ∞.

V. RELATED WORK

Extensive research has been done on connectivity problems
using the well-known random geometric graph and theunit
disk model, which is usually obtained by randomly and uni-
formly distributingn vertices in a given area and connecting
any two vertices iff their distance is smaller than or equal to
a given thresholdr(n) [10], [15]. Significant outcomes have
been achieved for both asymptotically infiniten [1], [2], [10],
[16]–[20] and finiten [3], [4], [21]. Specifically, it was shown
that under the unit disk model and inℜ2, the above network

with r (n) =
√

logn+c(n)
πn

is a.a.s. connected asn → ∞
iff c (n) → ∞ . In [17], Ravelomanana investigated the
critical transmission range for connectivity in 3-dimensional
wireless sensor networks and derived similar results as the2-
dimensional results in [1]. Note that most of the results for
finite n are empirical results.

In [5], [22]–[26] the necessary condition for the above
network to be asymptotically connected is investigated under
the more realisticlog-normal connection model. Under the log-
normal connection model, two nodes are directly connected if
the received power at one node from the other node, whose
attenuation follows the log-normal model, is greater than a
given threshold. These analysis however all relies on the
assumption that the event that a node is isolated and the event
that another node is isolated are independent. Realistically
however, one may expect the above two events to be correlated
whenever there is a non-zero probability that a third node may
exist which may have direct connections to both nodes. In
the unit disk model, this may happen when the transmission
range of the two nodes overlaps. In the log-normal model,
any node may have a non-zero probability of having direct
connections to both nodes. This observation and the lack of
rigorous analysis on the node isolation events to support the
independence assumption raised a question mark over the
validity of the results of [5], [22]–[26].

The results in this paper complement the above studies in
two ways. They provide the asymptotic distribution of the
number of isolated nodes in the network, which is valid not
only for the unit disk model and the log-normal connection
model but also for the more generic random connection model.
Second they donot depend on the independence assumption
concerning isolated nodes just mentioned. In fact, it is an
unjustifiable assumption. They do however rely on the inde-
pendence of connections of different node pairs, referred to in
the discussion of the random connection model in Section I.

Some work exists on the analysis of the asymptotic distri-
bution of the number of isolated nodes [6], [10], [14], [27]
under the assumption of a unit disk model. In [27], Yi et



al. considered a total ofn nodes distributed independently
and uniformly in a unit-area disk. Using some complicated
geometric analysis, they showed that if all nodes have a
maximum transmission ranger(n) =

√

(log n+ ξ) /πn for
some constantξ, the total number of isolated nodes is asymp-
totically Poissonly distributed with meane−ξ. In [6], [14],
Franceschetti et al. derived essentially the same result using
the Chen-Stein technique. A similar result can also be found
in [10] in a continuum percolation setting. There is a major
challenge in analyzing the distribution of the number of
isolated nodesunder the random connection model; under the
unit disk model, the dependence structure is “local”, i.e. the
event that a node is isolated and the event that another node is
isolated are dependent iff the distance between the two nodes
is smaller than twice the transmission range, whereas underthe
random connection model, the dependence structure becomes
“global”, i.e. the above two events are dependent even if the
two nodes are far away.

VI. CONCLUSIONS ANDFURTHER WORK

In this paper, we analyzed the asymptotic distribution of
the number of isolated nodes inG (Xρ, gρ) using the Chen-
Stein technique, the impact of the boundary effect on the
number of isolated nodes and on that basis the necessary
condition for G (Xρ, gρ) to be a.a.s. connected asρ → ∞.
Considering one instance of such a network and expanding the
distances between all pairs of nodes by a factor of1/rρ while
maintaining their connections, there results a random network
with nodes Poissonly distributed on a square of size1/r2ρ with
densityρr2ρ where a pair of nodes separated by an Euclidean
distancex are directly connected with probabilityg (x). Using
the scaling technique [6], it can be readily shown that our
result applies to this random network. By proper scaling or
slight modifications of the proof of Theorem 2, our result can
be extended to networks of other sizes.

It can be easily shown that asρ → ∞, the average node
degree inG (Xρ, gρ) converges tolog ρ+b. That is, the average
node degree under the random connection model increases
at the same rate as the average node degree required for a
connected network under the unit disk model asρ → ∞
[16]. Further if b → ∞ as ρ → ∞, a.a.s. there is no
isolated node in the network. This result coincides with the
result in [1] on the critical transmission range required for an
a.a.s. connected network. Another implication of our result
is that different channel models appear to play little role
in determining theasymptotic distribution of isolated nodes
(hence the connectivity) so long as they achieve the same
average node degree under the same node density.

This paper focuses on a necessary condition forG (Xρ, gρ)
to be a.a.s. connected. We expect that asρ → ∞, the
necessary condition also becomes sufficient, i.e. the network
becomes connected when the last isolated node disappears.
It is part of our future work to investigate the sufficient
condition for asymptotically connected networks under the
random connection model and validate the above conjecture.

This paper focuses on the asymptotic distribution of the
number of isolated nodes, i.e. the number of nodes with a

node degreek = 0. We conjecture that for a generick, the
asymptotic distribution of the number of nodes with degree
k may also converge to a Poisson distribution. Thus, it is
another direction of our future work to examine the asymptotic
distribution of the number of nodes with degreek, where
k > 0.

APPENDIX: PROOF OFTHEOREM 2

In this appendix, we give a proof of Theorem 2 using the
Chen-Stein bound in Theorem 1. The key idea involved using
Theorem 1 to prove Theorem 2 is constructing a neighborhood
of a node, i.e.Γs,i in Theorem 1, such that a) the size of the
neighborhood becomes vanishingly small compared withA as
ρ → ∞. This is required for theb1 andb2 terms to approach0
asρ → ∞; b) a.a.s. the neighborhood contains all nodes that
may have a direct connection with the node. This is required
for theb3 term to approach0 asρ → ∞. Such a neighborhood
is defined in the next paragraph.

First note that parameterW in Theorem 1 has the same
meaning ofWT

m defined in Section II. Therefore the parameter
λ in Theorem 1, which depends on bothρ and m, satisfies
limρ→∞ limm→∞ λ = e−b. Furtherpi , E

(

ITi
)

andE
(

ITi
)

has been given in (9). Unless otherwise specified, these pa-
rameters, e.g.xi, m, ITi , Γ andrρ, have the same meaning as
those defined in Section II. Denote byD (xi, r) a disk centered
at xi and with a radiusr. Further define the neighbourhood
of an indexi ∈ Γ as Γs,i ,

{

j : xj ∈ D
(

xi, 2r
1−ǫ
ρ

)}

\{i}
and define the non-neighbourhood of the indexi as Γw,i ,
{

j : xj /∈ D
(

xi, 2r
1−ǫ
ρ

)}

where ǫ is a constant andǫ ∈
(

0, 12
)

. It can be shown that

|Γs,i| = m24πr2−2ǫ
ρ + om

(

m24πr2−2ǫ
ρ

)

(21)

From (9),pi = E
(

ITi
)

and (13), it follows that

lim
m→∞

m2pi = ρe
−
´

A
ρg

(

‖x−xi‖T

rρ

)

dx
(22)

lim
ρ→∞

lim
m→∞

m2pi = e−b (23)

Next we shall evaluate theb1, b2 andb3 terms separately.

A. An Evaluation of the b1 Term

It can be shown that

lim
m→∞

∑

i∈Γ



p2i + piE





∑

j∈Γs,i

ITj









= lim
m→∞

m2piE





∑

j∈Γs,i∪{i}
ITj





= lim
m→∞

(

m2pi
)2

4πr2−2ǫ
ρ

= 4π

(

ρe
−
´

A
ρg

(

‖x−xi‖T

rρ

)

dx

)2
(

log ρ+ b

Cρ

)1−ǫ

(24)

where in the second step, (21) is used and in the final step
(9), (22) and the value ofrρ are used. It follows that

lim
ρ→∞

RHS of (24)= 4πe−2b lim
ρ→∞

(

log ρ+ b

Cρ

)1−ǫ

= 0



where (10) and (13) are used in the above equation, and RHS
is short for the right hand side. This leads to the conclusion
that limρ→∞ limm→∞ b1 = 0.

B. An Evaluation of the b2 Term

For theb2 term, we observe that

lim
m→∞

∑

i∈Γ

E



ITi
∑

j∈Γs,i

ITj





= lim
m→∞

ρ2

m2

∑

j∈Γs,i

{(

1− g

∥

∥

∥

∥

xi − xj

rρ

∥

∥

∥

∥

T
)

× exp

[

−
ˆ

A

ρ

(

g

(

∥

∥

∥

∥

x− xi

rρ

∥

∥

∥

∥

T
)

+ g

(

∥

∥

∥

∥

x− xj

rρ

∥

∥

∥

∥

T
)

−g

(

∥

∥

∥

∥

x− xi

rρ

∥

∥

∥

∥

T
)

g

(

∥

∥

∥

∥

x− xj

rρ

∥

∥

∥

∥

T
))

dx

]}

= ρ2
ˆ

D(xi,2r
1−ǫ
ρ )

{(

1− g

(

‖xi − y‖T
rρ

))

× exp

[

−
ˆ

A

ρ

(

g

(

∥

∥

∥

∥

x− xi

rρ

∥

∥

∥

∥

T
)

+ g

(

∥

∥

∥

∥

x− y

rρ

∥

∥

∥

∥

T
)

−g

(

∥

∥

∥

∥

x− xi

rρ

∥

∥

∥

∥

T
)

g

(

∥

∥

∥

∥

x− y

rρ

∥

∥

∥

∥

T
))

dx

]}

dy

= ρ2r2ρ

ˆ

D(0,2r−ǫ
ρ )

{(

1− g
(

‖y‖T
))

× exp

[

−ρr2ρ

ˆ

Aρ

(

g
(

‖x‖T
)

+ g
(

‖x− y‖T
)

−g
(

‖x‖T
)

g
(

‖x− y‖T
))

dx
]}

dy (25)

whereAρ =
[

− 1
2rρ

, 1
2rρ

)2

, in the first step, (4), (15) and
(16) are used and the final step involves some translation and
scaling operations. Letλ , log ρ+b

C
, it can be further shown

that asρ → ∞,

e2b lim
ρ→∞

RHS of (25)

≤ lim
ρ→∞

λ

ρ

ˆ

D(0,2r−ǫ
ρ )

eλ
´

ℜ2 g(‖x‖T )g(‖x−y‖T )dxdy

= lim
ρ→∞

log ρ

Cρ

ˆ

D(0,2r−ǫ
ρ )

eλ
´

ℜ2 h(x,y)dxdy

= lim
ρ→∞

1

Cρ

{

ˆ

D(0,2r−ǫ
ρ )

eλ
´

ℜ2 h(x,y)dxdy

+
log ρ (log ρ+ b− 1)

Cρ
4πǫr−2ǫ−2

ρ

× e
log ρ+b

C

´

ℜ2 g(‖x‖T )g
(

‖x−2r−ǫ
ρ u‖T

)

dx

+

ˆ

D(0,2r−ǫ
ρ )

[

e
log ρ+b

C

´

ℜ2 h(x,y)dx

× log ρ
´

ℜ2 h (x,y) dx

C

]

dy

}

(26)

whereu is a unit vector pointing to the+x direction and

h (x,y) = g
(

‖x‖T
)

g

(

∥

∥

∥x− u ‖y‖T
∥

∥

∥

T
)

, in the first step

(10), (13),rρ =
√

log ρ+b
Cρ

and 1 − g
(

‖y‖T
)

≤ 1 are used,
and in the last step, L’Hï¿œpital’s rule, whereCρ is used as
the denominator and the other terms are used as the numerator,
(3) and the following formulas are used:

d

dx

ˆ h(x)

0

f (x, y) dy

=

ˆ h(x)

0

∂f (x, y)

∂x
dy + f (x, h (x))

dh (x)

dx

d

dρ

(

r−2ǫ
ρ

)

= ǫr−2ǫ−2
ρ

log ρ+ b− 1

Cρ2

In the following we show that all three terms inside the
limρ→∞ sign and separated by+ sign in (26) approach0 as
ρ → ∞. First it can be shown that

ˆ

ℜ2

g (‖x‖) g
(∥

∥x− u2r−ǫ
ρ

∥

∥

)

dx

=

ˆ

D(0,r−ǫ
ρ )

g (‖x‖) g
(∥

∥x− u2r−ǫ
ρ

∥

∥

)

dx

+

ˆ

ℜ2\D(0,r−ǫ
ρ )

g (‖x‖) g
(∥

∥x− u2r−ǫ
ρ

∥

∥

)

dx

≤
ˆ

D(0,r−ǫ
ρ )

g (‖x‖) g
(

r−ǫ
ρ

)

dx

+

ˆ

ℜ2\D(0,r−ǫ
ρ )

g
(

r−ǫ
ρ

)

g
(∥

∥x− u2r−ǫ
ρ

∥

∥

)

dx

≤ 2Cg
(

r−ǫ
ρ

)

= oρ
(

r2ǫρ
)

(27)

where in the second step the observation that the distance
between any point inD

(

0, r−ǫ
ρ

)

and u2r−ǫ
ρ is larger than

or equal tor−ǫ
ρ , the observation that the distance between any

point in ℜ2\D
(

0, r−ǫ
ρ

)

and the origin is larger than or equal
to r−ǫ

ρ and the non-increasing property ofg are used, (14) is
used in the last step. This readily leads to the result that the
first term in (26) satisfies:

lim
ρ→∞

1

Cρ

ˆ

D(0,2r−ǫ
ρ )

e
log ρ+b

C

´

ℜ2 h(x,y)dxdy

= lim
ρ→∞

[

e
log ρ+b

C

´

ℜ2 g(‖x‖T )g
(

‖x−u2r−ǫ
ρ ‖T

)

dx

× 4πǫr−2ǫ−2
ρ

log ρ+ b− 1

C2ρ2

+

ˆ

D(0,2r−ǫ
ρ )

e
log ρ+b

C

´

ℜ2 h(x,y)dx

´

ℜ2 h (x,y) dx

C2ρ
dy

]

= lim
ρ→∞

[

4πǫr−2ǫ−2
ρ

log ρ+ b− 1

C2ρ2

+

ˆ

D(0,2r−ǫ
ρ )

e
log ρ+b

C

´

ℜ2 h(x,y)dx

´

ℜ2 h (x,y) dx

C2ρ
dy

]

= lim
ρ→∞

[

ˆ

D(0,2r−ǫ
ρ )

e
log ρ+b

C

´

ℜ2 h(x,y)dx

´

ℜ2 h (x,y) dx

C2ρ
dy

]

= 0



where L’Hï¿œpital’s rule, whereCρ is used as the denom-
inator and the other terms are used as the numerator, and
rρ =

√

log ρ+b
Cρ

are used in the first step of the above equation,
in the second step (27) is used, which readily leads to the
conclusion that

lim
ρ→∞

e
log ρ+b

C

´

ℜ2 g(‖x‖T )g
(

‖x−u2r−ǫ
ρ ‖T

)

dx
= 1 (28)

The final steps are complete by putting the value ofrρ into
the equation and noting that

´

ℜ2 h (x,y) dx < C for y 6= 0,
which is a consequence of the following derivations:

ˆ

ℜ2

g
(

‖x‖T
)

g

(

∥

∥

∥x− u ‖y‖T
∥

∥

∥

T
)

dx− C

=

ˆ

ℜ2

g
(

‖x‖T
)

(

g

(

∥

∥

∥x− u ‖y‖T
∥

∥

∥

T
)

− 1

)

dx ≤ 0

and the only possibility for
´

ℜ2 h (x,y) dx−C = 0 to occur
is wheng corresponds to a unit disk modeland y = 0.

For the second term in (26), it can be shown that

lim
ρ→∞

[

4πǫr−2ǫ−2
ρ

log ρ (log ρ+ b− 1)

C2ρ2

× e
log ρ+b

C

´

ℜ2 g(‖x‖T )g
(

‖x−2ur−ǫ
ρ ‖T

)

dx

]

= lim
ρ→∞

4πǫr−2ǫ−2
ρ

log ρ (log ρ+ b − 1)

C2ρ2
= 0

where in the first step (28) is used.
For the third term in (26), it is observed that

lim
ρ→∞

log ρ

C2ρ

ˆ

D(0,2r−ǫ
ρ )

[

e
log ρ+b

C

´

ℜ2 h(x,y)dx

×
ˆ

ℜ2

h (x,y) dx

]

dy

≤ lim
ρ→∞

log ρ

Cρ

ˆ

D(0,2r−ǫ
ρ )

e
log ρ+b

C

´

ℜ2 h(x,y)dxdy = 0

where
´

ℜ2 h (x,y) dx < C for y 6= 0 is used in the first step.
Eventually we getlimρ→∞ limm→∞ b2 = 0.

C. An Evaluation of the b3 Term

Denote byΓi a random set of indices containing all indices
j where j ∈ Γw,i and Ij = 1, i.e. the node in question is
also isolated, and denote byγi an instance ofΓi. Definen ,
|γi|. Following a similar procedure that leads to (18) and (19)

and using the result that
´

A
ρg
(

‖x−xi‖T

rρ

)

g
(

‖x−xj‖T

rρ

)

dx =

oρ (1) and g
(

‖xi−xj‖T

rρ

)

= oρ (1) for ‖xi − xj‖T ≥ 2r1−ε
ρ

(see (28)), it can be shown that

lim
ρ→∞

lim
m→∞

E
{

ITi
∣

∣

(

ITj , j ∈ Γw,i

)}

ρ
m2

= lim
ρ→∞

E

[

e
−
´

A
ρg

(

‖x−xi‖T

rρ

)

∏

j∈γi

(

1−g

(

‖x−xj‖T

rρ

))

dx

×
∏

j∈γi

(

1− g

(

‖xi − xj‖T
rρ

))



 (29)

Note thatxi andxj , j ∈ Γw,i is separated by a distance not
smaller than2r−ǫ

ρ . A lower bound on the value inside the
expectation operator in (29) is given by

BL,i ,
(

1− g
(

2r−ǫ
ρ

))n
e
−
´

A
ρg

(

‖x−xi‖T

rρ

)

dx
(30)

An upper bound on the value inside the expectation operator
in (29) is given by

BU,i , e
−
´

A
ρg

(

‖x−xi‖T

rρ

)

∏

j∈γi

(

1−g

(

‖x−xj‖T

rρ

))

dx
(31)

It can be shown that

BU,i ≥ lim
m→∞

mp2i
ρ

≥ BL,i (32)

Let us considerE |E {Ii |(Ij , j ∈ Γw,i)} − pi| now. From
(29), (30), (31) and (32), it is clear that

lim
ρ→∞

lim
m→∞

∑

i∈Γ

E
∣

∣E
{

ITi
∣

∣

(

ITj , j ∈ Γw,i

)}

− pi
∣

∣

∈
[

0, max

{

lim
ρ→∞

lim
m→∞

m2pi − ρE (BL,i) ,

lim
ρ→∞

lim
m→∞

ρE (BU,i)−m2pi

}]

(33)

In the following we will show that both terms
limm→∞ m2pi − ρE (BL,i) and limm→∞ ρE (BU,i) −m2pi
in (33) approach0 asρ → ∞. First it can be shown that

lim
m→∞

ρE (BL,i)

≥ lim
m→∞

ρE

(

(

1− ng
(

2r−ǫ
ρ

))

e
−
´

A
ρg

(

‖x−xi‖T

rρ

)

dx

)

= lim
m→∞

ρ
(

1− E (n) g
(

2r−ǫ
ρ

))

e
−
´

A
ρg

(

‖x−xi‖T

rρ

)

dx
(34)

where limm→∞ E (n) is the expected number of isolated
nodes inA\D

(

xi, 2r
1−ǫ
ρ

)

. In the first step of the above
equation, the inequality(1− x)

n ≥ 1 − nx for 0 ≤ x ≤ 1
andn ≥ 0 is used. Whenρ → ∞, r1−ǫ

ρ → 0 and r−ǫ
ρ → ∞

thereforelimρ→∞ limm→∞ E (n) = limρ→∞ E (W ) = e−b is
a bounded value andlimρ→∞ limm→∞ g

(

2r−ǫ
ρ

)

→ 0, which
is an immediate outcome of (14) . It then follows that

lim
ρ→∞

lim
m→∞

ρE (BL,i)

m2pi
≥ lim

ρ→∞
lim

m→∞

(

1− E (n) g
(

2r−ǫ
ρ

))

= 1

Together with (23) and(32), it follows that

lim
ρ→∞

lim
m→∞

m2pi − ρE (BL,i) = 0 (35)

Now let us consider the second termlimm→∞ ρE (BU,i) −
m2pi, it can be observed that

lim
m→∞

E (BU,i)

≤ E

[

e
−
´

D(xi,r
1−ǫ
ρ )

(

ρg

(

‖x−xi‖T

rρ

)

∏

j∈γi

(

1−g

(

‖x−xj‖T

rρ

)))

dx

]



≤ lim
m→∞

E

[

e
−
´

D(xi,r
1−ǫ
ρ )

(

ρg

(

‖x−xi‖T

rρ

)

∏

j∈γi

(

1−g

(

r1−ǫ
ρ
rρ

)))

dx

]

= lim
m→∞

E

(

e
−(1−g(r−ǫ

ρ ))n
´

D(xi,r
1−ǫ
ρ )

ρg

(

‖x−xi‖T

rρ

)

dx

)

≤ lim
m→∞

E

(

e
−(1−ng(r−ǫ

ρ ))
´

D(xi,r
1−ǫ
ρ ) ρg

(

‖x−xi‖T

rρ

)

dx

)

(36)

where in the second step, the non-increasing property ofg,
and the fact thatxj is located inA\D

(

xi, 2r
1−ǫ
ρ

)

andx is
located inD

(

xi, r
1−ǫ
ρ

)

, therefore‖x− xj‖T ≥ r1−ǫ
ρ is used.

It can be further demonstrated, using similar steps that result
in (10) and (13), that the term

´

D(xi,r
1−ǫ
ρ ) ρg

(

‖x−xi‖
rρ

)

dx in
(36) have the following property:

η (ε, ρ) ,

ˆ

D(xi,r
1−ǫ
ρ )

ρg

(

‖x− xi‖T
rρ

)

dx

= ρr2ρ

ˆ

D
(

xi
rρ

,r
−ǫ
ρ

)

g

(

∥

∥

∥

∥

x− xi

rρ

∥

∥

∥

∥

T
)

dx

≤ Cρr2ρ = log ρ+ b (37)

For the other termng
(

r−ǫ
ρ

)

in (36), choosing a positive
constantδ < 2ǫ and using Markov’s inequality, it can be
shown that

Pr
(

n ≥ r−δ
ρ

)

6 rδρE (n)

lim
ρ→∞

lim
m→∞

Pr
(

ng
(

r−ǫ
ρ

)

η (ε, ρ) ≥ r−δ
ρ g

(

r−ǫ
ρ

)

η (ε, ρ)
)

≤ lim
ρ→∞

lim
m→∞

rδρE (n)

where limρ→∞ r−δ
ρ g

(

r−ǫ
ρ

)

η (ε, ρ) = 0 due to (14), (37)
and δ < 2ǫ, limρ→∞ rBρ = 0 for any positive con-
stant B, and limρ→∞ limm→∞ rδρE (n) = 0 due to that
limρ→∞ limm→∞ E (n) = limρ→∞ E (W ) = e−b is a
bounded value and thatlimρ→∞ rδρ = 0. Therefore

lim
ρ→∞

lim
m→∞

Pr
(

ng
(

r−ǫ
ρ

)

η (ε, ρ) = 0
)

= 1 (38)

As a result of (36), (38), (37), (10) and (13):

lim
ρ→∞

lim
m→∞

ρE (BU,i)

≤ lim
ρ→∞

lim
m→∞

ρE

(

e
−
´

D(xi,r
1−ǫ
ρ )

ρg

(

‖x−xi‖T

rρ

)

dx

)

= lim
ρ→∞

ρe−Cρr2ρ = e−b

Using the above equation, (23) and(32), it can be shown that

lim
ρ→∞

lim
m→∞

ρE (BU,i)−m2pi = 0 (39)

As a result of (33), (35) and (39),limρ→∞ limm→∞ b3 = 0.
A combination of the analysis in subsections VI-A, VI-B

and VI-C completes this proof.
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