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ents are nearly exogenous, the two stage least squares t-statistic unpredictably
over-rejects or under-rejects the null hypothesis that the endogenous regressor is insignificant and
Anderson–Rubin test over-rejects the null. We prove that in the limit these tests are no longer nuisance
parameter free.
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1. Introduction

Instrumental variable methods are used to identify causal relation-
ships. Researchers pick relevant instruments that should be related to
the endogenous explanatory variable both on the basis of an a priori
argument and statistics.1

Instruments must also be exogenous; that is, they are not related
to the outcome variable after controlling for relevant explanatory
variables. Just whether or not the exclusion restriction is satisfied
is controversial for many other seemingly exogenous instruments.
For example, Angrist (1990) argues that draft lottery numbers are in-
struments for testing whether serving in Vietnam affects the earnings
of men in the civilian sector because these numbers influence earn-
ings purely through military service. However, Wooldridge (2002,
p.88) argues that because civilian employers are more likely to invest
in job training for employees who have high draft numbers, these
numbers could also influence earnings through job training, which is
unobservable.

We show that the standard t-test statistic is unreliable: evenwhen
the instrument is very close to being exogenous, the t-test grossly and
unpredictably over-rejects or under-rejects the null that the endo-
genous regressor is insignificant, and the Anderson–Rubin test over-
rejects the null. We prove these results in the limit and in small
samples. And, to our knowledge, these are new theoretical results.
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are denoted weak and are the
Stock, 1997; Stock et al, 2002).
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2. Inference using the standard test statistics

In this section we relax the assumption that instruments must be
exogenous and introduce a definition of “near exogeneity.” Suppose
we want to check for whether not an institution, say property rights
enforcement, influences long term growth in a sample of countries.2

If we suspect that institutions are endogenous and we also believe
that a linear specification is appropriate, we would estimate and
compute test statistics for the following simple linear simultaneous
equations model (Hausman, 1983; Phillips, 1983):

LRGr ¼ b0 þ b1INSTþ u ð1Þ

INST ¼ Π0 þ ZΠ1 þ V ð2Þ

Eq. (1) is the structural equation, where LRGr is an nx1 vector of
long run growth, INST is an nx1 vector of institutions, and u is an
nx1 vector of structural error terms that have zero mean and finite
variance σu

2b∞. Eq. (2) is the reduced form, Z is an nxk matrix of
instruments and V is an nx1 vector of reduced form errors that have
zeromeans and finite variance. σV

2 b∞. The error terms u and Vmay be
correlated and n represents the number of countries. The parameters
2 We just consider one kind of institution and, hence, one endogenous variable for
expositional simplicity. Our method also works for multiple endogenous variables. See
Acemoglu and Johnson (2006) for an analysis of how instrumental variables can be
used to identify how two endogenous institutions, property rights (measured by a
survey of risk of expropriation) and efficiency of contracts (measured by an index of
legal formalism), can affect long run growth.
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Table 1
Test statistics

Sample size=100, and 1000 simulations
Truth is that institutions do not matter

Test
statistic

Nominal 5%
critical values

Cov
Zi′ui

Actual
rejection rate

Actual rejection
rate (RHS)

Actual rejection
rate (LHS)

t-statistic ±1.95 0.06 9.8% 9.4% 0.4%
t-statistic ±1.95 −0.06 7.9% 0.6% 7.2%
AR test 3.85 ±0.06 9.4% n.a. n.a.
t-statistic ±1.95 0.10 19.4% 19.2% 0.2%
t-statistic ±1.95 −0.10 14.3% 0.3% 14.0%
AR test 3.85 ±0.10 17.7% n.a. n.a.
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β0, β1, Π0 and Π1, are unknowns, and, for notational conventional,
we denote β={β0, β1}, Π={Π0, Π1}. Other covariates, for example,
population, latitude and education, can be added to the system in
Eqs. (1) and (2) without loss of generality.3

In order to determine whether or not institutions matter, we
estimate the unknown parameter β1 and use test statistics to check
whether β1=0. To do this properly, we need valid instruments that are
both relevant and exogenous. As previously discussed, relevant
instruments are picked on the basis of a theoretical, institutional
and/or historical argument, and are validated ex post by estimating
the reduced form. The second criterion for validity is that instruments
are exogenous, which implies they are orthogonal to the error term in
the structural equation:

Exogenous Z Cov Z Viui ¼ 0: ð3Þ

It is generally difficult, as we have previously argued, to find instru-
ments that satisfy this strong condition. In particular, while these instru-
ments influence long run growth in the structural equation primarily
through institutions, theymayalsobeweaklycorrelatedwithunobserved
factors that can also influence long term growth.Wemodel this potential
small correlation as “nearly exogenous”which is a local to zero setup:

Nearly Exogenous Z Cov Z Viui ¼ C=
ffiffiffi
n

p ð4Þ
where C is an k ⁎ 1 vector of constants that is contained in compact set.

If we choose Cov Zi′ui=C to capture near exogeneity, then the test
statistics always diverge in the limit. Thus, this assumption does not
provide any guidance for finite sample behavior when there is some
mild correlation between the instrument and error.

Inwhat follows, small sample simulationmethods are used to show
that even a slight relaxation of the exogeneity assumption in Eq. (3)
makes the standard test statistics unreliable. Suppose we employ the
TSLS t-test to determine whether or not institutions matter. Denoting
the H0 and H1 as the null and the alternative and β 1,TSLS as the TSLS
estimator of β1, we use the t-statistic to test

H0 : b1 ¼ 0; against
H1 : b1p0; where the t�statistic is given by

t ¼b̂1;TSLS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a var b̂1;TSLS

q
:

ð5Þ

We generate i.i.d. data for the one instrument, the structural error
term and reduced form, (Z,u,V), from a joint normal distribution N(0,Λ)
and

K ¼
1 Cov Z iui 0

Cov Z iui 1 Cov Viui
0 Cov Viui 1

0
@

1
A ð6Þ

where Cov Zi′ui measures the correlation between the instrument Z and
the error term u, and Cov Vi′ui measures the endogeneity of institutions,
which is set to 0.25 in all simulations. When the i.i.d. data (Z,u,V) are
generated, we can derive the observations of INST and LRGr by using
Eqs. (1) and (2) and specified true values of β1 and Π1. Based on the
information of (LRGr, INST, Z), we compute the t-statistic and then test
whether the null of β1=0 can be rejected at the 5% level by using the
criticalvalue1.95.We replicate the simulationby1000 times toderive the
distribution of the t-statistic and calculate the actual rejectionprobability
which is reported in Table 1.

Table 1 reports rates of right hand side and left hand false rejection
when the instrument ismoreweakly correlatedwith the error term:Cov
Zi′ui=0.06 or −0.06 and illustrates that as the absolute value of the
correlation decreases, the size problems of the two-sided t-test are
mitigated.When the correlation is positive there is a 9.4% false rejection
3 By the Frisch–Waugh–Lovell Theorem, we can always project out these covariates
and obtain the system in Eqs.(1) and (2) (see Davidson and McKinnnon, 1993, p.19).
rate on the right hand side, a conservative 0.4% rate from the left hand
side and an overall 9.8% false rejection rate. When, the correlation is
negative, the rates of false rejection on the right handand left hand sides
are 0.6% and 7.2%, respectively, and the overall false rejection rate is 7.9%.

Suppose we test the null against the alternative using Anderson–
Rubin (Anderson and Rubin, 1949) test:4

AR b1 ¼ 0ð Þ ¼ LRGrVPzLRGr= LRGrVMzLRGrð Þ= n� 2ð Þ ð7Þ
Here, AR(β1=0) is the test statistic for the null, Pz=Z(Z′Z)−1Z is the
projection matrix and Mz=1−Pz.

Table 1 illustrates that the small sample problems associated with
the Anderson–Rubin test (for herein, denoted the AR test) are also
diminished when the instrument is less endogenous. When the cor-
relation decreases to 0.06, the AR test falsely rejects 9.4% of the time.
Since it is not possible to calculate the absolute value of the correlation
between the instruments and structural error, it is not possible to adjust
for this small sample distortion and the AR test is also unreliable.

3. Large sample distributions

This section adds to the bad news: we show that the shifts in test-
statistic distributions observed in the small sample simulations also
hold in limit. For the rest of the paper, we generalize the simultaneous
equation system Eqs. (1) and (2) to model a more general systemwith
m≥1 endogenous explanatory variables, and k≥m instruments:

y ¼ Ybþ u ð1⁎Þ

Y ¼ ZPþ V ð2⁎Þ
where y and Y are respectively nx1 vector and nxmmatrix of endoge-
nous explanatory variables, Z is an nxk matrix of instruments, u is an
nx1 vector of structural errors, V is an nxm matrix of reduced form
errors, and the errors have zero means and finite variance, and u and
V are correlated with each other. As noted before, other exogenous
covariates can be added to the system.

In the next theorem, we show that near exogeneity shifts the as-
ymptotic distribution of the t-statistic to a normal distribution with
non-zero mean.

Theorem 1. Suppose that the instrument is nearly exogenous according
to Eq. (4), and the standard Assumption 2 in the Appendix holds. Then,

tY
d
N r�1

u PVQzzPð Þ�1=2PVC;1
h i

ð8Þ

where σu is the square root of σu
2, andQzz is the second moment matrix of

instruments.
4 We can generalize this test statistic to allow for multiple endogenous explanatory
variables and at least as many instruments.
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Proof. See the Appendix. □
According to Theorem 1, the mean of the distribution depends

upon the parameter C, which, by Eq. (4), is related to the small
correlation between structural error and instruments. When C=0 and
the instruments are exogenous, the t-statistic converges to the
standard normal distribution. When CN0 (given ΠN0), the distribu-
tion shifts to the right. When Cb0 (givenΠN0), the distribution shifts
to the left. Since we cannot consistently estimate C let alone know its
sign, we cannot use this large sample theorem to improve inference.

The next theorem characterizes the impact of near exogeneity on
the distribution of the AR test, which is now more generally defined
from Eq. (7) for k instruments and m endogenous explanatory
variables:

AR b0ð Þ ¼ y� Yb0ð ÞVPz y� Yb0ð Þ= y� Yb0ð ÞVMz y� Yb0ð Þ= n� k�mð Þ ð7⁎Þ
We use this statistic to test H0: β=β0 against H1: β≠β0 where β0 is the true
value.

Theorem 2. Suppose that the instrument is nearly exogenous according
to Eq. (4), and the standard Assumption 2 in the Appendix holds. If the
null hypothesis is β=β0, then

AR b0ð ÞYd v2K 1ð Þ ð9Þ
where χK

2(ς) is a non-central chi-square distribution with k degrees of
freedomand the non-centrality parameter ς=C′Ω−1C/2 , whereΩ=σu

2Qzz.

Proof. See the Appendix. □
According to Theorem 2, the mean of the non-centrality parameter

is quadratic in parameter C. Therefore, when C=0 the AR test
converges to the centered chi-square distribution, and when C≠0
the distribution shifts to the right. Again, since we do not know C, we
cannot use these theorems to obtain appropriate critical values. The
convergence is uniform.

4. Conclusion

This article analyzes the limit theory when there are both weakly
identified as well as nearly exogenous instruments. We show that
Anderson–Rubin test is no longer asymptotically pivotal. In future
research we consider how to remedy this problem by using a delete-d
jackknife bootstrap procedure.

Appendix A

In the beginning of this Appendix, we first describe the near
exogeneity assumption and some moment conditions that are
required to obtain the theorems in the paper. Assumptions 1 and 2
are sufficient for Lemma 1, Theorem 1 and Theorem 2.

Assumption 1. Near exogeneity E Z Viui½ � ¼ C=
ffiffiffiffi
N

p
, where C is a fixed

K×1 vector.

Assumption 2. The following limits hold jointly when the sample size
N converges to infinity:

(a) uVu=N;V Vu=N;V VV=Nð ÞYp r2u;RVu;RVV
� �

, where σu
2, ΣVu and

ΣVV are respectivelya1×1 scalar, anm×1vector andanm×mmatrix.
(b) Z VZ=NY

p
QZZ where QZZ is a positive definite, finite K×Kmatrix.

(c)
Z Vu=

ffiffiffiffi
N

p
;Z VV=

ffiffiffiffi
N

p
ÞYd P

WZu;WZV

� �� , and
P
WZu
WZV

� �
uN C

0

� �
;R� Qzz

	 

where R ¼ r2u RVVu
RVu RVV

� �
.

These convergences in Assumption 2 are not primitive assump-

tions but hold under weak primitive conditions. Parts (a) and (b)
follow from the weak law of large numbers, and Part (c) follows
from triangular arrays central limit theorem. Instead of a mean zero
normal distribution in Staiger and Stock (1997), the Ψ̄Zu in (c) is a
normal distribution with non-zero mean, which is a drift term C
coming from the near exogeneity assumption. For any independent
sequence Zi′ui, if E[Zi′ui]2+ δbΔb∞ for some δN0 for all i=1, 2, 3,…,
N, then Liapunov's theorem leads to the limiting results in (c); see
James Davidson (1994).

Lemma 1. If Assumptions 1 and 2 hold for the model defined by Eqs. (1⁎)
and (2⁎), then the TSLS estimator βTSLS is consistent and

ffiffiffiffi
N

p
b̂TSLS � b0
� �

Y
d
N PVQZZPð Þ�1PVC; r2u PVQZZPð Þ�1
� �

where uVu=NY
p
E u2

i

� � ¼ r2u; Z VZ=NY
p
E Z ViZ ið Þ ¼ QZZ .

Proof of Lemma 1. We know that

b̂TSLS ¼ Y VPZYð Þ�1 Y VPZyð Þ:

So we have

ffiffiffiffi
N

p
b̂TSLS � b0
� �

¼ Y VZ
N

� �
Z VZ
N

� ��1 Z VY
N

� �" #�1
Y VZ
N

� �
Z VZ
N

� ��1 Z Vuffiffiffiffi
N

p
� �" #

:

By Assumption 2 and Eq. (2⁎), we can obtain that

Y VZ
N

� �
Z VZ
N

� ��1 Z VY
N

� �" #�1

Y
p

PVQZZPð Þ�1:

Now, we consider

Z Vuffiffiffiffi
N

p ¼ 1ffiffiffiffi
N

p
Xi¼1

N

Z Viui � E Z Viuið Þ½ � þ 1ffiffiffiffi
N

p
Xi¼1

N

E Z Viuið Þ:

Combining Assumptions (1) and (2), we obtain

Z Vuffiffiffiffi
N

p Y
d
N C;r2uQZZ

� �
:

Then the result in the lemma follows directly. Q.E.D.
Lemma 1 summarizes the limiting results of the TSLS estimator

under near exogeneity. The reason why we can obtain a consistent
estimator under near exogeneity is because the correlation between
instruments and structural errors shrinks toward zero asymptoti-
cally. When C=0, we can obtain the regular results of the TSLS
estimator under the orthogonality condition. Instead of a normal
distribution with a zero mean, near exogeneity can shift the
distribution away from mean zero. The non-zero mean depends
on an unknown local to zero parameter C which is impossible to be
estimated consistently (Donald W.K. Andrews, 2000).

Proof of Theorem 1. The result in the theorem directly follows from
Lemma 1. Q.E.D.

Proof of Theorem 2. The Anderson–Rubin test is given by

AR b0ð Þ ¼ y� Yb0ð ÞVPZ y� Yb0ð Þ= 1
N � K

y� Yb0ð ÞVMZ y� Yb0ð Þ:

We first observe that

y� Yb0ð ÞVPZ y� Yb0ð Þ ¼ uVPZu:

Define ξ=PZ
1/2u. Parts (b) and (c) in Assumption 2 implies:

nY
d
Q�1=2

ZZ
PWZufN Q�1=2

ZZ C;r2u
� �

:
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Next, note that

1
N � K

y� Yb0ð Þ VMZ y� Yb0ð Þ

¼ 1
N � K

uVMZu

¼ 1
N � K

uVu� 1
N � K

uVPZu

By part (a) in Assumption 2, the first term converges in probability
to σu

2, and the last term tends to zero. We have

1
N � K

y� Yb0ð ÞVMZ y� b0ð ÞYp r2u:

So

AR b0ð ÞYd v2K CVX�1C=2
� �

; where
X ¼ r2uQZZ Q.E.D.
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