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This paper provides a new methodology to test the superior predictive ability (SPA)

of technical trading rules relative to the benchmark without potential data snooping

bias. Unlike other previous methods, we explicitly approximate the covariance matrix

through certain decomposition, which decreases the number of elements needed to be

estimated. With the help of covariance matrix, we are able to exploit more information

contained in the diagonal and off-diagonal terms and as a result, so that we improve the

effectiveness of testing result. Due to the nuisance parameter in composite hypothesis,

we choose the generalized likelihood ratio (GLR) test which is of uniform most power,

to alleviate such problem and at the same time, to provide a pivotal distribution.

Bootstrap procedure is employed in our simulation to obtain the power of the test.

The result shows that the GLR test dominates the SPA test proposed by Hansen

(2005) in terms of power and our GLR test is sensitive to the inclusion of superior

models. Therefore, it increases the power faster than that of SPA test. The result also

suggests that the GLR test is less conservative than SPA test.

Keywords: Covariance matrix estimation; Data snooping; Generalized likelihood Ra-

tio test; Reality check; SPA test; Technical trading rules.



1 Introduction

Data snooping is practically unavoidable, especially in various applied fields such as finance

and economics, in which only a single history of interest is available for analysis, such as

stock price, interest rate, etc. A so-called “good” forecasting model with observed superior

performance obtained under several specification searches is highly possible to come from

pure luck instead of genuinely forecasting ability. White (2000) pointed out that “even when

no exploitable forecasting relation exists, looking long enough and hard enough at a given

set of data will often reveal one or more forecasting models that look good, but are in fact

useless.”

There is another example. Sullivan (1999) addressed a point that “Data snooping can

result from a subtle survivorship bias operating on the entire universe of technical trading

rules that have been considered historically. Suppose that, over time, investors have experi-

mented with technical trading rules drawn from a very wide universe-in principle thousands

of parameterizations of a variety of types of rules. As time progresses, the rules that happen

to perform well historically receive more attention and are considered serious contenders by

the investment community, and unsuccessful trading rules are more likely to be forgotten. If

enough trading rules are considered over time, some rules are bound by pure luck, even in

a very large sample, to produce superior performance even if they do not genuinely possess

predictive power over asset returns. Of course, inference based solely on the subset of sur-

viving trading rules may be misleading in this context because it does not account for the

full set of initial trading rules, most of which are likely to have under-performed.”

White (2000) looked at data snooping from the angle of data mining and pointed out that

data snooping is equivalent to data mining, which is to extract valuable relationships from

masses of messed data. The negative connotation, however, of data mining is from the ease

with which naive practitioners may mistake the spurious for the substantive, which is familiar

to econometricians and statisticians. Leamer (1978, 1983) was a leader in pointing out these

dangers, proposing methods for evaluating the fragility of the relationships obtained by data

mining.

Another concept in this field is the superior predictive ability (SPA). In general, SPA

means there is a particular forecasting procedure that is capable of outperforming other
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alternatives. When testing for SPA, the question of interest is whether any alternative fore-

cast is better than the benchmark forecast or, equivalently, whether the best alternative

forecasting model is better than the benchmark. This question can be addressed by testing

the null hypothesis that “the benchmark is not inferior to any alternative forecast.” Diebold

and Mariano (1995) and West (1996) proposed the tests for equal predictive ability (EPA),

which means the forecasting ability of a model is the same as the benchmark. The framework

of West (1996) can accommodate the situation where forecasts involve estimated parame-

ters. White (2000) was the pioneer to formulate the null hypothesis of superior predictive

ability and proposed the reality check (RC) test which takes into account the dependence

of individual statistics, whereas Sullivan, Timmermann, and White (1999) applied the RC

test to technical trading rules and found that they lose their predictive power for major U.S.

stock indices after the mid 1980’s. Later, Romano and Wolf (2005) introduced a RC-based

stepwise test, hence, step-RC test, that is capable of identifying as many significant models

as possible. Commenting on the framework of White (2000), Hansen (2003) suggested a

new testing procedure for composite hypotheses incorporating additional sample informa-

tion from nuisance parameter and similarity condition which is necessary for a test to be

unbiased. Later, Hansen (2005) provided a test for SPA (known as SPA test) that invokes

a sample-dependent null distribution to avoid the least favorable configuration. Recently,

Hsu, Hsu and Kuan (2010) extended the SPA test to a stepwise SPA test that can identify

predictive models in large-scale, multiple testing problems without data snooping bias. They

employed the SPA test to find that technical rules have significant predictive ability prior to

the inception of exchange traded funds (ETF) in U.S. growth markets.

Indeed, SPA is often more relevant for economic applications than EPA, because the

existence of a better forecasting model is typically of more importance than the existence

of a worse. For example, a fund manager is interested in whether the forecasting model in

use is inferior to other models. The distinction between EPA and SPA is substantive. The

former involves a simple null hypothesis while the latter leads to a composite hypothesis.

Hansen (2003, 2005) pointed out that the main complication in composite hypotheses testing

is that (asymptotic) distribution typically depends on nuisance parameters, such that the

null distribution is not unique. Currently, there are two methodologies to make inference for

superior predictive ability. They are RC test and SPA test respectively. The RC test handles

with the ambiguity of null distribution by using the least favorable configuration (LFC),

which is referred to as the point least favorable to the alternative. In turn, the LFC-based
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RC test is accompanied with three problems. First, the test is much conservative. Second,

the test is sensitive to the inclusion of poor models. The more poor models included, the less

the power of RC until it is driven to 0. Last, RC test is biased. In contrast, SPA test alleviates

above problems by studentizing the test statistic and by invoking a sample-dependent null

distribution. The latter is based on a novel procedure that incorporates additional sample

information to identify the relevant alternatives.

We conduct the superior predictive ability test under the null hypothesis proposed by

White (2000) and Hansen (2003, 2005). That is the benchmark performs no inferior to any

alternative models. Our paper makes contribution to the literature in four ways. First, no

matter the RC test or SPA test, both employ a bootstrap procedure to circumvent an explicit

estimation of a large covariance matrix. In our framework, a covariance matrix of error terms

in factor model is introduced. It is approximated by a particular decomposition method that

is partly similar to singular value decomposition (SVD), different from which background

noise or systematic noise is considered and is able to be separated under our method. The

approximation of covariance matrix is also applicable to the case when forecasting models

exceeds the sample size, even in a large-scale. However, this situation is deemed to be

infeasible by White (2000) and Hansen (2003, 2005).

Secondly, in SPA test, only the diagonal elements of the covariance matrix are used. In

this paper, nearly all components in the matrix are utilized to obtain the knowledge in

the matrix. It implies we take advantage of much more information including relationship

among different models to make the test more powerful. The matrix consists of two types

of information. The first one is real economic news which gives the performance of trading

rules and is mainly used to gauge whether the predictive model is superior or not. The

second one represents the background noise level, which will be separated from the real

economic factors. The covariance is incorporated into our analysis through the error term in

the representation of the so-called generalized likelihood ratio (GLR) test proposed in this

paper. Indeed, Hansen (2003, 2005) pointed out that his SPA test may be improved if there

is a reliable way to incorporate information about the off-diagonal elements .

Thirdly, as Hansen (2005) suggested that the testing problem of composite hypothesis is

closely related to the problem of testing hypotheses in the presence of nuisance parameter,

this paper utilizes generalized likelihood ratio test, which is of uniform most power and in-

dependent of nuisance parameter due to Wilks’ phenomenon. The GLR test statistic follows
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distribution with certain degree of freedom. Further, this test statistic is asymptotically

optimal in the sense that it achieves optimal rate of convergence. Under this test, the result

is bound to be more persuasive.

Lastly, this paper details the bootstrap implementation step-by-step. We conduct the

bootstrap in a way different from traditional bootstrap method since our bootstrap null

distribution is generated under different samples while traditional bootstrap only involves

only one sample. These samples follow the same data generating process (the same input

parameter and from the same distribution). As a combination of results from different sam-

ples, it will be more representative and of generality. The main argument for our bootstrap

procedure is to make the distribution more exact.

The rest of this paper is organized as follows. We review the existing tests in Section

2. In Section 3, a method for our test is described in detail and the detailed bootstrap

implementation is contained. Section 4 includes a simulation to study the effectiveness of

the proposed method and compares it with SPA. Section 5 gives a concluding remark.

2 Review of Existing Tests

2.1 Reality Check Test

In the framework of White (2000), the null hypothesis is set to express no predictive supe-

riority over a benchmark and it can be expressed as follows:

Hk
0 : E(dk,t) ≤ 0, (2.1)

where dk,t (k = 1, 2, · · · ,m and t = 1, 2, · · · , n) denote their performance measure relative to

a benchmark model over time. For each k, E(dk,t) = µk for all t, and for each t, dk,t may be

dependent across k. Data snooping arises when the inference for the null is drawn from the

test of an individual hypothesis Hk
0 . White (2000) circumvented the problem by invoking

the RC test

RCn = max
1≤k≤m

√
nd̄k, (2.2)

where d̄k is the k-th element of d̄ and d̄ =
∑n

t=1 dt/n. The least favorable configuration

(LFC) is that µ = 0 is chosen to obtain the null distribution. Under some mild assumptions
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(see, Hansen (2005) and Hsu, Hsu and Kuan (2010) for details), the data obey a central

limit theorem: √
n[d̄− µ] →d N(0,Ω), (2.3)

where Ω = limn→∞ Var[
√
n(d̄−E(dt))] = (ωij)m×m. The limiting distribution of RCn under

the null hypothesis is max1≤k≤m{N(0, ωkk)}, which can be approximated via a bootstrap

procedure. The null hypothesis is rejected when the bootstrap p-value is smaller than pre-

specified significance level. While the LFC is convenient to implement, the RC test also

bears a few drawbacks. As Hansen (2003, 2005) pointed out, because it is a LFC-based

test and the individual model statistics are non-standardized, the RC suffers two major

drabacks: The first is that it is sensitive to the inclusion of poor and irrelevant models in the

space of competing forecasting models. Since only binding constraints (µ = 0) matter for

the asymptotic distribution, the inclusion of poor model decreases the power of the test by

increasing RC’s p-value, which is based on max(
√
nd̄). The other one is that the power of

the RC is unnecessarily low in most situations. In other words, it is relatively conservative

whenever the number of binding constraints are small relative to the number of inequalities

being tested.

2.2 Superior Predictive Ability Test

Under the same null hypothesis as in RC test, Hansen (2005) proposed a studentized test

SPAn = max
[
max
1≤k≤m

√
nd̄k/σ̂k, 0

]
, (2.4)

where σ̂2
k is a consistent estimator of σ2

k = ωkk. The main argument for the normalization is

it will improve the power typically. However, it uses a data-dependent choice for µ instead

of µ = 0 implied by the LFC condition, which leads to a more powerful tests of composite

hypothesis. The intuition of this method comes from the logarithm. Therefore, A proper

test should reduce the influence of the poor models while preserving the influence of the

models with µk = 0. It may be tamping to simply exclude the alternative with d̄k < 0

from the analysis. But this approach does not lead to valid inference in general, because the

models that are (or appear to be) a little worse than the benchmark can have a substantial

influence on the distribution of the test statistic in finite samples. Therefore, based on the

above discussions, we can construct our test in a way that incorporates all models, while

reducing the influence of alternatives that the data suggests are poor.
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While LFC-based RC test takes a supremum over the null hypothesis, the SPA test takes

the supremum over a smaller confidence set chosen such that it contains the true parameter

with a probability that converges to 1. In the SPA test, the estimator of E(dk) = µk is

suggested as

µ̂k = d̄k · 1{
√
nd̄k/σ̂k ≤ −

√
2 log log n}, k = 1, 2, · · · ,m, (2.5)

where 1{·} denotes the indicator function. It can be seen that µ̂k = 0 almost surely when

µk = 0. Moreover, if µk < 0,
√
nd̄k/σ̂k is smaller than the threshold rate −

√
2 log log n for

sufficient large n, such that µ̂k ≪ 0 almost surely, where x ≪ y means that x is much smaller

than y. Notice that the choice of the threshold value to be −
√
2 log log n is based on the

strong law of large number. This estimator is used to well separate the poor trading models

with µk < 0 and models with mean zero and a little worse than zero since a poor model,

µk < 0, has an impact on the critical value whenever
√
nd̄k/ω̂k is only moderate negative, say

between −1 and 0, and can not be simply omitted from analysis, especially in finite sample.

In view of this, the LFC-based RC test is improved because there is sufficient information

to determine exactly which inequalities are non-binding but still can be used to derive the

null distribution.

3 Methodology to Test Superior Predictive Ability

3.1 Hypothesis of Interest

This question of interest can be addressed by testing the null hypothesis that the benchmark

is not inferior to any alternative forecast. This objective can be interpreted as follows:

I. Performance of the kth trading strategy is measured by loss function relative to

that of benchmark, instead of its absolute value, given by

dk,t = L(ξt, δ0,t−h)− L(ξt, δk,t−h), k = 1, 2, · · · ,m, (3.1)

where L(·, ·) is a loss function. The loss function is a function of two variables, i.e.

L(ξt, δk,t−h), k = 1, 2, · · · ,m, where ξt is a random variable that represents the

aspects of the decision problem that are unknown at the time that the decision

is made, and δk,t−h represents a possible decision rule which is made h periods
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in advance. If k = 0, δ0,t−h is the decision made according to the benchmark

trading strategy. Hansen (2005) gave an example, in which δk,t−1 is assigned the

value of −1 when a trader takes a short position, and the value of 1 if he/she

takes a long position in an asset at time t− 1. ξt is the return of asset in period

t, i.e., ξt = rt. The kth trading rule yields the profit πk,t = δk,t−hrt. The loss

function can be formulated as L(ξt, δk,t−h) = −δk,t−1ξt . We evaluate forecasts in

terms of their expected loss, such as

E(dk) = E[L(ξt, δ0,t−h)]− E[L(ξt, δk,t−h)], k = 1, 2, · · · ,m.

Therefore, we focus on dk exclusively rather than the loss function itself.

II. The benchmark is the target to compare with. It is reflected in dk as the per-

formance of kth trading rule is net of that of a benchmark. For a fund manager

who wants to know whether the performance of his portfolio beats the market,

the benchmark can be the market rate of return. For a trader in above example,

if δ0,t is set to equal to 1 over time, then it is a buy and hold strategy. This

benchmark is used by Sullivan et al. (1999, 2001).

III. The null hypothesis is postulated as follows: H0 : µ ≤ 0, where E(dk,t) = µk,

dt = (d1t, d2t, · · · , dmt)
′ and µ = (µ1, µ2, · · · , µm)

′ .

IV. Taking advantage of Hansen’s estimator of from null hypothesis, we have

µ̂k = d̄k · 1{
√
nd̄k/σ̂k ≤ −

√
2 log log n}, k = 1, 2, · · · ,m

where σ̂k = ω̂kk are the diagonal elements of covariance matrix Ω, which will be

defined later.

3.2 Estimation Procedure

Indeed, the aforementioned work is in the spirit of the idea in Hansen (2005). Our first

innovation is the introduction of factor model to give a clear expression to the approximation

of covariance matrix.

dt = µ+ et = µ+ Ω1/2εt t = 1, 2, · · · , n, (3.2)
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where Ω = [ωij ]m×m is a definite positive covariance matrix and

εt ∼ iid N(0, Im),

where Im is the m×m identity matrix. After the decomposition, dt is able to be expressed

by two parts. The first part is the mean value of the trading rule during certain period, and

the second one, the error term, is the systematic noise, which can not be explained by the

mean. Another merit in the expression of dt is from the convenience to explicitly analyze

the covariance matrix after separation, which contains important information. With the

covariance matrix, GLR test can be employed to explore dt and obtain the null distribution

independent of nuisance parameter.

In many applications, there are a ton of trading rules to be investigated so that m might

be huge. For example, Sullivan et al. (1999) evaluated 7, 846 technical trading rules, and

Hsu, Hsu, Kuan (2010) employed a total of 16, 380 rules. This means a sensible estimate

of all elements of Ω is nearly infeasible, especially when competing trading strategies m

exceeds the sample size n. Instead, we approximate the estimation of Ω using its most useful

or important information, which is also in spirit of principle component analysis (PCA).

The method to estimate covariance matrix is similar to singular value decomposition (SVD)

which is a common technique for analysis of multivariate data without a systematic noise

term. Since only the most important information of Ω is needed to be reported through

estimation, the amount of elements in covariance matrix can decrease sharply.

We suppose the covariance matrix admits the following decomposition

Ω = QDQT , (3.3)

where Q = (q1, · · · , qm) is am×m orthogonal matrix with {qi}i=1,··· ,m forming an orthogonal

basis, so that qTi qj = 1 for i = j, and qTi qj = 0 otherwise, and matrix D consists of two

components Sm×m and Nm×m. We separate D into two parts in order to decrease the

amount of values needed to be estimated, to simplify the estimation of covariance matrix.

On the other hand, the two parts admit economic explanation, which an accommodate more

applications in the real world. Here, Sm×m, determined by real economical factors, gathers

the most important information specific to each trading rules. The elements of S are only

nonzero on the diagonal. Thus, S = diag(s1, · · · , sm). Furthermore, sk > 0 for 1 ≤ k ≤ d
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and sk = 0 for (d + 1) ≤ k ≤ m. By convention, the ordering of sk is determined by high-

to-low sorting of its values, with the highest value in the upper left index of the S matrix.

The other part, Nm×m, is known as background noise or systematic noise. It represents

the variance that is shared by all the components in Ω. It is also a diagonal matrix and

additionally, all elements along diagonal have the same value denoted by δ2, representing the

background noise level. Specifically,

Dm×m = Sm×m +Nm×m = diag{λ1, · · · , λd, 0, · · · , 0},

where λj = sj + δ2 and λ1 ≥ λ2 ≥ · · · ≥ λq are decided by real economic factors.

In general, under the null and alternatives, µk can be estimated by d̄k which is in the form

of

d̄k = n−1

n∑

t=1

dk,t t = 1, 2, · · · , n.

Hence, the residual from (3.2) is estimated by

êt = Ω̂1/2ε̂t = dt − d̄t t = 1, 2, · · · , n

Using {êt}m×1, the sample covariance matrix is estimated by

Ω̂ =




ω̂11 ω̂12 · · · ω̂1m

...
...

. . .
...

ω̂m1 ω̂m2 · · · ω̂mm


 =

1

n− 1
Σn

t=1êtê
′
t, (3.4)

where ω̂ij denotes the sample version of covariance between ei and ej . The background noise

factor δ2 is defined as the total variance of all elements in the matrix d = {dkt}m×n relative to

their corresponding sample mean. The column vector of d is the performance of all trading

rules at time t when the kth row vector of d is the performance measure of kth trading

strategies over time. Mathematically, δ2 = Var(dij − µi) i = 1, · · · ,m and j = 1, · · · , n.
From covariance matrix Ω̂, we get its associated eigenvectors {vi}i=1,··· ,m and eigenvalues

{λ∗
i }i=1,··· ,m, where λ∗

1 ≥ λ∗
2 ≥ · · · ≥ λ∗

m. {vi}i=1,··· ,m satisfies the sufficient conditions of a

orthogonal matrix and is the column vector of Q̂ = (v1, v2, · · · , vm). Eigenvalues {λ∗
i }i=1,··· ,m

are used to determine matrix D̂ according to the following rule:

λ̂j =

{
λ∗
j − δ̂2, if λ∗

j ≥ δ̂2;

0, if λ∗
j < δ̂2

= (λ∗
j − δ̂2) 1{λ∗

j ≥ δ̂2}, j = 1, 2, · · · ,m.
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Then, the estimated covariance matrix Ω̂ is approximated by Ω̂∗ = Q̂D̂Q̂T , where

D̂ = diag{λ̂1,
. . . , λ̂d, 0,

. . . , 0}+ δ̂2 Im.

3.3 Generalized Likelihood Ratio Test

The reason of using the generalized likelihood ratio test proposed by Cai, Fan and Yao (2000)

is due to its great properties such as easy implementation and uniform most powerful test as

well as the so-called Wilks phenomenon; see Fan, Zhang and Zhang (2001) and Fan, Jiang

(2007) for details on these aspects. Note that the GLR test is also called the generalized

F-test in Cai and Tiwari (2000). The existence of Wilks phenomenon in GLR test makes

finite sample simulation feasible in determining the null distributions of the test statistics.

Define the residual sum of squares under the null and alternative as follows:

RSS0 =
m∑

k=1

n∑

k=1

[
Ω̂∗− 1

2 (dkt − µ̂k)
]2

=
m∑

k=1

n∑

k=1

[
Ω̂∗− 1

2 êkt

]2
=

m∑

k=1

n∑

k=1

ε̂2kt,

where µ̂k = d̄k {
√
nd̄k/σ̂k ≤ −

√
2 log log n}, k = 1, 2, · · · ,m, and

RSS1 =
m∑

k=1

n∑

k=1

[
Ω̂∗− 1

2 (dkt − d̄k)
]2

=
m∑

k=1

n∑

k=1

[
Ω̂∗− 1

2 êkt

]2
=

m∑

k=1

n∑

k=1

ε̂2kt,

respectively. Then the GLR test statistic is given by

Tn =
mn

2
(RSS0 − RSS1)/RSS1. (3.5)

We reject the null hypothesis for large Tn which might follow asymptotically a chi-square

distribution with a large degree of freedom; see Cai, Fan and Yao (2000), Cai and Tiwari

(2000), Fan, Zhang and Zhang (2001) and Fan, Jiang (2007) for details. It might not easy

to derive the exact asymptotic distribution of Tn, which can be easily approximated by a

Bootstrap approach, described in the next section.

3.4 Bootstrap Implementation

We now discuss step-by-step implementation of bootstrap procedure demonstrating its con-

venience. There are m trading rules operating on time from t = 0 to n. We suppose that the
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m×n prediction observations are given. We also assume that a method for generating a col-

lection of m model specifications has been specified. Next, we specify the times of bootstrap

B for a single simulation, the number of simulations to the bootstrap is BS and the times of

replications is BN to get the power of the GLR test. Then, we use the estimation model to

get the estimates for vector {µ̂k0}mk=1 under the null hypothesis and covariance matrix Ω̂∗− 1

2

given the data. Generate the residuals from null by the equation

ε̂kt0 = Ω̂∗− 1

2 (dkt − µ̂k0) t = 1, 2, · · · , n. (3.6)

At this moment, from the observed sample points, we obtain the original GLR test statistic

Tn based on {dt, ε̂t, ε̂t0} Further, we draw bootstrap residuals with size n from the empirical

distribution of {ε̂t0}nt=1 selected under the same chance 1/n with replacement. Denote the

new samples as

the bth sample ≡ {ε̂∗(b)t0 }nt=1 b = 1, 2, · · · , B
and define the centered bootstrap residuals

ε̃
∗(b)
t0 = ε̂

∗(b)
t0 − ε̄

∗(b)
0 b = 1, 2, · · · , B,

where ε̄
∗(b)
0 =

∑n
t=1 ε̂

∗(b)
t0 /n. Now, a new data set d̂

∗(b)
t from the bth bootstrap is generated

based on the sample {µ̂0, ε̃
∗(b)
t0 }nt=1

d̂
∗(b)
t = µ̂0 + Ω̂∗− 1

2 ε̃
∗(b)
t0 t = 1, 2, · · · , n.

In the use of the new sample, the GLR test statistic {T ∗(b)}Bb=1 is calculated

T ∗(b)
n =

mn

2
(RSS

∗(b)
0 − RSS

∗(b)
1 )/RSS

∗(b)
1 .

Repeat the bootstrap procedure for BS times and stack all the values of GLR test into vector

T ∗
n = (T

∗(1)
n , · · · , T ∗(B)×BS

n )′ in an ascending order to form the distribution of T ∗
n . The null

hypothesis H0 is rejected when Tn from original sample is greater than the upper-α point of

the conditional distribution of T ∗
n , denoted by T ∗

α, where α denotes the significance level.

Repeat to generate BN original samples under the same model specification as for the

GLR test statistic Tn above. As to each original sample, there is a new value of the test

statistic {Ti,n}i=1,··· ,BN
. Taking advantage of {Ti,n}i=1,··· ,BN

, we define the power of our test

as

power =
frequency of rejections

BN

=

BN∑
i=1

1{Ti,n > T ∗
α}

BN

.
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The rejection decision is made by comparing {Ti,n}i=1,··· ,BN
with upper-α point of the dis-

tribution of T ∗
n obtained through above procedure.

4 Mont Carlo Simulation Studies

4.1 Data Generating Process

In this section, we evaluate the finite sample performance of the proposed method using

Monte Carlo simulations. To this effect, we consider the same data generating process as

Hansen (2005) due to its genuine property and ease to compare our result with that of SPA

test. Loss function Lk,t is generated under the following assumption

Lk,t ∼ iid N(λk/
√
n, σ2

k) k = 1, · · · ,m and t = 1, · · · , n, (4.1)

and the benchmark model has λk = 0 for all k. Recall the definition of loss function and

we know that Lk,t > 0 corresponds to model that is worse than benchmark when Lk,t < 0

means it is better than the benchmark model.

The experiment is designed to control the value of λk which is equivalent to choosing

the poor model and superior model. According to Hansen (2005), we have λ1 ≤ 0 and

λ1 ≥ 0 for k = 1, · · · ,m , such that the first alternative (k=1) defines whether the rejection

probability corresponds to a type I error (λ1 = 0 ) or a power ( λ1 < 0). The performances

of the “poor” models are such that their mean values are spread evenly between 0 and

λm = Λ0 (the worst model). Therefore, the vectors of the λk’s are λ0 = 0, λ1 = Λ0,

λk = (k − 1)Λ0/(m − 1) for 2 ≤ k ≤ m. We use Λ0 = 0, 1, 2, 5, and 10 to control

the extent to which the inequalities are binding with (Λ0 = 0 corresponding to the case

where all inequalities are binding). The alternative model has Λ1 = 0, −0.1, −0.2, −0.3,

−0.4, and −0.5 sequentially. Therefore, λ1 = Λ1 defines the local alternative that is being

analyzed. Λ1 = 0 then, conforms to null hypothesis, whereas Λ1 < 0 violates the null.

The variance reflects the “quality” of the model. The better the model, the smaller the

variance is. Specifically, by setting σ2
k = exp(arctan(λk))/2, the specification of variance is

Var(dk,t) = Var(L0,t − Lk,t) = 1/2 + Var(Lk,t).
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4.2 Simulation result

We consider two experiments. First, we set m = 100 and n = 200, then increase the sample

size n to 1000. In the second experiment, we have B × BS = 6000 values to generate the

bootstrap distribution of GLR estimator. The rejection frequencies we report are based on

BN = 1000 simulations. The results are reported under 5% and 10% level in Tables 1 and 2.

Furthermore, SPA test results under the same significance level and size are also exhibited.

When Λ1 = 0 in every panel in Tables 1 and 2, all the alternatives conform to null hypothesis.

Consequently, the rejection frequencies correspond to type I error. In other cases, as Λ1 < 0,

the rejection frequencies are the power of the test. In contrast to SPA test which uses a

relative coarse measurement, say Λ1 = 0, −1, −2, −3, −4, and −5, we change it into Λ1 = 0,

−0.1, −0.2, −0.3, −0.4, and −0.5. It is easy to find that our method approaches 100%

power at a faster speed. No matter whatever the sizes and model specifications, our method

dominates SPA test in terms of power.

In Table 1, Λ0 = Λ1 = 0 refers to the situation that all the 100 inequalities are binding.

It is the case in White’s LFC-based RC test where all the poor models are discarded. The

rejection probability is close to and less than the nominal levels. For exampel, when we set

α=5%, the rejection probability is 3%, and if we change α to 10%, the probability to reject

is 8.8%. It appears to be a small sample problem because this problem is alleviated when

the sample size increases to 1000. The power increases when the model performs better and

better in its mean relative to benchmark. In Table 2, we choose Λ0 = Λ1 = 0, α=5%, the

probability of rejection is 4.9% and it increases to 9% if the α is set to be 10%. Furthermore,

with large sample size, the speed to increase is higher. One can observe from Table 2 that,

within large sample, our method gains power faster than that under small sample. In the

case of (Λ0,Λ1) = (0,−0.2), the power goes to almost 100% while in Table 1 the first time

to reach full power happens at the point (Λ0,Λ1) = (0,−0.5) in the panel of Λ0 = 0. This

may be due to the positive correlation across alternatives, Cov(di,t, dj,t) > 0.

Comparing with SPA test which nearly can not reject the null hypothesis when Λ1 = 1

except the case of Λ0 = 0, our test reaches 100% power even when Λ1 = −0.5. Similarly,

we find that no matter how poor model we choose (the level of Λ0), our method always

dominates SPA test. Another important improvement is that our test is less conservative

than SPA. In SPA, the type I error shrinks fast with the increase of Λ0, such that it is only
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0.007 when (Λ0,Λ1) = (10, 0) far away from nominal level 5%. Under our test with the

values of Λ0 and Λ1, it is around 5% with less extreme low values.

5 Concluding Remarks

This paper proposes a new method to analyze superior predictive ability of multiple models

over a benchmark. We explicitly approximate the covariance matrix by invoking certain

decomposition, which is simplified via decreasing the number of estimated elements. Such

approximating covariance matrix is even applicable to the case that competing models ex-

ceeds the sample size, which is considered to be infeasible to estimate by Hansen (2003,

2005). With more information from the diagonal and off-diagonal terms, the power increases

dramatically comparing with SPA test which only takes into account the diagonal elements.

That is because the dependence of each models contains knowledge useful to forecast. This

is illustrated when we use a large sample size, say n = 1000, where the type I error generated

by controlling the value of input parameters, approaches the nominal level.

Due to the uniform most power property of generalized likelihood ratio test, we use it

instead of t-test to control the nuisance parameter problem in composite hypothesis and

the convergence rate. It follows a pivotal distribution – distribution with certain degree of

freedom and it is convenient to use.

Our Monte Carlo simulations show that the GLR test dominates the SPA test proposed by

Hansen (2005) in terms of power and our GLR test is sensitive to the inclusion of superior

models. Therefore, it increases the power faster than that of SPA test. The result also

suggests that the GLR test is less conservative than SPA test.

References

Cai, Z., J. Fan and Q. Yao (2000). “Functional-coefficient regression models for nonlinear
time series”. Journal of American Statistical Association 95, 941-956.

Cai, Z. and R. Tiwari (2000). “Application of a local linear autoregressive model to BOD
time series. Environmetrics, 11, 341-350.

Diebold, F.X., and Mariano, R.S. (1995). “Comparing predictive accuracy”. Journal of
Business & Economic Statistics, 13, 353-367.

14



Fan, J. and J. Jiang (2005). “Nonparametric inference with generalized likelihood ratio
tests”. Test, 16, 471-478.

Fan, J., C. Zhang and J. Zhang (2000). “Generalized likelihood ratio statistics and Wilks
phenomenon”. The Annals of Statistics, 29, 153-193.

Hansen, P.R. (2003). “Asymptotic tests of composite hypotheses”.
http://www.stanford.edu/people/peter.hansen.

Hansen, P.R. (2005). “A test for superior predictive ability”. Journal of Business &
Economic Statistics, 23, 365-380.

Hsu, P.H., Y.C. Hsu and C.M. Kuan (2010). “Testing the predictive ability of technical
analysis using a new stepwise test without data snooping bias”. Journal of Empirical
Finance, 17, 471-484.

Leamer, E. (1978). Specification searches: Ad hoc inference with nonexperimental data.
New York: Wiley.

Leamer, E. (1983). “Let’s take the con out econometrics”. American Economic Review,
73, 31-43.

Politis, D.N. and J.P. Romano (1994). “The stationary bootstrap”. Journal of the Ameri-
can Statistical Association, 89, 1303-1313.

Romano, J.P. and M. Wolf (2005). Stepwise multiple testing as formalized data snooping.
Econometrica, 73, 1237-1282.

Sullivan, R., A. Timmermann, and H. White (1999). “Data-snooping, technical trading
rule performance, and the bootstrap”. Journal of Finance, 54, 1647

White, H. (2000). “A reality check for data snooping”. Econometrica, 68, 2079-1126.

West, K.D. (1996). “Asymptotic inference about predictive ability”. Econometrica, 64,
1067-1084.

15



Table 1: Rejection Frequencies under the Null and Alternative (m=100 and n=200)

Level: α=0.05 Level: α=0.10

Λ1 GLR Λ1 SPAC Λ1 GLR Λ1 SPAC

Panel A: Λ0=0

0 0.03 0 0.06 0 0.088 0 0.11

-0.1 0.048 -1 0.074 -0.1 0.099 -1 0.129

-0.2 0.172 -2 0.28 -0.2 0.331 -2 0.389

-0.3 0.609 -3 0.764 -0.3 0.761 -3 0.845

-0.4 0.96 -4 0.979 -0.4 0.988 -4 0.99

-0.5 1 -5 1 -0.5 1 -5 1

Panel B: Λ0=1

0 0.052 0 0.022 0 0.153 0 0.044

-0.1 0.123 -1 0.041 -0.1 0.288 -1 0.072

-0.2 0.409 -2 0.252 -0.2 0.613 -2 0.345

-0.3 0.789 -3 0.744 -0.3 0.92 -3 0.829

-0.4 0.977 -4 0.977 -0.4 0.993 -4 0.989

-0.5 0.999 -5 1 -0.5 1 -5 1

Panel C: Λ0=2

0 0.048 0 0.012 0 0.151 0 0.026

-0.1 0.118 -1 0.032 -0.1 0.261 -1 0.058

-0.2 0.421 -2 0.244 -0.2 0.69 -2 0.336

-0.3 0.849 -3 0.745 -0.3 0.933 -3 0.827

-0.4 0.994 -4 0.978 -0.4 1 -4 0.989

-0.5 1 -5 1 -0.5 1 -5 1

Panel D: Λ0=5

0 0.054 0 0.007 0 0.107 0 0.013

-0.1 0.16 -1 0.031 -0.1 0.236 -1 0.054

-0.2 0.516 -2 0.273 -0.2 0.617 -2 0.37

-0.3 0.907 -3 0.787 -0.3 0.944 -3 0.86

-0.4 0.999 -4 0.986 -0.4 0.999 -4 0.995

-0.5 1 -5 1 -0.5 1 -5 1

Panel E: Λ0=10

0 0.02 0 0.007 0 0.081 0 0.015

-0.1 0.112 -1 0.043 -0.1 0.22 -1 0.073

-0.2 0.499 -2 0.34 -0.2 0.64 -2 0.455

-0.3 0.913 -3 0.843 -0.3 0.956 -3 0.907

-0.4 1 -4 0.992 -0.4 1 -4 0.998

-0.5 1 -5 1 -0.5 1 -5 1
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Table 2: Rejection Frequencies under the Null and Alternative (m=100 and n=1,000)

Level: α=0.05 Level: α=0.10

Λ1 GLR Λ1 SPAC Λ1 GLR Λ1 SPAC

Panel A: Λ0=0

0 0.049 0 0.048 0 0.09 0 0.1

-0.1 0.326 -1 0.064 -0.1 0.495 -1 0.122

-0.2 0.998 -2 0.282 -0.2 0.999 -2 0.39

-0.3 1 -3 0.762 -0.3 1 -3 0.84

-0.4 1 -4 0.98 -0.4 1 -4 0.99

-0.5 1 -5 1 -0.5 1 -5 1

Panel B: Λ0=1

0 0.07 0 0.017 0 0.226 0 0.039

-0.1 0.67 -1 0.036 -0.1 0.822 -1 0.069

-0.2 1 -2 0.252 -0.2 1 -2 0.342

-0.3 1 -3 0.74 -0.3 1 -3 0.814

-0.4 1 -4 0.978 -0.4 1 -4 0.985

-0.5 1 -5 1 -0.5 1 -5 1

Panel C: Λ0=2

0 0.067 0 0.009 0 0.146 0 0.021

-0.1 0.689 -1 0.029 -0.1 0.802 -1 0.054

-0.2 1 -2 0.242 -0.2 1 -2 0.322

-0.3 1 -3 0.737 -0.3 1 -3 0.798

-0.4 1 -4 0.979 -0.4 1 -4 0.983

-0.5 1 -5 1 -0.5 1 -5 1

Panel D: Λ0=5

0 0.045 0 0.005 0 0.085 0 0.008

-0.1 0.666 -1 0.028 -0.1 0.828 -1 0.042

-0.2 1 -2 0.267 -0.2 1 -2 0.306

-0.3 1 -3 0.777 -0.3 1 -3 0.784

-0.4 1 -4 0.987 -0.4 1 -4 0.981

-0.5 1 -5 1 -0.5 1 -5 1

Panel E: Λ0=10

0 0.017 0 0.005 0 0.098 0 0.005

-0.1 0.646 -1 0.042 -0.1 0.74 -1 0.039

-0.2 1 -2 0.335 -0.2 1 -2 0.299

-0.3 1 -3 0.835 -0.3 1 -3 0.778

-0.4 1 -4 0.994 -0.4 1 -4 0.98

-0.5 1 -5 1 -0.5 1 -5 1
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