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A Uni�ed Approach to Validating Univariate and Multivariate Conditional Distribution Models
in Time Series
Abstract:

Modeling conditional distributions in time series has attracted increasing attention in economics and

�nance. We develop a new class of generalized Cramer-von Mises (GCM) speci�cation tests for time

series conditional distribution models using a novel approach, which embeds the empirical distribution

function in a spectral framework. Our tests check a large number of lags and are therefore expected

to be powerful against neglected dynamics at higher order lags, which is particularly useful for non-

Markovian processes. Despite using a large number of lags, our tests do not su¤er much from loss

of a large number of degrees of freedom, because our approach naturally downweights higher order

lags, which is consistent with the stylized fact that economic or �nancial markets are more a¤ected

by recent past events than by remote past events. Unlike the existing methods in the literature, the

proposed GCM tests cover both univariate and multivariate conditional distribution models in a uni�ed

framework. They exploit the information in the joint conditional distribution of underlying economic

processes. Moreover, a class of easy-to-interpret diagnostic procedures are supplemented to gauge

possible sources of model misspeci�cations. Distinct from conventional CM and Kolmogorov-Smirnov

(KS) tests, which are also based on the empirical distribution function, our GCM test statistics follow a

convenient asymptotic N (0; 1) distribution and enjoy the appealing "nuisance parameter free" property

that parameter estimation uncertainty has no impact on the asymptotic distribution of the test statistics.

Simulation studies show that the tests provide reliable inference for sample sizes often encountered in

economics and �nance.

Key words: Diagnostic procedure, Empirical distribution function, Frequency domain, Generalized

Cramer-von Mises test, Kernel method, Non-Markovian process, Time series conditional distribution

model
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1. INTRODUCTION

The modeling of conditional distributions in time series has been advancing rapidly, with wide

applications in economics and �nance (e.g., Du¢ e and Pan 1997, Granger 1999, Corradi and Swanson

2006). Enormous empirical evidences document that economic and �nancial variables are typically

nonlinear and nonnormally distributed, and have asymmetric comovements.1 Consequently, one has to

go beyond the conditional mean and conditional variance to obtain a complete picture for the dynamics of

time series of interest. The conditional distribution characterizes the full dynamics of economic variables.

As pointed out by Granger (2003), the knowledge of the conditional distribution is essential in performing

various economic policy evaluations, �nancial forecasts, derivative pricing and risk management.2

In time series analysis, the most popular models are autoregressive moving average (ARMA) mod-

els for conditional mean and the generalized autoregressive conditional heteroskedasticity (GARCH)

models for conditional variance. However, as Hansen (1994) points out "there is no reason to assume,

in general, that the only features of the conditional distribution which depend upon the conditional

information are the mean and variance." There has been an interest to go beyond the �rst two mo-

ments in modeling the dynamics of economic time series. Although still in an early stage, some time

series models have been developed to study skewness, kurtosis and even the entire distribution. Hansen

(1994) develops a general model for autoregressive conditional density (ARCD), which allows for time-

varying �rst four conditional moments via a generalized skewed t-distribution. Harvey and Siddique

(1999) propose a generalized autoregressive conditional skewness model (GARCHS) in a conditional

non-central t-distribution framework by explicitly modeling the conditional second and third moments

jointly. Brooks, Burke and Persand (2005) develop a generalized autoregressive conditional heteroscedas-

ticity and kurtosis (GARCHK) model via a central t distribution with time-varying degrees of freedom.

Other examples of distribution models include Engle and Russell�s (1998a, 1998b and 2005) autoregres-

sive conditional duration (ACD) and autoregressive conditional multinomial (ACM) models, Bowsher�s

(2007) vector conditional intensity model, Hamilton�s (1989,1990) Markov regime switching models and

Geweke and Amisano�s (2007) compound Markov mixture models.

In economics and econometrics, e¤ort has been devoted to using higher moments and the entire

distribution. Rothschild and Stiglitz�s (1971,1972) seminar works have demonstrated that the risk or

uncertainty should be characterized by the distribution function, rather than the �rst two moments. In

particular, the ranking of the cumulative distribution function (CDF) by certain rules always coincides

with that of the risk-averter�s preference,3 while the mean-variance analysis is only applicable to the

restricted family of utility functions or distribution functions. Granger (1999), in a model evaluation

context, suggests that the predictive conditional distribution should be provided, since forecasts based

on conditional means are optimal only for a very limited class of loss functions.4

1Empirical evidences against normality can be dated back to Mills (1927) and continue through today, see, e.g., Ang
and Chen (2002), Bollerslev (1986), Longin and Solnik (2001).

2A prominent example is in the option pricing context, where the price is determined by not just the conditional mean
and variance, but functions of conditional distribution. Another example is to calculate value-at-risk (VaR), where the
key step is to accurately estimate the conditional distribution of asset returns and the preassumed normal distribution can
signi�cantly underestimate the downward risk.

3A closely related concept is second-order stochastic dominance, which ranks any pair of distributions with the same
mean in terms of comparative risk.

4See also Christo¤ersen and Diebold (1997) for more discussion.
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In asset pricing, the classical Capital Asset Pricing Model (CAPM) is based on the assumption that

asset returns are normally distributed and hence mean and variance can fully characterize the whole

distribution. However, the inadequacy of these traditional hypotheses has led researchers to explore the

impact of higher moments of asset returns (see, e.g., Harvey and Siddique 2000, Krauss and Litzenberger

1976). The other strand involves making assumptions on the representative agent�s utility function, such

as a quadratic or logarithmic form, which guarantees the linear form of the stochastic discounted factor.

However, outside the family of mean-variance preferences, optimal portfolio choices generally depend

on the entire return distribution. For example, a loss-averse investor, who realizes a greater incremental

utility penalty for a loss than for an equally large gain, may be more concerned about the left tail of

the return distribution.5

In option pricing, Black and Scholes�(1973) model is a cornerstone but empirical studies document

that there exists severe mispricing for the deep out-of-the-money and deep in-the-money options. This

has been attributed to the unrealistic assumption of a normally distributed continuous rate of return.

More �exible models have been proposed. For example, multi-moment approximate option pricing

models, initiated by Jarrow and Rudd (1982) and developed by Corrado and Su (1996, 1997) and

Rubinstein (1998), approximate the risk-neutral density by a series expansion, which incorporates the

third and fourth moments of the underlying asset.

In risk management, value at risk (VaR) has become a standard quantitative measure of market

risk. VaR is the loss in market value over a given time horizon, for a given con�dence level. Usually the

normality assumption is made but the empirical evidences show its inadequacy (e.g., McNeil and Frey

2000). As emphasized by Engle (2002b), when computing VaR, "GARCH methods proved successful

but su¤ered if errors were assumed to be Gaussian." On the other hand, hedging is another key concern

in risk management. Optimal hedging analysis is based on the expected utility maximization paradigm,

which generally requires characterization of the returns� joint distributions, rather than the �rst two

moments only (e.g., Lien and Tse 2000).

In time series econometrics, there has been an important literature on density forecast evaluation,

see, e.g., Diebold, Gunther and Tay (1998), Granger and Pesaran (2000) and Corradi and Swanson

(2006). They show that when a forecast density coincides with the true data generating process (DGP),

the forecast density will be preferred by all forecast users regardless of their loss function. This highlights

the importance of correctly modeling the distribution. On the other hand, even if the �rst two moments

are of major interest, correct speci�cation of the entire distribution is essential for e¢ cient estimation.

For example, as Engle and Gonzalez-Rivera (1991) point out, the quasi-maximum likelihood estimator

for ARCH models is ine¢ cient, with the degree of ine¢ ciency increasing with the degree of departure

from the assumed normality.

In addition to the univariate time series distribution modeling, the recent literature has documented

a rapid growth of multivariate conditional distribution models, due to an increasing need to capture the

joint dynamics of multivariate processes, such as in macroeconomic control, pricing, hedging and risk

management.6 For example, CAPM studies the relationship between individual asset returns and the

5Loss aversion is a special case of prospect theory, where utility is de�ned over gains and losses relative to a reference
point rather than over the level of wealth as in expected utility theory. See (e.g.) Barberis and Huang (2001) and Barberis,
Huang and Santos (2001) for �nancial applications of prospect theory.

6Geweke and Amisano (2001) argue that "while univariate models are a �rst step, there is an urgent need to move on
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market return, which has motivated the development of multivariate GARCH models (e.g., Bollerslev,

Engle and Wooldridge 1988, Engle 2002). Among multivariate distribution models, copula-based models

have become increasingly popular in characterizing the comovement between markets, risk factors and

other relevant variables (e.g., Patton 2004, Hu 2006, Lee and Long 2009). Another example is the

extension of Markov regime switching models to a multivariate framework (e.g., Diebold and Rudebusch

1996, Krolzig 1997). Markov regime switching models can capture the asymmetry, nonlinearity and

persistence of extreme observations of time series.

E¢ cient parameter estimation, optimal distribution forecast, valid hypothesis testing and economic

interpretation all require correct model speci�cation. The work on testing distributional assumptions

at least date back to the KS test. One undesired feature of this test is that it is not distribution

free when parameters are estimated. Andrews (1997) extends the KS test to conditional distribution

models for independent observations, where a bootstrap procedure is used to obtain critical values.

Meanwhile, Zheng (2000) proposes a nonparametric test for conditional distribution functions based

on the Kullback-Leibler information criterion and the kernel estimation of the underlying distributions.

Fan, Li and Min (2006) extend Zheng�s (2000) test to allow for discrete dependent variables and for

mixed discrete and continuous conditional variables. However, a limitation of the above tests is that

the data must be independently and identically distributed, therefore ruling out time series applications

especially when the underlying time series is non-Markovian.

Observing the fact that when a dynamic distribution model is correctly speci�ed, the probability

integral transform of observed data via the model-implied conditional density is i:i:d.U [0,1], Bai (2003)

proposes a KS type test with Khmaladze�s (1981) martingale transformation, whose asymptotic distri-

bution is free of impact of parameter estimation. However, Bai�s (2003) test only checks uniformity

rather than the joint i:i:d:U [0; 1] hypothesis. It will have no asymptotic unit power if the transformed

data is uniform but not i:i:d:: Moreover, in a multivariate context, the probability integral transform

of data with respect to a model-implied multivariate conditional density is no longer i.i.d U [0,1], even

if the model is correctly speci�ed. Bai and Chen (2008) evaluate the marginal distribution of both

independent and serially dependent multivariate data by using the probability integral transform for

each individual component. This test is legitimate, but it may miss important information on the joint

distribution of a multivariate model. In particular, when applied to each component of multivariate time

series data, Bai and Chen�s (2008) test may fail to detect misspeci�cation in the joint dynamics. For

example, the test may easily overlook misspeci�cation in the conditional correlations between individual

time series.

Corradi and Swanson (2006) propose bootstrap conditional distribution tests in the presence of

dynamic misspeci�cations. However, they consider a �nite dimensional information set and thus may

not have good power against non-Markovian models. Their tests are designed for univariate time series.

When extended to multivariate time series, their tests are not consistent against all alternatives to the

null. Moreover, their critical values are data dependent and cannot be tabulated.

In a continuous-time di¤usion framework, Ait-Sahalia, Fan and Peng (2009) and Li and Tkacz (2006)

propose tests by comparing the model-implied distribution function with its nonparametric counterpart.

Both tests maintain the Markov assumption for the DGP, and only check one lag dependence, therefore

to multivariate modeling of the time-varying distribution of asset returns".
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are not suitable for non-Markovian models like GARCH or MA type models. Another undesired feature

of these tests is that they have severe size distortion in �nite samples and bootstrap must be used to

approximate the distribution of the test statistics. Bhardwaj, Corradi and Swanson (2008) consider a

simulation-based test, which is an extension of Andrews�(1997) conditional KS test, for multivariate

di¤usion models. The limit distribution of their test is not nuisance parameter free and asymptotic

critical values must be obtained via a block bootstrap.

In this paper, we shall propose a new class of generalized Cramer-von Mises (GCM) tests of the ade-

quacy of univariate and multivariate conditional distribution models, without requiring prior knowledge

of possible alternatives (including both functional forms and lag structures). Compared with the existing

tests for conditional distribution models in the literature, our approach has several main advantages.

First, our GCM tests are constructed using a new approach, which embeds the empirical distribution

function in a spectral framework. Thus it can detect misspeci�cation in both marginal distribution and

dynamics of a time series. Thanks to the use of the empirical distribution function, our approach

can detect a variety of linear and nonlinear functional form misspeci�cations. Our frequency domain

approach can check a growing number of lags as the sample size increases without su¤ering from the

curse of dimensionality. This is particularly useful for conditional distribution models in time series

since the conditioning information set may depend on the entire history of the data. Indeed, most time

series distribution models in the literature are non-Markov. Moreover, our approach employs a kernel

function and it naturally discounts higher order lags. This is expected to enhance power because it

is consistent with the stylized fact that economic and �nancial variables are usually more in�uenced

by recent events than by remote past events. Unlike the traditional CM and KS tests, which also

use the empirical distribution function but have nonstandard distributions contaminated by parameter

estimation uncertainty, our tests have a convenient null asymptotic N(0,1) distribution.

Second, by using the conditional distribution of a multivariate time series vector directly, our tests

exploit the information in the joint conditional dynamics of the time series vector rather than only in

the conditional distribution of individual components. Thus, they can detect misspeci�cations in the

joint conditional distribution even if the conditional distribution of each individual series is correctly

speci�ed. Our tests are applicable to both continuous and discrete distributions. Moreover, because we

impose regularity conditions directly on the conditional distribution function of a discrete sample, our

tests are also applicable to multivariate continuous-time models with discretely observed samples.

Third, besides the GCM test, we propose a class of diagnostic tests. These tests can evaluate how

well a time series conditional distribution model captures various speci�c aspects of the joint dynamics,

and are easy to interpret. In particular, these tests can provide valuable information about neglected

dynamics in conditional means, conditional variances, conditional correlations, conditional skewness

and conditional kurtosis, respectively. Thus, they complement the popular conditional moment tests in

the literature. All our GCM test and diagnostic tests are derived from a uni�ed framework.

Fourth, we do not require a particular estimation method. Any
p
T -consistent parametric estimators

can be used. Unlike tests based on the distributional function, such as the conventional CM and KS

tests, parameter estimation uncertainty does not a¤ect the asymptotic distribution of our test statistic.

One can proceed as if the true model parameters were known and equal to parameter estimates. This

makes our tests easy to implement. The only inputs needed to calculate the test statistics are the
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original data and the model-implied CDF.

In Section 2, we introduce the framework, state the hypotheses, and characterize the correct spec-

i�cation of a conditional distribution model that can be either univariate or multivariate. In Section

3, we propose an empirical distribution function-based test embedded a frequency domain approach.

In Section 4, we derive its asymptotic null distribution, and discuss its asymptotic power property. In

Section 5, we develop a class of diagnostic tests that focus on various speci�c aspects of a time series

conditional distribution model. In Section 6, we assess the reliability of the asymptotic theory in �nite

samples via simulation. Section 7 concludes. All mathematical proofs are collected in the appendix. A

GAUSS code to implement our tests is available from the authors upon request. Throughout, we will

use C to denote a generic bounded constant, k�k for the Euclidean norm:

2. HYPOTHESES OF INTEREST

Suppose fXtg is a d � 1 strictly stationary time series process with unknown conditional CDF
P0(xjIt�1); where the dimension d � 1; and It�1 is the information set available at time t�1:We allow
but do not require Xt to be Markov. As a leading example, we consider a time series model

Xt = � (It�1;�) + h1=2 (It�1;�) "t; (2.1)

where �(It�1;�) is a parametric model for E(XtjIt�1); h (It�1;�) is a parametric model for var(XtjIt�1);
"t has the conditional CDF P"("jIt�1;�); and � 2 � is a �nite-dimension parameter. In time se-

ries modeling, It�1 is possibly in�nite-dimensional, as in the case of non-Markovian processes. Given
P"("jIt�1;�); it is straightforward to calculate the conditional CDF of Xt

Px(xjIt�1;�) = P"

�
x� � (It�1;�)
h1=2 (It�1;�)

jIt�1;�
�
:

The setup (2.1) is a general speci�cation that nests most popular time series conditional distribution

models in the literature. For example, suppose we assume that "t has a continuous distribution with

the conditional PDF

p"("jIt�1;�) = p"["j�(It�1;�)];

where �(It�1;�) = [� (It�1;�) ;h (It�1;�) ;� (It�1;�) ;� (It�1;�)]0 is a low dimensional time-varying
function that can e¤ectively summarize the available information It�1; and �(�) and �(�) are so called
time-varying shape parameters, which control serial dependence in higher order conditional moments.

Then we obtain Hansen�s (1994) univariate ARCD model. Speci�cally, Hansen (1994) considers a skewed

student�s t distribution with

p"("j�; �) =

8>><>>:
bch

1+ 1
��2(

b"+a
1�� )

2
i(�+1)=2 if " < �a

b ;

bch
1+ 1

��2(
b"+a
1+� )

2
i(�+1)=2 if " � �a

b ;
(2.2)

where 0 < � <1; �1 < � < 1; a = 4�c��2��1 ; b
2 = 1 + 3�2 � a2; c = �[(�+1)=2]

[�(��2)]1=2�(�=2)
:

Another example is Harvey and Siddique�s (1999) GARCHS model. For a univariate GARCHS(1,1,1)

model, the conditional variance ht � h (It�1;�) and conditional skewness St � S (It�1;�) are speci�ed
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as

ht = �0 + �1ht�1 + �2u
2
t�1

St = 0 + 1St�1 + 2u
3
t�1;

where ut � h1=2t "t and "t has a conditional noncentral t distribution with the degrees of freedom �t and

the noncentrality parameter �t:

A third example is the copula-based multivariate GARCH model considered by Lee and Long (2009).

They assume that � (It�1;�) = 0; h (It�1;�) adopts the forms from Engle and Kroner�s (1995) BEKK

model, Engle�s (2002a) dynamic conditional correlation (DCC) model and Tse and Tsui�s (2002) varying

correlation model, and

"t = �
�1=2
t �t; (2.3)

�tjIt�1 � C (Ft (�) ; Gt (�) ;�t) ;

where C(�; �; �) is the conditional copula function, such as the Gumbel copula with C(u; v;�) = expf�[(� lnu)�+
(� ln v)�]1=�g; Ft (�) ; Gt (�) are marginal CDFs.

In our setup, Xt need not have a continuous distribution. An example of a conditional discrete

distribution is Russell and Engle�s (2005) ACM-ACD model. They assume Xt = (yt; � t)
0; where yt is

the discrete price change and � t is the duration between transactions. The joint conditional distribution

of yt and � t can be decomposed into the product of the conditional distribution of the price change and

the conditional distribution of the arrival times, namely,

Px (xjIt�1;�) = Py (yjIy;t�1; I�;t;�)P� (� jIt�1;�) ;

where Iy;t�1 = (yt�1; yt�2; :::; y1) and I�;t�1 = (� t�1; � t�2; :::; �1): The duration � t is assumed to follow
an ACD model and its conditional density is given as

p� (� jIt�1;�) =
1

 t
exp

�
� � t
 t

�
;

where  t = E(� tjI�;t�1): The price change yt has a multinomial distribution, namely,

py (yjIy;t�1; I�;t;�) =
sX
j=1

�
~ytj
tj ;

where s is the number of states, ~yt takes the jth column of the s � s identity matrix if the jth state

occurs in yt and �j denotes the s� 1 vector of conditional probabilities associated with the states.
We say that the model (2.1) is correctly speci�ed if there exists some parameter value �0 2 � such

that

H0 : P (xjIt�1;�0) = P0(xjIt�1) almost surely (a:s:) and for all x and t: (2.4)

Alternatively, if for all � 2 �; we have

HA : P (xjIt�1;�) 6= P0(xjIt�1) with positive probability measure, (2.5)
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then model (2.1) is misspeci�ed.

The empirical distribution function has been used to test correct speci�cation of a conditional distri-

bution model. Observing that when d = 1; the probability integral transform Ut(�0) � Pt(XtjIt�1;�0)
is an i:i:d: uniform[0,1] random variable, Bai (2003) compares the empirical distribution function of

Ut(�̂) with a uniform CDF. Bai (2003) uses Khmaladze�s (1981) martingale transformation to remove

the impact of parameter estimation uncertainty and his test statistic converges to a standard Brownian

motion. An undesired feature of this test is that it only checks the marginal distribution of Ut and

has no power against the alternatives where the independence property is violated but the marginal

uniformity holds. Moreover, the probability integral transform is not applicable to the multivariate joint

conditional density directly, because when d > 1; Ut(�0) is no longer i:i:d: U [0; 1]. Bai and Chen (2008)

extend it to the multivariate setup by considering the particular sequence Ut1(�0) � Pt(Xt1jIt�1;�0);
Ut2(�0) � Pt(Xt2jXt1; It�1;�0); :::; Utd(�0) � Pt(XtdjXt1; :::; Xtd�1; It�1;�0): This is legitimate, but it
does not make full use of the information contained in the joint distribution of Xt: In particular, it may

miss important model misspeci�cation in the joint dynamics of Xt: For example, consider the DGP

Xt = AXt�1+"t; where f"tg is i:i:d: N(0;�) and � is a d�d (d > 1) constant upper-triangular matrix.
Suppose one �ts the data by a VAR(1) model with ~"t � i:i:d:N(0; ~�); where ~� is a diagonal matrix.

Then this model is misspeci�ed yet their test has no power.

To develop a test for H0, we de�ne a generalized model residual

Zt(x;�) � 1 (Xt � x)� P (xjIt�1;�) ; x 2Rd: (2.6)

Then H0 is equivalent to the following MDS characterization for Zt(x;�):

E [Zt(x;�0)jIt�1] = 0 for all x 2Rd and some �0 2 �; a:s:: (2.7)

It is not a trivial task to check (2.7). First, the MDS property in (2.7) must hold for all x 2 Rd; not
just a �nite number of grid points of x. This is an example of the well-known nuisance parameter prob-

lem encountered in the literature (e.g., Davies 1977, 1987 and Hansen 1996). Second, the conditioning

information set It�1 in (2.7) has an in�nite dimension as t!1, so there is a �curse of dimensionality�
di¢ culty associated with testing the model speci�cation. Finally, fZt(x;�0)g may display serial de-
pendence in its higher order conditional moments. Any test for (2.7) should be robust to time-varying

conditional heteroskedasticity and higher order moments of unknown form in fZt(x;�0)g.
There has been a large literature on empirical distribution function-based tests; see, e.g., Hoe¤ding

(1948), Andrews (1997), Linton and Gozalo (1997), and Hong (1998). However, most tests are designed

for i:i:d: observations. The CDF approach is particularly appealing in checking conditional distribution

models because the conditional PDF usually has a simple closed form and the conditional CDF can be

obtained via analytic or numerical integration. Moreover, there is a natural link between the distribution

function and moments, which can be exploited to construct a class of diagnostic procedures for di¤erent

speci�c aspects of P (xjIt�1;�) in Section 5.
So far we have assumed that all components of Xt are observable. However, there are time series

models with unobservable components in the literature. For example, the state-space models have been

widely used in macroeconomics and �nance. The simplest state-space representation is given by the
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following system of equations: (
Yt = A

0Yt�1 +H0�t +wt;

�t = F
0�t�1 + vt;

(2.8)

where A; F and H are matrices of parameters, wt and vt are vector white noise, �t is the possibly

unobserved state vector, and Yt is observable. The system in (2.8) is known as the observation equation

and the state equation respectively (see, e.g., Hamilton 1994 and DeJong and Dave 2007). Another

example is the class of stochastic volatility (SV) models for equity returns and interest rates, see (e.g.)

Shephard (2005), Anderson and Lund (1997) and Gallant, Hsieh and Tauchen (1997). With a latent

volatility state variable, SV models can capture salient properties of volatility such as randomness and

persistence. A �rst order SV model (Taylor 1986) assumes:(
St = Vt"t;

lnV 2t = 0 + 1 lnV
2
t�1 + ut;

(2.9)

where Vt is the latent volatility and St is the asset return, 0 and 1 are both scalar parameters, and "t
and ut are mutually independent innovations.

To test time series models with unobservable components, we need to modify the MDS characteri-

zation (2.7) to make it operational. For this purpose, we partition Xt = (X01;t;X
0
2;t)

0; where X1;t � Rd1
denotes the observable components, X2;t � Rd2 denotes the unobservable components, and d1+ d2 = d.

Also, partition x conformably as x = (x01;x
0
2)
0 : Let

P (x1jI1;t�1;�) � E�[1(X1;t � x1)jI1;t�1] = E�fP [(x01;00)
0jIt�1;�]jI1;t�1g;

where I1;t�1 = fX1;t�1;X1;t�2; :::;X1;1g is the information set on the observables that is available at
time t� 1 and the second equality follows by the law of iterated expectations: Then we de�ne

Z1;t (x1;�) � 1 (X1;t � x1)� P (x1jI1;t�1;�):

Under H0; we have

E [Z1;t(u1;�0)jI1;t�1] = 0 a.s. for all x1 2 Rd1 and some �0 2 �: (2.10)

This provides a basis for constructing operational tests for time series models with partially observ-

able variables. Without loss of generality, we will focus on conditional distribution models with fully

observable variables for the rest of the paper.

3. GENERALIZED DYNAMIC CRAMER-VON MISES TEST

We now propose a new class of GCM tests for the adequacy of a dynamic conditional distribution

model by exploiting the characterization in (2.7). To check the MDS property of Zt (x;�) ; we take

a frequency domain approach in combination with the empirical distribution function. It can capture

both linear and nonlinear dynamics while maintaining the nice features of spectral analysis, particularly

its appealing property to accommodate all lags information. In the present context, it can check

departures of correct model speci�cation over many lags in a pairwise manner, avoiding the "curse of
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dimensionality" di¢ culty. This is not attained by many existing tests in the literature which only check

a �xed lag order. The empirical distribution function is rather natural in testing conditional distribution

models. Most time series conditional distributional models have closed-form PDFs.

De�ne a generalized covariance function

�j (x;y) = cov
�
Zt(x;�);1

�
Xt�jjj � y

��
; x;y 2 Rd; (3.1)

where j is a lag or lead number. We also de�ne the Fourier transform

F (!;x;y) =
1

2�

1X
j=�1

�j (x;y) exp (�ij!) ; ! 2 [��; �] ; x;y 2 Rd; (3.2)

where ! is the frequency. The function F (!;x;y) may be called the distribution function-based gen-

eralized spectral density of fXtg: It contains the same information on serial dependence of fXtg as
the generalized covariance function �j(x;y): An advantage of frequency domain analysis is that it can

capture cyclical patterns caused by both linear and nonlinear serial dependence. Examples include

volatility spillover, the comovements of tail distribution clustering between economic variables, and

asymmetric spillover of business cycles cross di¤erent sectors or countries. Another attractive feature

of F (!;x;y) is that it does not require the existence of any moment condition on Xt due to the use of

the distribution function: This is appealing for time series data with heavy tail distributions.

Under H0; we have �j(x;y) = 0 for all x;y 2 Rd and all j 6= 0: Consequently, the generalized

spectral density F (!;x;y) becomes a "�at" spectrum (i.e., a constant function of frequency !):

F (!;x;y) = F0 (!;x;y) �
1

2�
�0 (x;y) ; ! 2 [��; �] ; x;y 2 Rd: (3.3)

Thus, we can test H0 by checking whether a consistent estimator for F (!;x;y) is �at with respect to
frequency !: Any signi�cant deviation from a �at generalized spectrum is evidence of model misspeci-

�cation.

Suppose we have a random sample fXtgTt=1 of size T: Then we can estimate the generalized covariance
�j (x;y) by its sample analogue

�̂j (x;y) =
1

T � jjj

TX
t=jjj+1

Zt(x; �̂)
h
1
�
Xt�jjj � y

�
� P̂ (y)

i
; x;y 2 Rd; (3.4)

where �̂ is a
p
T -consistent estimator for �0 and P̂ (y) = T�1

PT
t=1 1 (Xt � y) is the empirical distrib-

ution function.

Then a consistent estimator for F0(!;x;y) is

F̂0(!;x;y) =
1

2�
�̂0(x;y); ! 2 [��; �]; x;y 2 Rd: (3.5)

9



Consistent estimation for F (!;x;y) is more challenging. We use a smoothed kernel estimator

F̂ (!;x;y) =
1

2�

T�1X
j=1�T

(1� jjj =T )1=2k(j=p)�̂j(x;y)e�ij!; ! 2 [��; �];x;y 2 Rd; (3.6)

where p � p(T )!1 is a bandwidth or an e¤ective lag order, and k : R! [�1; 1] is a kernel function,
assigning weights to various lags. Examples of k(�) include the Bartlett kernel

k (z) =

(
1� jzj ; jzj � 1;
0; otherwise,

(3.7)

the Parzen kernel

k (z) =

8><>:
1� 6z2 + 6 jzj3 ; jzj � 0:5;
2(1� jzj)3; 0:5 < jzj � 1;
0; otherwise,

(3.8)

and the Quadratic-Spectral kernel

k (z) =
3

(�z)2

�
sin(�z)

�z
� cos (�z)

�
; z 2 R: (3.9)

In (3.6), the factor (1 � jjj =T )1=2 is a �nite-sample correction. It could be replaced by unity. Under
suitable regularity conditions, F̂ (!;x;y) and F̂0(!;x;y) are consistent for F (!;x;y) and F0(!;x;y)

respectively. These estimators converge to the same limit under H0 but they generally converge to
di¤erent limits under HA; giving the power of the test.

We can construct a test via the L2-norm

L̂2 =
�T

2

Z �

��

ZZ ���F̂ (!;x;y)� F̂0 (!;x;y)���2 d!dW (x) dW (y)

=

T�1X
j=1

k2 (j=p) (T � j)
ZZ

�̂2j (x;y) dW (x) dW (y); (3.10)

where the equality follows by Parseval�s identity, W : Rd ! R+ is a nondecreasing right-continuous
weighting function that weighs the sets symmetric about the origin equally, and the unspeci�ed integrals

are all taken over the support of W (�). An example of W (�) is the CDF of N (0; Id), where Id is a d�d
identity matrix. The function W (�) can also be a step function, analogous to the CDF of a discrete
random vector.

Our GCM test statistic for H0 against HA is a standardized version of (3.10):

Q̂1 =

24T�1X
j=1

k2(j=p)(T � j)
Z Z

�̂2j (x;y)dW (x) dW (y)� Ĉ1

35 =qD̂1; (3.11)
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where the centering and scaling factors

Ĉ1 =
T�1X
j=1

k2(j=p)(T � j)�1
TX

t=j+1

Z
Z2t (x; �̂)dW (x)

Z
 ̂
2

t�j(y)dW (y);

D̂1 = 2

T�2X
j=1

T�2X
l=1

k2(j=p)k2(l=p)

Z Z Z Z
dW (x1)dW (y1) dW (x2)dW (y2)

�

8<:[T �max(j; l)]�1
TX

t=max(j;l)+1

Zt(x1; �̂)Zt(x2; �̂) ̂t�j(y1) ̂t�l(y2)

9=;
2

;

where  ̂t(y) = 1(Xt � y)� P̂ (y); and as before, P̂ (y) = T�1
PT
t=1 1(Xt � y): The factors Ĉ1 and D̂1

are the approximately mean and variance of the quadratic form in (3:10):

When W (�) is continuous, Q̂1 can be calculated by numerical integration or simulation. Alter-
natively, the empirical distribution function also provides a natural way of choosing a data-dependent

weighting functionW (x) = P̂ (x) ; where P̂ (x) is the empirical CDF of Xt: Then a feasible test statistic

is

Q̂2 =

24T�1X
j=1

k2(j=p)(T � j) 1
T 2

TX
t=1

TX
s=1

�̂2j (Xt;Xs)� Ĉ2

35 =qD̂2; (3.12)

where the centering and scaling factors

Ĉ2 =

T�1X
j=1

k2(j=p)(T � j)�1 1
T 2

TX
m=j+1

TX
t=1

Z2m(Xt; �̂)
TX
s=1

 ̂
2

m�j(Xs);

D̂2 = 2
T�2X
j=1

T�2X
l=1

k2(j=p)k2(l=p)
1

T 4

TX
t1=1

TX
t2=1

TX
s1=1

TX
s2=1

�

24 1

T �max(j; l)

TX
m=max(j;l)+1

Zm(Xt1 ; �̂)Zm(Xt2 ; �̂) ̂m�j(Xs1) ̂m�l(Xs2)

352 :
Here, no numerical integration is needed. Depending on the sample size, the computational cost of Q̂2
may or may not be higher than that of Q̂1:

Alternatively, we can de�ne the generalized covariance function as the autocovariance of the gener-

alized residuals
~�j (x;y) = cov

�
Zt (x;�) ; Zt�jjj (y;�)

�
; x;y 2Rd;

and estimate it by its sample analogue

b~�j (x;y) = 1

T � jjj

TX
t=jjj+1

Zt(x; �̂)Zt�jjj

�
y; �̂

�
; x;y 2 Rd:

Following similar derivations, we can obtain two new test statistics, corresponding to (3.11) and (3.12)
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respectively:

~Q1 =

24T�1X
j=1

k2(j=p)(T � j)
Z Z b~�2j (x;y)dW (x)dW (y)� ~C1

35 =q ~D1; (3.13)

where the centering and scaling factors

~C1 =
T�1X
j=1

k2(j=p)(T � j)�1
TX

t=j+1

Z
P (xjIt�1; �̂)

h
1� P (xjIt�1; �̂)

i
dW (x)

Z
Z2t�j(y; �̂)dW (y);

~D1 = 2
T�2X
j=1

k4(j=p)

8<:
Z (

T�1
TX
t=1

h
P (x ^ yjIt�1; �̂)� P (xjIt�1; �̂)P (yjIt�1; �̂)

i)2
dW (x)dW (y)

9=;
2

;

where x ^ y � min(x;y): We note that ~Q1 is computationally simpler than Q̂1: In particular, the

integration for ~D1 is reduced from 4d dimensions to 2d dimensions. The key di¤erence between ~Q1 and

Q̂1 is the use of di¤erent conditioning variables. The generalized residuals fZt(x;�0)g are MDS under
the null and we expect that ~Q1 might have better power than Q̂1. We will further examine the �nite

sample performance of ~Q1 and Q̂1 in Section 6.

A counterpart of (3.12) is

~Q2 =

24T�1X
j=1

k2(j=p)(T � j)T�2
TX
t=1

TX
s=1

b~�2j (Xt;Xs)� ~C2

35 =q ~D2; (3.14)

where the centering and scaling factors

~C2 =

T�1X
j=1

k2(j=p)(T � j)�1T�2
TX

m=j+1

TX
t=1

P (XtjIm�1; �̂)
h
1� P (XtjIm�1; �̂)

i TX
s=1

Z2m�j(Xs; �̂);

~D2 = 2

T�2X
j=1

k4(j=p)

8<:T�2
TX
t=1

TX
s=1

(
T�1

TX
m=1

h
P (Xt ^XsjIm�1; �̂)� P (XtjIm�1; �̂)P (XsjIm�1; �̂)

i)29=;
2

:

Again, the computational cost is lowered by replacing the quadruple sum with the double sum.

One could also consider a test based on the supremum norm

Ŝ = sup
���!��

sup
x;y2Rd

���F̂ (!;x;y)� F̂o (!;x;y)��� :
This delivers a generalized KS test for dynamic conditional distribution models. In this paper, we focus

on the test based on (3.10). The test based on Ŝ requires a di¤erent treatment and it is expected to

follow a nonstandard asymptotic distribution.

4. ASYMPTOTIC THEORY

To derive the null asymptotic distribution of the test statistics Q̂1; Q̂2; ~Q1; ~Q2 and investigate their

asymptotic power property; we impose following regularity conditions.

Assumption A.1: fXt; t 2 Ng is a d-dimentional strictly stationary time series process with unknown
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CDF P0(xjIt�1); where It�1 � fXt�1;Xt�2; :::;X1g and d � 1:

Assumption A.2: Let P (xjIt�1;�) be the CDF of Xt given It�1 for a parametric model for Xt. (i)
For each � 2 �; each x 2 Rd; and each t, P (xjIt�1;�) is measurable with respect to It�1; (ii) for
each � 2 �; each x 2 Rd; and each t, P (xjIt�1;�) is twice continuously di¤erentiable with respect
to � 2 � with probability one; (iii) supx2Rd limT!1 T�1

PT
t=1E[sup�2� jj @@�P (xjIt�1;�) jj

2] � C and

supx2Rd limT!1 T�1
PT
t=1E[sup�2� jj @2

@�@�0
P (xjIt�1;�) jj] � C:

Assumption A.3: �̂ is a parameter estimator such that
p
T (�̂���) = OP (1) ; where �� � p limT!1 �̂

and �� = �0 under H0:

Assumption A.4: For each x 2Rd; fXt; @@�P (xjIt�1;�
�)g is a strictly stationary �-mixing process

with mixing coe¢ cient satisfying
P1
j=0 � (j)

(��1)=� � C for some constant � > 1:

Assumption A.5: k : R! [�1; 1] is a symmetric function that is continuous at zero and all points in
R except for a �nite number of points, with k (0) = 1 and k (z) � C jzj�b for some b > 1

2 as z !1:

Assumption A.6: W : Rd ! R+ is a nondecreasing right-continuous function that weighs sets sym-
metric about the origin equally, with

R
Rd dW (x) <1 and

R
Rd kxk

4 dW (x) <1:

Assumption A.7: For each su¢ ciently large integer q, there exists a stationary process fXq;tg such
that fXq;tg is independent of It�q for q su¢ ciently large, and E kXt �Xq;tk2 � Cq�� for some constant

� � 1 and all large q:

Assumption A.1 imposes some regularity conditions on the DGP: Both univariate and multivariate

time series processes are covered, and we allow but do not require Xt to be Markov. It is important

to allow the DGP to be non-Markov, because many popular time series models such as GARCH, ACM

and MA models are not Markov.

Assumption A.2 provides standard regularity conditions on the conditional CDF P (xjIt�1) of Xt:
The assumption that the conditional CDF is twice continuously di¤erentiable with respect to � is weaker

than the requirement that the conditional parametric density be twice continuously di¤erentiable in

�; since the integration is a smoothing operation. Bai (2003) imposes similar regularity conditions.

We allow P (xjIt�1) to depend on the entire past history It�1; rather than �nitely many lags only.
Assumption A.3 requires a

p
T�consistent estimator �̂ under H0; which need not be asymptotically

most e¢ cient: The quasi-maximum likelihood estimator can be used. Assumption A.4 is a regularity

condition on the temporal dependence of the process fXt; @@�P (xjIt�1;�
�)g: Assumption A.5 is the

regularity condition on the kernel function k (�). The continuity of k (�) at 0 and the unity of k (0)
ensure that the bias of the generalized spectral estimator F̂ (!;x;y) vanishes to zero asymptotically as

T ! 1: The condition on the tail behavior of k (�) ensures that higher order lags have asymptotically
negligible impact on the statistical properties of F̂ (!;x;y) : Assumption A.5 covers most commonly

used kernels. For kernels with bounded support, such as the Bartlett and Parzen kernels in (3.7) and

(3.8), we have b = 1: For kernels with unbounded support, b is some �nite positive real number.
For example, we have b = 2 for the Quadratic-Spectral kernel in (3.9): Assumption A.6 imposes mild

conditions on the weighting function W (�) : Any CDF with �nite fourth moments satis�es Assumption
A.6. Note that W (�) can be a step function. This provides a convenient way to implement our tests,
because we can avoid high dimensional numerical integrations by using a �nite number of grid points

for x and y: This is equivalent to using the CDF of a discrete random vector.
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Assumption A.7 is needed only under H0: It assumes that fXtg can be approximated by a q-
dependent process fXq;tg arbitrarily well when q is su¢ ciently large. Intuitively, this condition implies
that the serial dependence of Xt on its remote past history decays to zero su¢ ciently fast so that it

is asymptotically negligible. It holds trivially when fXtg is a q-dependent process with an arbitrarily
large but �nite order q: It also covers many non-Markov processes.

We now state the asymptotic distribution of the GCM test Q̂1 under H0: All other tests Q̂2; ~Q1 and
~Q2 follow the same asymptotic N(0; 1) distribution under H0:

Theorem 1: Suppose Assumptions A.1�A.7 hold, and p = cT � for 0 < � < (3 + 1
4b�2)

�1 and

0 < c <1: Then Q̂1
d! N(0; 1) under H0 as T !1:

The asymptotic normality of our GCM test statistic Q̂1 di¤ers sharply from the nonstandard distri-

bution of the CM test statistic in the literature. It o¤ers a rather convenient inference procedure. For

example, the asymptotic N(0; 1) critical value at the 5% signi�cance level is 1.65. The appealing asymp-

totic normality is made possible due to our spectral approach. To gain intuition, we consider the case

when the kernel function k(�) has bounded support, i:e:; k(z) = 0 if jzj > 1. Then Q̂1 is a weighted sum
of p random variables

nR R
�̂2j (x;y)dW (x) dW (y)

op
j=1

; which are approximately independent under H0
when p!1: This statistic thus converges to N(0; 1) by CLT after appropriate centering and scaling.
Of course, our formal proof does not rely on this simplistic intuition. Another important feature of Q̂1
that di¤ers from the classical CM tests is that the use of the estimated generalized residuals {Zt(x; �̂)g
in place of the unobservable generalized residuals fZt (x;�0)g has no impact on the limiting distribution
of Q̂1: One can proceed as if the true parameter value �0 were known and equal to �̂: Intuitively, the

parametric estimator �̂ converges to �0 faster than the nonparametric estimator F̂ (!;x;y) converges to

F (!;x;y) as T !1: Consequently, the limiting distribution of Q̂1 is solely determined by F̂ (!;x;y) ;
and replacing �0 by �̂ has no impact asymptotically. This delivers a convenient procedure, because anyp
T -consistent estimator can be used.

Next, we investigate the asymptotic power of Q̂1 under HA:

Theorem 2: Suppose Assumption A.1�A:7 hold, and p = cT � for 0 < � < 1
2 and 0 < c < 1: Then

as T !1;

p
1
2

T
Q̂1

p! 1p
D

1X
j=1

Z Z
�2j (x;y) dW (x) dW (y)

=
�

2
p
D

Z Z Z �

��
[F (!;x;y)� F0 (!;x;y)]2d!dW (x) dW (y);

where

D = 2

Z 1

0
k4 (z) dz

Z Z ���~�0 (x1;x2)���2 dW (x1) dW (x2)

1X
j=�1

Z Z
j
j (y1;y2)j2 dW (y1) dW (y2) ;

and ~�0 (x;y) = cov [Zt (x;�
�) ; Zt (y;�

�)] and 
j (x;y) = cov[1 (Xt � x) ;1
�
Xt�jjj � y

�
]:

The function 
j (x;y) can be viewed as the indicator function-based autocovariance function of

fXtg : It captures temporal dependence in {Xtg: The dependence of the constant D on 
j (x;y) is due

to the fact that the conditioning variable 1
�
Xt�jjj � y

�
is a time series process.
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Following Stinchcombe and White (1998), we have that for j > 0; �j(x;y) = 0 for all x;y 2 Rd

if and only if E [Zt(x;��)jXt�j ] = 0 a.s. for all x 2 Rd: Suppose E [Zt(x;��)jXt�j ] 6= 0 at some lag

j > 0 under HA. Then we have
R R

j�j (x;y)j2 dW (x) dW (y) � C > 0 for any weighting function W (�)
that is positive, monotonically increasing and continuous, with unbounded support on R: As a result,
P [Q̂1 > C (T )] ! 1 for any sequence of constants fC(T ) = o(T=p1=2)g: Thus Q̂1 has asymptotic unit
power at any given signi�cance level � 2 (0; 1), whenever E [Zt(x;��)jXt�j ] is nonzero at some lag j > 0
under HA: Note that for a Markov process Xt; we always have E [Zt (x;��) jXt�j ] 6= 0 at least for some
j > 0 under HA: Hence, Q̂1 is consistent against HA when Xt is Markov.

For a non-Markovian process Xt, the hypothesis that E [Zt(x;�0)jXt�j ] = 0 a.s. for all x 2 Rd

and some �0 2 � and all j > 0 is not equivalent to the hypothesis that E [Zt(x;�0)jIt�1] = 0 a.s. for
all x 2 Rd and some �0 2 �: The latter implies the former but not vice versa. This is the price we
have to pay for dealing with the di¢ culty of "the curse of dimensionality". Nevertheless, our GCM

test is expected to have power against a wide range of non-Markovian processes, since we check many

lag orders. The use of a large number of lags might cause the loss of power, due to the loss of a large

number of degree of freedom. Fortunately, such power loss is substantially alleviated for Q̂1, thanks to

the downward weighting by k2 (�) for higher order lags: Generally speaking, Xt is more a¤ected by the
recent events than the remote past events. In such scenarios, equal weighting to each lag is not expected

to be powerful. Instead, downward weighting is expected to enhance better power because it discounts

remote past information. Thus, we expect that the power of our test is not so sensitive to the choice of

the lag order. This is con�rmed by our simulation study below.

The asymptotic powers of Q̂2; ~Q1 and ~Q2 under HA can be derived in a similar manner.

5. DIAGNOSTIC PROCEDURES

When a conditional distribution model is rejected by the GCM test Q̂1; say, it would be interesting

to explore possible sources of the rejection. For example, one may like to know whether misspeci�cation

comes from the conditional mean, conditional variance, conditional skewness or conditional kurtosis. In

economic and �nancial applications, for example, the �rst four conditional moments are closely related

to the return, volatility, asymmetry and fat-tail, respectively. Such information, if any, will be valuable

in reconstructing the model and studying di¤erent aspects of the dynamics of economic and �nancial

time series.

The CDF is a convenient and useful tool to gauge possible sources of model misspeci�cation,

because it can be integrated to obtain conditional moments. We now develop a class of diagnostic tests

by integrating the CDF-based generalized spectral density F (!;x;y). This class of diagnostic tests can

provide useful information about how well a conditional distribution model can capture the dynamics

of various conditional moments.

To gain insight, we �rst consider the univariate case (d = 1). By straightforward derivation, we can

obtain the integral of the generalized covariance function

�mj (y) = cov
�Z

mxm�1Zt (x;�) dx;1
�
Xt�jjj � y

��
= �cov[Xtm � E� (Xm

t jIt�1) ;1
�
Xt�jjj � y

�
]:

Here, as before, E� (�jIt�1) is the conditional expectation under the CDF model P (xjIt�1;�) :
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For example, when m = 1,2; 3; 4; we have

�1j (y) = �cov[Xt � E�(XtjIt�1);1
�
Xt�jjj � y

�
];

�2j (y) = �cov[X2
t � E�(X2

t jIt�1);1
�
Xt�jjj � y

�
];

�3j (y) = �cov[X3
t � E�(X3

t jIt�1);1
�
Xt�jjj � y

�
];

�4j (y) = �cov[X4
t � E�(X4

t jIt�1);1
�
Xt�jjj � y

�
];

which can be used to check misspeci�cations in the �rst four conditional moments respectively.

Alternatively, we can de�ne the standardized innovation

"t = [Xt � �(It�1;�)]=h1=2(It�1;�)

and test the moment conditions based on "t: If f"tg is i:i:d:N(0; 1) under H0; we have

�
01
j (y) = �cov["t;1

�
"t�jjj � y

�
];

�
02
j (y) = �cov["2t � 1;1

�
"t�jjj � y

�
];

�
03
j (y) = �cov["3t ;1

�
"t�jjj � y

�
];

�
04
j (y) = �cov["4t � 3;1

�
"t�jjj � y

�
];

which can be used to check misspeci�cations in conditional mean, conditional variance, conditional

skewness and conditional kurtosis respectively. This alternative has more natural economic interpreta-

tion since it checks conditional centered moments rather than uncentered moments. Nevertheless, this

procedure is more like a joint test, in the sense that the test of higher conditional moments is based on

the assumption that lower conditional moments are correctly speci�ed.7

This set of diagnostic tests is similar to the moment-based tests used in Brooks et al. (2005) and

Harvey and Siddique (1999). Brooks et al. (2005) check the temporal dependence of the standardized

residuals via the following orthogonality conditions:

E("tzt) = 0;

E("t � "t�j) = 0 for j = 1; 2; 3; 4;

E

��
"t
2 � �t

�t � 2

��
"2t�j �

�t�j
�t�j � 2

��
= 0 for j = 1; 2; 3; 4;

E("3t � "3t�j) = 0 for j = 1; 2; 3; 4;

E

(�
"4t �

3�2t
(�t � 2)(�t � 4)

�"
"4t�j �

3�2t�j
(�t�j � 2)(�t�j � 4)

#)
= 0 for j = 1; 2; 3; 4;

where "t is the standardized residual and �t is the degrees of freedom of the innovation.8 Compared with

these conditional moment tests, our tests have several advantages: �rst, our GCM test Q̂1 essentially

7For example, the test of the conditional variance is based on the assumption that the conditional mean is correctly
speci�ed. But it coincides with the empirical convention that the speci�cation tests usually are carried out from lower
moments to higher moments.

8Harvey and Siddique (1999) construct a similar set of 16 orthogonality conditions.
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checks every moment, which is not obtainable by the Chi-square test; second, because we employ a

frequency domain approach, we check a growing number of lags as the sample size increases, while they

use an arbitrary and �xed lag order; third, our GCM test and diagnostic procedures are derived in a

uni�ed framework.

Next, we consider the multivariate case (d > 1). We de�ne the integral of the generalized cross-

covariance function as

�mj (y) = �cov

8<: Y
mc 6=0

[Xmc
ct � E� (Xmc

ct jIt�1)]� E�

8<: Y
mc 6=0

[Xmc
ct � E� (Xmc

ct jIt�1)]

9=; ;1
�
Xt�jjj � y

�9=; ;

where m = (m1;m2; :::;md)
0; mc � 0 for all 1 � c � d: We put jmj =

Pd
c=1mc:

For illustration, consider a bivariate process Xt = (X1t; X2t)0 and examine the cases of jmj = 1 and
jmj = 2 respectively:

� Case 1: jmj = 1: We have m = (1; 0) or m = (0; 1): If m = (1; 0);

�
(m)
j (y) = �cov

�
X1t � E�(X1tjIt�1);1

�
Xt�jjj � y

��
:

If m = (0; 1); then

�
(m)
j (y) = �cov

�
X2t � E�(X2tjIt�1);1

�
Xt�jjj � y

��
:

Thus, the choice of jmj = 1 can be used to check missepci�cations in the conditional mean

dynamics of X1t and X2t respectively.

� Case 2: jmj = 2: We have m = (2; 0); (0; 2) or (1; 1): If m = (2; 0);

�
(m)
j (y) = �cov

�
X2
1t � E�(X2

1tjIt�1);1
�
Xt�jjj � y

��
:

If m = (0; 2);

�
(m)
j (y) = �cov

�
X2
2t � E�(X2

2tjIt�1);1
�
Xt�jjj � y

��
:

Finally, if m =(1; 1) ;

�
(m)
j (y) = �cov[cov(X1t; X2tjIt�1)� cov�(X1t; X2tjIt�1);1

�
Xt�jjj � y

�
]:

Thus, the choice of jmj = 2 can be used to check model misspeci�cations in the conditional

variances of X1t and X2t; as well as their conditional correlation.

Then the CDF-based generalized spectral integral is de�ned as

Fm(!;y) � 1

2�

1X
j=�1

�mj (y) exp (�ij!) : (5.1)
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We now obtain the class of diagnostic test statistics as follows:

Q̂m1 =

24T�1X
j=1

k2(j=p)(T � j)
Z
�̂mj (y)

2dW (y)� Ĉm1

35 =qD̂m
1 ; (5.2)

where the centering and scaling factors

Ĉm1 =
T�1X
j=1

k2(j=p) (T � j)�1
TX

t=j+1

Zmt (�̂)
2

Z
 ̂
2

t�j(y)dW (y) ;

D̂m
1 = 2

T�2X
j=1

T�2X
l=1

k2(j=p)k2(l=p)

Z Z

�

8<:[T �max(j; l)]�1
TX

t=max(j;l)+1

Zmt (�̂)
2 ̂t�j(y1) ̂t�l(y2)

9=;
2

dW (y1) dW (y2) ;

with

Zmt (�̂) = �

8<: Y
mc 6=0

�
Xmc
ct � E�̂ (X

mc
ct jIt�1)

�
� E�̂

8<: Y
mc 6=0

�
Xmc
ct � E�̂ (X

mc
ct jIt�1)

�
jIt�1

9=;
9=; :

Alternatively, we can obtain the integral of the generalized covariance function, which is the auto-

covariance of the generalized residuals

~�mj (y) = �cov

8<: Y
mc 6=0

[Xmc
ct � E� (Xmc

ct jIt�1)]� E�

8<: Y
mc 6=0

[Xmc
ct � E� (Xmc

ct jIt�1)] jIt�1

9=; ; Zt�jjj (y;�)

9=; :

Following similar derivations, we obtain a new class of diagnostic test statistics:

~Qm1 =

8<:
T�1X
j=1

k2(j=p)(T � j)
Z hb~�mj (y)i2 dW (y)� ~Cm1

9=; =

q
~Dm
1 ; (5.3)

where the centering and scaling factors

~Cm1 =

T�1X
j=1

k2(j=p)(T � j)�1
TX

t=j+1

8<: Y
mc 6=0

�
Xmc
ct � E�̂ (X

mc
ct jIt�1)

�2

�

8<:E�̂ Y
mc 6=0

�
Xmc
ct � E�̂ (X

mc
ct jIt�1)

�
jIt�1

9=;
29=;
Z
Z2t�j(y; �̂)dW (y);

~Dm
1 = 2

T�2X
j=1

k4(j=p)

8<:T�1
TX
t=1

8<: Y
mc 6=0

�
Xmc
ct � E�̂ (X

mc
ct jIt�1)

�2 �
8<:E�̂ Y

mc 6=0

�
Xmc
ct � E�̂ (X

mc
ct jIt�1)

�
jIt�1

9=;
29=;
9=;
2

�
Z (

T�1
TX
t=1

h
P (y1 ^ y2jIt�1; �̂)� P (y1jIt�1; �̂)P (y2jIt�1; �̂)

i)2
dW (y1)dW (y2) :
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To derive the asymptotic distribution of Q̂m1 ; we impose the following moment conditions:

Assumption A.8: (i) lim
T!1

T�1
PT
t=1E sup�2�

 @
@�

Y
mc 6=0

E� (X
mc
ct jIt�1)


2

� C;

(ii) lim
T!1

T�1
PT
t=1E sup�2�

 @2

@�@�0

Y
mc 6=0

E� (X
mc
ct jIt�1)


2

� C;

(iii) lim
T!1

T�1
PT
t=1E sup�2�


Y
mc 6=0

E� (X
mc
ct jIt�1)


4

� C; (iv) E(�mc 6=0X
4mc
ct ) � C:

Theorem 3: Suppose Assumption A.1� A.8 hold for some pre-speci�ed m. Then Q̂m1
d! N(0; 1)

under H0 as T !1:

Like the GCM test Q̂1; the generalized spectral integral test Q̂m1 has a convenient asymptotic N (0; 1)

distribution and parameter estimation uncertainty in �̂ has no impact on the asymptotic distribution of

Q̂m1 : Any
p
T -consistent estimator can be used. Moreover, di¤erent choices of m can examine various

aspects of the dynamics of random vector Xt and thus may provide information on how well a time

series conditional distribution model �ts various aspects of the dynamics of Xt.

For any given m; the diagnostic test statistic ~Qm1 also follows the same asymptotic N(0; 1) distrib-

ution under H0:

6. FINITE SAMPLE PERFORMANCE

It is unclear how well the asymptotic theory can provide reliable reference and guidance in �nite

samples when applied to actual economic and �nancial time series data, which usually display con-

ditional heteroskedasticity and serial dependence in higher moments. We now investigate the �nite

sample performance of the proposed tests for the adequacy of some conditional distribution models.

For simplicity, we focus on two GCM tests Q̂1 and ~Q1 in both univariate and bivariate contexts:

6.1 Univariate Models

6.1.1 Simulation Design

To examine the size of our tests under H0; we consider the following DGP:

DGP0 [MA(1)-GARCH(1,1)-N(0; 1)]:8>>>><>>>>:
Xt = ut + 0:5ut�1;

ut = h
1
2
t "t;

ht = 0:05 + 0:15u
2
t�1 + 0:8ht�1;

f"tg � i:i:d:N (0; 1) .

(6.1)

The MA(1)-GARCH(1,1) model is commonly used in empirical �nance. We simulate 1,000 data sets of

a random sample fXtgTt=1 for T = 100; 250; 500; 1; 000; 2; 500 respectively. For each iteration, we �rst

generate T + 500 observations and then discard the �rst 500 to reduce the impact of initial values.

Under DGP0, the conditional distribution of Xt given It�1 is normal with mean 0:5ut�1 and variance
ht: For each data set, we estimate the model parameters via MLE and then compute our statistics.
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To investigate the power of our test, we consider the following DGPs:

DGP1 [ARMA(1,1)-GARCH(1,1)-N(0,1)]:8>>>><>>>>:
Xt = 0:3Xt�1 + ut + 0:5ut�1;

ut = h
1
2
t "t;

ht = 0:05 + 0:15u
2
t�1 + 0:8ht�1;

where "t � i:i:d:N (0; 1) :

(6.2)

DGP2 [MA(1)-EGARCH(1,1)-N(0,1)]:8>>>>><>>>>>:
Xt = ut + 0:5ut�1

ut = h
1
2
t "t

lnht = 0:05 + 0:8 lnht�1 + 0:15
�
j"t�1j � 2p

�

�
� 0:8"t�1;

where "t � i:i:d:N (0; 1) :

(6.3)

In DGP3-6 below, the individual mean and variance are of the same forms as those in DGP0.

DGP3 [MA(1)-GARCHK-t]: 8>>><>>>:
"t �

q
�t�2
�t

t (�t) ;

kt = 5:041 +
0:412u4t�1
h2t�1

+ 0:171kt�1;

�t =
2(2kt�3)
kt�3 :

(6.4)

DGP4 [MA(1)-GARCH(1,1)-�2(5)]:

"t � i:i:d:[�2(5)� 5]=
p
10: (6.5)

DGP5 [MA(1)-GARCH(1,1)-t(5)]:

"t � i:i:d:
p
3=5t (5) . (6.6)

DGP6 [MA(1)-GARCH(1,1)-time varying skewed Student�s t]:8><>:
"t � p ("j�t; �t) ;
�t = �1:2� 0:4ut�1 � 0:5u2t�1;
�t = �0:5� 0:5ut�1 � 0:6u2t�1:

(6.7)

DGP1 is an ARMA(1,1)-GARCH(1,1) process with i:i:d:N(0; 1) innovations. Under DGP1, model

(6.1) is misspeci�ed for the conditional mean but is correctly speci�ed for the conditional variance and

higher moments. DGP2 is Nelson�s (1991) EGARCH model with i:i:d:N(0; 1) innovations. Under DGP

2, model (6.1) is correctly speci�ed for the conditional mean but is misspeci�ed for the conditional

variance because it fails to capture the asymmetric e¤ects in volatility. DGP3 is Brooks et al�s (2005)

GARCHK model, which allows the conditional variance and kurtosis to vary over time separately via

the time-varying degrees of freedom. If we use model (6.1) to �t the data generated from DGP3, the

�rst three conditional moments are correctly speci�ed, but there exists dynamic misspeci�cations in
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the conditional kurtosis since it ignores the time-varying conditional fourth moment. Under DGPs 4-6,

model (6.1) is correctly speci�ed for both the conditional mean and the conditional variance, but the

distribution of the innovation "t is misspeci�ed. Among them, DGP4 and DGP5 assume that "t is

generated from the time-invariant �2(5) and t(5) respectively, while DGP6 assumes that "t is generated

from Hansen�s (1994) time-varying skewed Student�s t distribution, whose degrees of freedom �t and

skew parameter �t change over time.9 As suggested by Hansen (1994), we bound �t between 2.1 and

30, and �t between -0.9 and 0.9 by a logistic transformation.

For each of DGPs 1-6, we generate 500 data sets of the random sample fXtgTt=1 for T = 250; 500; 1; 000
and 2; 500 respectively. For each iteration, we generate T + 500 observations and then discard the �rst

500 to reduce the impact of the choice of some initial values. For each data set, we estimate model (6.1)

via MLE. Because model (6.1) is misspeci�ed under all six DGPs, our tests Q̂1 and ~Q1 are expected to

have nontrivial power under DGPs 1-6, provided the sample size T is su¢ ciently large.

6.1.2 Monte Carlo Evidence

We choose the N(0; 1) CDF for W (�) and the Bartlett kernel for k(�), which has bounded support
and is computationally e¢ cient. Our simulation experience suggests that the choices of W (�) and k (�)
have little impact on both size and power of the tests.10 Like Hong (1999), we use a data-driven p̂ via a

plug-in method that minimizes the asymptotic integrated mean squared error of the generalized spectral

density estimator F̂ (!;x;y), with the Bartlett kernel �k (�) used in some preliminary generalized spectral
density estimators. To examine the sensitivity of the choice of the preliminary bandwidth �p on the size

and power of the tests, we consider �p in the range of 10 to 40. We consider the empirical rejection rates

using the asymptotic critical values (1.28 and 1.65) at the 10% and 5% signi�cance levels respectively.

Table 1 reports the rejection rates (in terms of percentage) of Q̂1 and ~Q1 under DGP0 at the 10%

and 5% levels. Both tests have reasonable sizes for sample sizes as small as T = 100 , at both 10% and

5% levels. Both tests, especially Q̂1; tend to underreject a little but the underrejection is not excessive.

The sizes of Q̂1 and ~Q1 are not sensitive to the choice of the preliminary lag order �p:

Table 2 reports the rejection rates of ~Q1 under DGPs 1-6 at the 10% and 5% levels respectively.

Under DGP1, model (6.1) ignores the autoregressive part in the conditional mean dynamics. The ~Q1
test has good power in detecting such misspeci�cation in the conditional mean. The rejection rate of
~Q1 increases signi�cantly with the sample size T and approaches unity when T = 2; 500: Under DGP2,

model (6.1) ignores the asymmetric e¤ects in the conditional variance. The ~Q1 test has excellent power

when (6.1) is used to �t data generated from DGP2. The rejection rate is around 50% at the 5% level

when T = 250 and approaches unity when T = 1; 000: Under DGP3, model (6.1) is correctly speci�ed

for the conditional mean, conditional variance and conditional skewness, but is misspeci�ed for the

conditional kurtosis. The ~Q1 test has no power when the sample size T is small but the rejection rate

increases with the sample size. The reason why ~Q1 has worse power under DGP3 than under DGPs1

and 2 is that ~Q1 checks model misspeci�cation in all directions while under DGP3, the conditional

mean, conditional variance and conditional skewness are all correctly speci�ed. On the other hand,

when we examine the data generated from DGP3, we �nd that the degrees of freedom are all around 5,

which enhances the di¢ culty in distinguishing the normal innovation with the Student�s t innovation.

9p("j�t; �t) is a skewed student�s t distribution, whose PDF is given in (2.2).
10We have tried the Parzen kernel for k (�) ; obtaining similar results (not reported here).
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Under DGPs 4-6, model (6.1) is correctly speci�ed for the conditional mean and conditional variance

but is misspeci�ed for the entire distribution. It is well known that when the degrees of freedom � are

large, the standardized t� or �2� random variable "t is approximately standard normal. Thus the power

of the test decreases as � increases. Here we only report the results for � = 5; which is close to the

empirical �ndings for high-frequency asset returns in the literature. The ~Q1 test has better power

under DGP4 than under DGP5, with the rejection rates approaching unity when T = 2500. This is

expected because �2 is a skewed distribution. We also conjecture that part of the heavy tail generated

by the t or �2 distribution has been captured by the GARCH model, which complicates the detection

of the misspeci�cation in the distribution. Under DGP 6, "t is generated from a time-varying skewed

Student�s t distribution, and so ~Q1; which is sensitive to the shape of the distribution, is expected to

have better power than under DGP5. This is indeed con�rmed in our simulation, with the rejection

rates approaching unity when T = 2500 under DGP6.

Table 3 reports the rejection rates of Q̂1 under DGPs 1-6 at the 10% and 5% levels respectively.

The general patterns are similar to those of ~Q1; with the rejection rates increasing signi�cantly with the

sample size T . Although Q̂1 has higher rejection rates under DGPs 1, 3 and 5, the overall performances

of ~Q1 and Q̂1 are close to each other. But in terms of the computational cost, ~Q1 is much less time-

consuming than Q̂1; because a 4d dimensional integration is reduced to a 2d dimensional integration in

calculating ~Q1. We thus suggest using ~Q1 in practice.

6.2 Bivariate Distribution models

6.2.1 Simulation Design

To examine the size of our tests for multivariate distributional models, we consider the following

bivariate DGP:

DGP B0 [AR(1)-BGARCH(1,1)-BN(0,I)](
X1t = 0:3X1t�1 + u1t;

X2t = 0:2X2t�1 + u2t;
(6.8)

ut =

 
u1t

u2t

!
= H

1=2
t "t;

where Ht =

"
H11t H12t

H21t H22t

#
; "t � N

 "
0

0

#
;

"
1 0

0 1

#!
; and

8><>:
H11t = 0:05 + 0:09u

2
1t�1 + 0:8H

2
11t�1;

H22t = 0:3 + 0:11u
2
2t�1 + 0:7H

2
22t�1;

� = H12tp
H11tH22t

= H21tp
H11tH22t

= 0:2:

DGP B0 is a bivariate Gaussian GARCH model with a constant conditional correlation. The volatilities

of two components are not dynamically related but they are contemporaneously correlated. Similar to

the univariate case, we simulate 1,000 data sets of {XtgTt=1 for T = 100; 250; 500 and 1; 000 respectively.
For each data set, we estimate the model parameters via MLE.

To investigate the power of our tests for multivariate models, we consider the following DGPs:

22



DGP B1 [DCC]:

The conditional mean and the dynamics of H11t and H22t are the same as DGP B0 but with time-

varying conditional correlation:

Ht =

" p
H11t 0

0
p
H22t

#
Rt

" p
H11t 0

0
p
H22t

#
; (6.9)

Qt = 0:1R0 + 0:7(R
1=2
t "t�1)(R

1=2
t "t�1)

0 + 0:2Qt�1;

Rt = diag (Qt)
�1Qtdiag (Qt)

�1 ;

where R0 =

"
1 0:2

0:2 1

#
; diag(�) denotes the diagonals of a matrix.

DGP B2 [Granger causality in mean]:(
X1t = 0:3X1t�1 + u1t + 0:3X2t�1;

X2t = 0:2X2t�1 + u2t;
(6.10)

where ut has the same dynamics as that of DGP B0.

DGP B3 [Granger causality in variance]: The conditional mean dynamics has the same forms as DGP

B0. 8><>:
H11t = 0:05 + 0:15u

2
1t�1 + 0:8H

2
11t�1 + 0:3u

2
2t�1;

H22t = 0:5 + 0:2u
2
2t�1 + 0:5H

2
22t�1 + 0:3u

2
1t�1;

H12t = H21t = 0:3
p
H11tH22t:

(6.11)

DGP B4 [Granger causality in distribution]: The conditional mean and variance have the same forms

as DGP B0, with

"lt � p ("lj�lt; �lt) ; (6.12)

where l = 1; 2 and p(�j�; �) is Hansen�s (1994) time-varying skewed Student�s t distribution, whose
degrees of freedom �lt and skew parameter �lt change over time as(

�lt = �l1 + �l2u1t�1 + �l3u2t�1 + �l4�1t�1 + �l5�2t�1;

�lt = � l1 + � l2u1t�1 + � l3u2t�1 + � l4�1t�1 + � l5�2t�1;

where (
(�11; �12; �13; �14; �15; �11; �12; �13; �14; �15) = (�0:2; 1;�5; 0;�0:9;�0:2; 1;�5; 0;�0:9);
(�21; �22; �23; �24; �25; �21; �22; �23; �24; �25) = (�0:2; 0; 1; 0; 0;�0:2; 0; 1; 0; 0):

DGP B1 is Engle�s (2002) DCC model. A logistic function is used to bound conditional correlation

�t between -1 and 1. Under DGP B1, model (6.8) is correctly speci�ed for the conditional mean and

conditional variance but misspeci�ed for the conditional correlation. Speci�cally, model (6.8) assumes

a constant conditional correlation, while under DGP B1, there exists a time-varying conditional cor-

relation. Under DGP B2, there exists Granger causality in mean from X2t to X1t as the conditional

mean of X1t is determined by both X1t�1 and X2t�1: If we use model (6.8) to �t data generated from

DGP B2, the conditional mean of X1t is misspeci�ed but the conditional variances and higher moments
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are correctly speci�ed. Under DGP B3, the conditional variances of X1t and X2t are misspecifed be-

cause they fail to capture Granger causality in variance from both directions: This model can be used

to characterize volatility spillover between di¤erent �nancial markets. Under DGP B4, model (6.8) is

correctly speci�ed for the conditional mean and variance but is misspeci�ed for the distribution of "t
as it ignores Granger causality in higher moments from X2t to X1t:

Similar to the univariate case, for each of DGPs B1-B4, we generate 500 data sets of the random

sample fXtgTt=1 for T = 250; 500 and 1; 000 respectively. For each data set, we estimate model (6.8)

via MLE and check power performances. For computational simplicity, we just focus on ~Q1 in bivariate

cases.

6.2.2 Monte Carlo Evidence

To reduce computational costs, we generate x̂ and ŷ from an N (0; I2) distribution, with each x̂

and ŷ having 15 grid points in R2 respectively, and let x =(x̂0;�x̂0)0 and y = (ŷ0;�ŷ0)0 to ensure their
symmetry: The choices of k(�); p̂ and �p are the same as in the univariate case.

Table 4 reports the rejection rates of ~Q1 under DGPs B0-B4 at the 10% and 5% signi�cance levels.

Model (6.8) is correctly speci�ed under DGP B0. The ~Q1 test tends to overreject a little when T = 100;

but the overrejection is not excessive and becomes weaker when the sample size increases. We conjecture

that the overrejection is due to the estimation uncertainty of small samples. Similar to the univariate

case, the size of ~Q1 is not sensitive to the choice of the preliminary lag order �p:

Under DGP B1, model (6.8) ignores the time-varying conditional correlation. The ~Q1 test has good

power in detecting such misspeci�cation in the conditional correlation. The rejection rate is around 16%

at the 5% level when the sample size T is as small as 100, and increases signi�cantly with the sample

size. Under DGP B2, model (6.8) ignores the Granger causality in mean from X2t to X1t: The ~Q1 test

has excellent power when model (6.8) is used to �t data generated from DGP B2. The rejection rate

is around 25% at the 5% level when T = 100 and approaches unity when T = 1; 000: Under DGP B3,

model (6.8) ignores the Granger causality in variance from both directions: The ~Q1 test has good power

and the rejection rate approaches 85% at the 5% level when T = 1000: Under DGP B4, model (6.8)

ignores the Granger causality in distribution. Since misspeci�cation only exists in higher moments, we

conjecture that it may be di¢ cult to be captured. However, our ~Q1 test has rather good power when

model (6.8) is used to �t the data generated from DGP B4. The rejection rate increases signi�cantly

with the sample size and approaches 80% at the 5% level when T = 1; 000:

To sum up, we observe:

� Both GCM tests Q̂1 and ~Q1 have reasonable sizes for sample sizes as small as T = 100: The sizes

of tests are robust to the choice of a preliminary lag order.

� Both Q̂1 and ~Q1 have good omnibus powers in detecting various model missspeci�cations, which
demonstrates the nice feature of the proposed indicator function approach embedded in a frequency

domain framework. Although the powers may vary with the degree of discrepancy between the

null and the alternative models, the power performances are satisfactory for sample sizes often

encountered in �nance and economics.
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� The �nite sample performances of Q̂1 and ~Q1 are close to each other under various univariate and
bivariate alternatives but the computational costs di¤er. The test statistic ~Q1 is computationally

more e¢ cient.

7. CONCLUSION

Conditional distribution models in time series have becoming increasingly important in studying

various applications in economics and �nance, such as macroeconomic control, asset allocation, option

pricing, risk management and hedging. We propose a new class of GCM tests for dynamic conditional

distribution models in time series, where the conditional information set may depend on the entire

history of the data. Thanks to the use of the empirical distribution function embedded in a frequency

domain framework, both univariate and multivariate conditional distribution models are covered in a

uni�ed framework and our GCM tests can detect a variety of linear and nonlinear misspeci�cations.

Our frequency domain approach can check a large number of lags without su¤ering from the curse of

dimensionality, and naturally discount higher order lags. When applied to multivariate conditional dis-

tribution models, our tests can fully exploit the information in the joint dynamics of variables and thus

can capture misspeci�cation in modeling joint dynamics, which may be easily missed by existing proce-

dures. Our tests are applicable to both discrete and continuous distributions. They are supplemented

by a class of diagnostic procedures, which are obtained by integrating the CDF and focus on various

speci�c aspects of the dynamics such as whether there exists neglected structures in conditional mean,

conditional variance, conditional correlation, conditional skewness and conditional kurtosis respectively.

Such information is useful for practitioners in reconstructing a misspeci�ed model. Unlike the tra-

ditional CM and KS tests, which also use the empirical distribution function but have nonstandard

distributions, our test statistics all follow a convenient asymptotic N (0; 1) distribution, and they are

applicable to various estimation methods, including suboptimal but consistent estimators. Moreover,

parameter estimation uncertainty has no impact on the asymptotic distribution of the test statistics.

Simulation studies show that the proposed tests perform reasonably well in �nite samples.
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Table 1. Sizes of specification tests under DGP0 

 
T Lag 

order 
100 250 500 1000 

α  .10 .05 .10 .05 .10 .05 .10 .05 

Tests based on the covariance between the generalized residual and its lag term  

1
~Q  10 .063 .038 .062 .040 .067 .039 .058 .037 

20 .090 .052 .093 .056 .089 .062 .074 .042 

30 .108 .060 .105 .063 .102 .069 .078 .043 

40 .105 .072 .107 .063 .110 .065 .076 .044 

Tests based on the covariance between the generalized residual and the lag indicator function 

1Q̂  10 .076 .043 .065 .043 .078 .052 .062 .037 

20 .061 .038 .065 .037 .077 .048 .070 .037 

30 .056 .034 .068 .040 .074 .045 .070 .035 

40 .053 .029 .067 .034 .068 .044 .073 .034 

 
Notes: (1) DGP0 is: Xt=ut+0.5ut-1, ut=ht

1/2εt, ht=0.05+0.15Xt-1
2+0.8ht-1, where εt~ i.i.d.N(0,1); 

             (2) 1Q̂  and 1
~Q  are tests based on the covariance between the generalized residual and the lag 

indicator function and tests based on the covariance between the generalized residual and its lag term, given 
in equation (3.11) and (3.13) respectively; 
               (3)  1000 iterations.  



Table 2. Powers of 1
~Q  under DGPs1-6 

T Lag 
order 

250 500 1000 2500 

α  .10 .05 .10 .05 .10 .05 .10 .05 

DGP1 
[ARMA 
-GARCH 
-N(0,1)] 

10 .426 .330 .838 .762 .994 .992 1.00 1.00 

20 .356 .274 .758 .690 .988 .968 1.00 1.00 

30 .306 .238 .686 .608 .966 .936 1.00 1.00 

40 .278 .218 .644 .548 .942 .914 1.00 1.0 

DGP2 
[EGARCH 

-N(0,1)] 

10 .812 .730 .994 .986 1.00 1.00 1.00 1.00 

20 .676 .558 .978 .958 1.00 1.00 1.00 1.00 

30 .564 .452 .952 .924 1.00 1.00 1.00 1.00 

40 .480 .348 .918 .882 1.00 1.00 1.00 1.00 

DGP3 
[MA 

-
GARCHK] 

10 .040 .030 .070 .042 .142 .090 .400 .294 

20 .046 .030 .070 .038 .100 .054 .260 .168 

30 .050 .034 .066 .034 .082 .044 .182 .126 

40 .054 .036 .062 .030 .070 .036 .152 .092 

DGP4 
[MA 

-GARCH 
-Chi(5)] 

10 .220 .154 .416 .318 .840 .780 1.00 1.00 

20 .180 .126 .278 .184 .670 .570 1.00 1.00 

30 .150 .110 .220 .140 .546 .434 .996 .994 

40 .144 .110 .186 .120 .464 .344 .986 .968 

DGP5 
[MA 

-GARCH 
-t(5)] 

10 .066 .034 .096 .054 .138 .074 .464 .364 

20 .054 .032 .060 .030 .078 .048 .296 .210 

30 .054 .034 .042 .068 .044 .069 .204 .144 

40 .050 .030 .040 .054 .026 .065 .148 .102 

DGP6 
[MA 

-GARCH 
-time 

varying 
t] 

10 .152 .110 .322 .236 .708 .616 1.00 1.00 

20 .124 .080 .224 .148 .548 .400 .994 .980 

30 .108 .070 .162 .106 .394 .278 .958 .920 

40 .098 .058 .134 .082 .314 .214 .916 .838 

Notes: (1) 1
~Q  is based on the covariance between the generalized residual and its lag term, given in 

equation (3.13); 
              (2)  500 iterations.  



Table 3. Powers of 1Q̂  under DGPs 1-6 
T Lag 

order 
250 500 1000 2500 

α  .10 .05 .10 .05 .10 .05 .10 .05 

DGP1 
[ARMA 
-GARCH 
-N(0,1)] 

10 .636 .552 .882 .836 .994 .988 1.00 1.00 

20 .548 .438 .806 .752 .982 .980 1.00 1.00 

30 .486 .390 .762 .714 .978 .964 1.00 1.00 

40 .444 .362 .748 .672 .966 .948 1.00 1.00 

DGP2 
[EGARCH 

-N(0,1)] 

10 .686 .580 .940 .906 .998 .998 1.00 1.00 

20 .584 .488 .900 .832 .996 .992 1.00 1.00 

30 .512 .412 .856 .784 .994 .986 1.00 1.00 

40 .452 .340 .820 .736 .990 .978 1.00 1.00 

DGP3 
[MA 

-
GARCHK] 

10 .108 .058 .132 .098 .228 .160 .444 .358 

20 .094 .050 .103 .069 .218 .136 .362 .272 

30 .074 .044 .104 .061 .188 .122 .328 .238 

40 .066 .040 .104 .059 .168 .114 .304 .224 

DGP4 
[MA 

-GARCH 
-Chi(5)] 

10 .206 .136 .404 .292 .746 .666 .986 .984 

20 .160 .102 .302 .212 .616 .534 .974 .962 

30 .142 .082 .258 .174 .542 .438 .956 .926 

40 .126 .068 .224 .140 .482 .378 .936 .874 

DGP5 
[MA 

-GARCH 
-t(5)] 

10 .116 .072 .146 .106 .250 .188 .504 .402 

20 .096 .050 .124 .074 .232 .150 .426 .326 

30 .084 .044 .108 .066 .200 .138 .392 .274 

40 .076 .038 .094 .064 .180 .112 .356 .268 

DGP6 
[MA 

-GARCH 
-time 

varying 
t] 

10 .222 .150 .328 .244 .694 .558 .988 .972 

20 .182 .133 .258 .176 .552 .424 .964 .918 

30 .172 .112 .240 .150 .478 .336 .902 .830 

40 .157 .083 .206 .136 .438 .302 .844 .778 

Notes: (1) 1Q̂  is based on the covariance between the generalized residual and the lag indicator function, 
given in equation (3.11); 
              (2)  500 iterations.  



Table 4. Size and powers of 1
~Q  under DGPs B0-B4 

 
T Lag 

order 
100 250 500 1000 

α  .10 .05 .10 .05 .10 .05 .10 .05 

Size 

DGPB0 
AR(1)-

BGARCH 
(1,1)- 

BN(0,I) 

10 .101 .068 .085 .061 .088 .052 .074 .038 

20 .136 .087 .119 .077 .102 .064 .083 .048 

30 .156 .121 .127 .085 .103 .070 .087 .051 

40 .169 .128 .136 .090 .112 .079 .095 .055 

Powers

DGPB1 
(DCC) 

10 .220 .140 .442 .342 .644 .554 .894 .852 

20 .170 .118 .386 .260 .558 .466 .848 .810 

30 .146 .108 .316 .236 .504 .388 .812 .758 

40 .144 .090 .300 .212 .460 .356 .780 .714 

DGPB2 
(Granger 

causality in 
mean) 

10 .506 .366 .930 .876 .994 .992 1.00 1.00 

20 .412 .250 .870 .810 .978 .954 1.00 1.00 

30 .314 .206 .828 .774 .958 .922 1.00 1.00 

40 .276 .158 .798 .742 .928 .876 1.00 1.00 

DGPB3 
(Granger 

causality in 
variance ) 

10 .202 .112 .652 .625 .792 .778 .834 .830 

20 .218 .126 .680 .657 .820 .810 .848 .844 

30 .220 .116 .696 .677 .838 .828 .860 .856 

40 .218 .118 .712 .690 .844 .836 .866 .866 

DGPB4 
(Granger 

causality in 
distribution)  

10 .224 .130 .436 .296 .720 .614 .972 .930 

20 .174 .096 .288 .190 .570 .446 .902 .814 

30 .158 .094 .234 .162 .490 .344 .820 .738 

40 .144 .076 .206 .144 .424 .278 .744 .656 

Notes:   (1) 1
~Q  is based on the covariance between the generalized residual and its lag term, given in 

equation (3.13); 
                (2) Results of DGP B0 are based on 1000 iterations; results of DGPs B1-B4 are based on 500 
iterations.    
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