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Abstract

This paper gives a selective overview on the functional coefficient models
with their particular applications in economics and finance. Functional co-
efficient models are very useful analytic tools to explore complex dynamic
structures and evolutions for functional data in various areas, particularly
in economics and finance. They are natural generalizations of classical para-
metric models with good interpretability by allowing coefficients to be gov-
erned by some variables or to change over time, and also they have abilities
to capture nonlinearity and heteroscedasticity. Furthermore, they can be
regarded as one of dimensionality reduction methods for functional data
exploration and have nice interpretability. Due to their great properties,
functional coefficient models have had many methodological and theoretical
developments and they have become very popular in various applications.
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1 Introduction

There is a swift growing literature in methodological and theoretical research
on the functional coefficient models in the recent two decades. Particularly,
due to their great flexibility and interpretability, the functional coefficient
models have been extensively applied to economics and finance to capture
the dynamic changes and evolutions in economic and financial phenomena.
Given space limitations, it is impossible to survey all the important recent
developments and applications in functional coefficient models. Therefore,
I choose to limit my focus on the following areas. In Section 2, I review the
recent developments of nonparametric estimation and testing of functional
coefficient models. In Section 3 is devoted to two major real applications
in economics and finance. For more about the methodology, theory and
applications of functional coefficient models in statistics, economics, finance
as well as other fields, the reader is referred to the review papers by Fan and
Zhang (2008), Cai and Hong (2009) and Cai and Li (2009).

2 Functional Coefficient Models

2.1 The models

A general nonparametric regression model (see (1) in Chapter 1) can be
written as

Yt = g(Xt,Zt) + εt, 1 ≤ t ≤ T, (1)

where Yt is the dependent variable, both Xt ∈ R
p and Zt ∈ R

q are regressors,
and the regression function g(x, z) is a R

p+q-dimensional surface. A func-
tional (varying) coefficient model (see (20) in Chapter 1) has the following
particular form

g(Xt,Zt) =

p∑

j=0

aj(Zt)Xjt = a(Zt)
⊤Xt, (2)

which is linear in Xt and nonlinear in Zt and the nonparametric coeffi-
cient functions are in R

q rather than in R
p+q. Here, X0t = 1, a(Zt) =

(a0(Zt), · · · , ap(Zt))
⊤, Xt = (1, X1t, · · · , Xpt)

⊤, and A⊤ denotes the trans-
pose of a matrix or vector A. As in (21) in Chapter 1, one can assume
that

E[εt|Xt,Zt] = 0. (3)

Then, both variables Xt and Zt are exogenous. However, (3) might not
be true for many applications in economics and finance. In such a case,
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some components of Xt are called endogenous variable; see (13) and (14)
later for the detailed setting. Notice that the functional coefficient model
given in (2) and (3) was proposed in Cleveland, Grosse and Shyu (1991)
and studied extensively by Hastie and Tibshirani (1993). For more about
statistical properties of functional coefficient models, the reader is referred
to the statistical survey paper by Fan and Zhang (2008).

It is clear from (2) and (3) that the identification condition can be derived
as follows

E
[
Xt X

⊤
t |Zt

]
a(Zt) = E[YtXt|Zt]

and
a(z) = Ω(z)−1E[YtXt|Zt = z]

provided that Ω(z) = E
[
Xt X

⊤
t |Zt = z

]
is nonsingular for all z. Therefore,

the sufficient and necessary condition to identify a(z) is Ω(z) > 0 for all z,
which is an identification condition. When (3) does not hold, to estimate
and identify functionals in (2), one need instrumental variables (IV); see
Cai, Das, Xiong and Wu (2006, CDXW) for details. In what follows, it is
assumed that the model is identified.

As elaborated by CDXW (2006), functional coefficient models are appro-
priate and flexible enough for many applications, in particular when additive
separability of covariates is unsuitable for the problem at hand. For ease of
notation, we assume here that p = 1 and q = 1. Indeed, by assuming that
g(x, z) has a higher order partial derivative with respect to x and applying
Taylor expansion to g(x, z), one obtains

g(x, z) =
∞∑

j=1

∂jg(0, z)

∂xj

xj

j!
≈

d∑

j=0

aj(z)xj (4)

for some d (large), where aj(z) = (j!)−1∂jg(0, z)/∂xj and xj = xj . Equa-
tion (4) implies that a functional coefficient model in (2) might be a good
approximation to a general nonparametric model in (1).

More importantly, functional coefficient model in (2) and (3) has an
ability to capture heteroscedasticity. To get insights about this, it is easy to
see that

Var(Yt|Zt) = a(Zt)
⊤Var(Xt|Zt)a(Zt) + σ2

ε(Zt),

where σ2
ε(Zt) = Var(εt|Zt). Therefore, the first term in the above expression

behaves as an ARCH type model. Furthermore, the functional coefficient ap-
proach allows appreciable flexibility on the structure of fitted models without
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suffering from the “curse of dimensionality” since the nonparametric esti-
mation is conducted in R

q instead of R
p+q. Finally, functional coefficient

model can be used as a tool to study covariate adjusted regression for sit-
uations where both predictors and response in a regression model are not
directly observable, but are contaminated with a multiplicative factor that
is determined by the value of an unknown function of an observable covari-
ate (confounding variable); See Şentürk and Müller (2005) and Cai and Xu
(2008) for more details.

Model in (2) and (3) covers many familiar models popularly used in the
literature. For example, if Zt is time, it becomes to the following trending
time varying coefficient model

Yt =

p∑

j=0

aj(t)Xjt + εt, 1 ≤ t ≤ T, (5)

which has an ability to capture the dynamic changes and evolutions with
time. A trending time varying time series model given in (5) has gained
a lot of attention during the last two decades due to many applications in
economics and finance. Following are some examples. The market model in
finance is an example that relates the return of an individual stock to the
return of a market index or another individual stock and the coefficient usu-
ally is called a beta coefficient in the capital asset pricing model (CAPM);
see the papers by Cochrane (1996) and Cai (2007) and the book by Tsay
(2005) for more details on theory and real examples. However, some recent
studies show that the beta coefficients might vary over time; see Cai (2007)
and the references therein.2 The term structure of interest rates is another
example in which the time evolution of the relationship between interest
rates with different maturities is evidenced; see Tsay (2005) for details. The
last example is the relationship between the prototype electricity demand
and other variables such as the income or production, the real price of elec-
tricity, and the temperature. Indeed, Chang and Martinez-Chombo (2003)
found that this relationship may change over time based on the empirical
study of the demand equation using monthly Mexican electricity data for
residential, commercial and industrial sectors. Although the literature is al-
ready vast and continues to grow swiftly, as pointed out by Phillips (2001),
the research in this area is just beginning.

2There are many recent developments on time varying beta coefficient CAPMs; see
Bansal, Hsieh and Viswanathan (1993), Bansal and Viswanathan (1993), Jagannathan
and Wang (1996), Ghysels (1998), Reyes (1999), Cui, He and Zhu (2002), Akdeniz, Altay-
Salih, Caner (2003), Wang (2002, 2003) and You and Jiang (2007).
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Also, notice that if Xjt in (5) is a lagged variable (say, Xjt = Yt−j)
and {aj(t)} satisfy some conditions, model (5) becomes the well known
locally stationary time series model, which, proposed by Dahlhaus (1997),
has a great ability to capture nonstationarity and nonlinearity; see Dahlhaus
(1997) and Dahlhaus and Subba Rao (2006) for details on the theory of
locally stationary time series models and their applications in finance.

If {aj(t)} are piecewise constant functions of time; that is

aj(t) =
m∑

l=1

ajlI(Tl−1 ≤ t < Tl), (6)

where 1 = T0 < T1 < · · · < Tm < T , I(A) is the indicator function of the
event A and {Tj} are the structural change points which might be known
or unknown, model in (6) includes the class of structural multiple change
models popular in economics and finance and can characterize parameter
instability. Parameter instability for economic and financial models is a
common phenomenon. This is particularly true for time series data covering
an extended period, as it is more likely for the underlying data generating
mechanism to be disturbed over a longer horizon by various factors such
as policy regime shift, macroeconomic announcements, global or regional
financial crises, an unusually large unemployment announcement by a gov-
ernment, and a dramatic interest rate cut by the Federal Reserve and so on.
For example, for the empirical problem discussed in the paper by Bai (1997),
the finding is that the response pattern of interest rates to the changes in
discount rates varies over time. The timing of variation is consistent with
the timing of changes in the Fed’s operating procedures. It is well known
that failure to take into account parameter changes, given their presence,
may lead to incorrect policy implications and predictions. On the other
hand, proper treatment of parameter changes can be useful in uncovering
the underlying factors that fostered the changes, in identifying misspecifi-
cation, and in analyzing the effect of a policy change. There are a vast
literature on structural change models; see the papers by Bai (1997), Bai
and Perron (1998) and Bai and Perron (2003) and the references therein.
Finally, if Xjt is a lagged variable (Xjt = Yt−j), the model becomes the
piecewise autoregressive models (see Davis, Lee and Rodriguez-Yam, 2006,
for recent advances), which have an ability to depict nonstationarity and can
proximate well the locally stationary time series models of Dahlhaus (1997);
see Davis, Lee and Rodriguez-Yam (2006) for more discussion.
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If {aj(Zt)} in (2) have the following particular parametric forms as

aj(Zt) =
m∑

k=1

ajkI(Zt ∈ Ωk),

where {Ωk} form a (non-overlapping) partition of the whole domain of Zt.
This model is called threshold model, which is a special case of a nonlinear
model. Theoretical properties and practical implementations of threshold
modeling have been covered by Tong (1990). The threshold regression theory
has gained a lot of momentum recently, for some of the selected studies
in economics and finance; see Hansen (2000), Caner and Hansen (2001),
Akdeniz, Altay-Salih and Caner (2003), and Caner and Hansen (2004).

Notice that since a structural change model or a threshold model is a
parametric model and my focus is on nonparametric models, I will not review
structural change models, locally stationary time series models, threshold
models and piecewise stationary processes. The reader is referred to the
aforementioned literatures on these models.

Finally, it is worth to pointing out that a functional coefficient model in
(2) and (3) can be used to analyze the functional data as in Ramsay and
Silverman (1997). For example, Ramsay and Silverman (1997), Wei, Pere,
Koenker and He (2006), Wei and He (2006) and Şentürk and Müller (2008)
extended model in (2) and (3) to the following form

Yi(tij) = a(tij)
⊤Xi(tij) + εi(tij), 1 ≤ j ≤ ni, 1 ≤ i ≤ n, (7)

where Yij = Yi(tij), Xij = Xi(tij) and εi(tij) is a zero-mean process with
covariance function δ(t, s) = Cov(εi(t), εi(s)), and they used this model for
longitudinal growth studies. Model (7) might have a potential application in
economics and finance; see Cai, Hsiao and Zhu (2009) for studying trending
panel data. Cardot and Sarda (2008) considered a generalization of the
functional coefficient regression model which takes the form

Y =

∫
a(Z, t)⊤X(t)dt + ε, (8)

where Z and ε are real random variables such that E(ε|Z) = 0, E(Xε|Z) = 0
and Var(ε|Z) = σ2, and they used this model for ozone pollution forecast-
ing. Indeed, model (8) can be modified and generalized to be a functional
volatility process which provides a new tool for modeling volatility trajec-
tories in financial markets; see Müller, Sen and Stadtmüller (2007) for more
discussion.

6



2.2 Nonparametric modeling procedures

There are three major approaches in estimating the {aj(·)} in model (2) if
they are assumed to be continuous. The first one is kernel-local polynomial
smoothing; see Cai, Fan and Li (2000) and Cai, Fan and Yao (2000). The
second one is polynomial spline; see Huang and Shen (2004). The last one is
smoothing spline; see Hastie and Tibshirani (1993). A local linear fitting has
several great properties such as high statistical efficiency in an asymptotic
minimax sense, adaptive design, and automatic edge correction (Fan and
Gijbels, 1996). Therefore, in what follows, I am going to outline only the
kernel local polynomial smoothing method and for other methods, the reader
is referred to the aforementioned papers.

2.2.1 Nonparametric estimation of functional coefficients

For simplicity, in what follows, I assume that q = 1. I estimate the func-
tions {aj(·)} in (2) using the local linear regression method from observations
{(Xt, Yt, Zt)}T

t=l. It is assumed throughout the article that aj(·) has a con-
tinuous second derivative. Notice that one may approximate aj(Zt) locally
at any grid point z ∈ R by a linear function aj(Zt) ≈ aj + bj(Zt − z). The

local linear estimator is defined as âj(z) = âj , where {(âj , b̂j)} minimize the
sum of locally weighted least squares

T∑

t=1



Yt −
p∑

j=0

{aj + bj(Zt − z)}Xjt




2

Kh(Zt − z), (9)

where Kh(x) = h−1K(x/h), K(·) is a kernel function on R and h > 0 is
a bandwidth which controls the degree of smoothing in estimation, and it
satisfies h → 0 and hT → ∞ as T → ∞.

Notice that the local linear estimator can be viewed as the least squares
estimator of the following working linear (parametric) model

K
1/2

h (Zt − z)Yt = K
1/2

h (Zt − z)

p∑

j=0

{aj + bj(Zt − z)}Xjt + ut.

Therefore, the estimator âj(z) is a linear estimator of aj(z) (a linear com-
bination of Y1, · · · , YT ) and computational implementation can be easily
carried out by any standard statistical software.
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Remark 1 The restriction to the locally weighted least squares method sug-
gests that normality is at least being considered as a baseline. However,
when abnormality is clearly present, a local quasi likelihood approach can
be used; see Cai (2003). If there are any outliers, one can use a robust
local linear fitting scheme; see Cai and Ould-Said (2003). If some of Xt

are endogenous variables, the various instrumental variable type estimates
of linear and nonlinear simultaneous equations and transformation models
can be easily applied here with some modifications; see CDXW (2006) and
Das (2005). Although such methods appropriately modified can be applied to
the current setting, their asymptotic properties are not obvious (see Section
3 later).

When Zt is random, Cai, Fan and Yao (2000) showed that under some
regularity conditions, â(z) is asymptotically normally distributed; that is

√
hT

[
â(z) − a(z) − h2

2
µ2 a′′(z) + op(h

2)

]
→ N(0, ν0Σ(z)), (10)

where µ2 =
∫

u2K(u)du, ν0 =
∫

K(u)2du and Σ(z) = Ω(z)−1Ω1(z)Ω(z)−1

/fz(z). Here, fz(z) is the marginal density of Zt and Ω1(z) = E
[
σ2(Xt, Zt)

Xt X
⊤
t |Zt = z

]
, where σ2(Xt, Zt) = Var(εt|Xt, Zt). When Zt is time (in-

deed, Zt is normalized as Zt = st = t/T ; see Cai, 2007, for details), Cai
(2007) showed that under some regularity conditions, for any s ∈ [0, 1],

√
hT

[
â(s) − a(s) − h2

2
µ2 a′′(s) + op(h

2)

]
→ N(0, ν0Σs), (11)

where Σs = Ω−1Ω1(s)Ω
−1, Ω = E

[
Xt X

⊤
t

]
and Ω1(s) =

∑∞
k=−∞ Rk(s)

with Rk(t) = Cov(σ(Xi+k, t)ui+kXi+k, σ(Xi, t)uiXi), εt = σ(Xt, t)ut and
{ut} is stationary and Var(ut) = 1.

From (10) and (11), it is easy to drive the asymptotic mean squares error
(AMSE) which is the asymptotic variance plus the square of the asymptotic
bias and to drive the optimal bandwidth by minimizing the AMSE. Clearly,
the optimal bandwidth is hopt = c T−1/5 for some unknown positive constant
c which can be estimated based on a data-driven fashion, described below.

2.2.2 Bandwidth selection

It is well known that the bandwidth plays an essential role in the trade-off
between reducing bias and variance. By following a similar idea in Cai and
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Tiwari (2000), Cai (2002) and Cai (2007), here I adapt a simple and quick
method to select the bandwidth for the foregoing estimation procedures,
described as follows. For the given observed values {Yt}T

t=1, the fitted values
{Ŷt}T

t=1 can be expressed as Ŷ = Hh Y, where Y = (Y1, · · · , YT )⊤ and Hh

is called the T ×T smoother (or hat) matrix associated with the smoothing
parameter h. Motivated by the ideas in Cai and Tiwari (2000) and Cai
(2002), I use the following nonparametric version of AIC to select the optimal
bandwidth hopt by minimizing

AIC(h) = log(σ̂2) + 2(Th + 1)/(T − Th − 2),

where σ̂2 =
∑T

t=1
(Ŷt − Yt)

2/T and Th is the trace of the hat matrix Hh.
This selection criterion counteracts the over/under-fitting tendency of the
generalized cross-validation and the classical AIC; see Cai and Tiwari (2000)
and Cai (2002) for more details. Alternatively, one might use some exist-
ing methods in the time series literature although they may require more
computing; see Fan and Gijbels (1996), Cai, Fan and Yao (2000) and Cai
(2007). This bandwidth selection criterion will be used in Section 3 for real
examples.

2.3 Misspecification testing

An important econometric question in fitting model (2) or (5) is that there is
a need to test the following scenarios: (1) whether all coefficient functions are
actually varying (namely, if a linear model is adequate); (2) more generally, if
a parametric model fits the given data such as testing for structural breaks
as in Bai (1997) and Bai and Perron (1998, 2003) or testing a threshold
model as in Hansen (2000), Caner and Hansen (2001), Akdeniz, Altay-Salih
and Caner (2003), and Caner and Hansen (2004) or a specific parametric
form as in Ferson and Harvey (1998, 1999), Cai, Fan and Yao (2000) and
Cai, Fan and Li (2000); (3) if there is no a0(·) at all; and (4) whether there
are some economic variables not statistically significant. This amounts to
testing whether some or all coefficient functions are constant or zero or in a
certain parametric form. This testing problem can be formulated as

H0 : aj(z) = a∗j (z, γ), (12)

where a∗j (z, γ) is a given family of functions indexed by an unknown pa-
rameter vector γ. Some tests similar to (12) have been considered in the
econometrics and finance literature; see, for example, Ghysels (1998) by us-
ing the supreme lagrange multiplier (LM) test proposed by Andrews (1993)
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for testing the structural break and Akdeniz, Altay-Salih and Caner (2003)
by applying the heteroskedasticity consistent LM test for a threshold as in
Hansen (1996).

For an easy implementation purpose, I adapt a misspecification test
based on comparing the residual sum of squares (RSS) from both parametric
(H0) and nonparametric fittings (Ha), described as follows. Let γ̂ be a con-
sistent estimator of γ (say MLE or LSE). The RSS under the null hypothesis
is RSS0 = T−1

∑T
t=1

e2
t,0, where et,0 = Yt −

∑p
j=0

a∗j (Zt, γ̂)Xtj and the RSS

under Ha is RSS1 = T−1
∑T

t=1
e2
t,1, where et,1 = Yt −

∑p
j=0

âj(Zt)Xtj . The
test statistic is defined as

JT = (RSS0 − RSS1)/RSS1 = RSS0/RSS1 − 1,

which can be regarded as a generalized F -test statistic (see Cai and Ti-
wari, 2000; Cai, 2002) and a generalized likelihood ratio test statistic (see
Fan, Zhang and Zhang, 2001). The null hypothesis (12) is rejected for a
large value of JT . For simplicity, the p-value is computed by using the
following nonparametric wild bootstrap approach that can accommodate
heteroscedasticity in the model. Notice that this kind of test has been used
in the statistics and econometrics literature by several authors; see, for ex-
ample, Cai, Fan and Yao (2000), Cai and Tiwari (2000), and Cai (2007) for
various applications in economics and finance and Cai, Fan and Li (2000)
and Fan, Zhang and Zhang (2001) for applications in other areas.

The steps for the wild bootstrap sampling scheme are described as fol-
lows.

1. Generate the residuals {eb
t}T

t=1 from the centered nonparametric
residuals {e0

t }T
t=1, where e0

t = et,1−ēt,1 with ēt,1 = T−1
∑T

t=1
et,1.

2. Define the bootstrap sample Y b
t =

∑p
j=0

a∗j (Zt, γ̂)Xtj + eb
t . In

practice, one can define eb
t = e 0

t · ηt, where {ηt} is a sequence of
iid random variables with mean zero and unit variance.

3. Calculate the bootstrap test statistic J∗
T based on the bootstrap

sampling sample
{
(Y b

t ,Xt, Zt)
}T

t=1
. Notice that for simplicity,

the same bandwidth might be used in calculating both J∗
T and

JT .

4. Compute the p-value of the test based on the relative frequency
of the event {J∗

T ≥ JT } in the replications of the bootstrap sam-
pling.
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Remark 2 At the first step, the reason why one bootstraps the centralized
residuals from the nonparametric fit instead of the parametric fit is that the
nonparametric estimate of residuals is always consistent, no matter whether
the null or the alternative hypothesis is correct. Therefore, the method should
provide a consistent estimator of the null distribution even when the null
hypothesis does not hold. The consistency issue addressed in Cai, Fan and
Yao (2000) can be applied to the setting here (see Cai, Fan and Yao, 2000,
for details). This testing procedure will be used in Example 2 in Section 3
for a real application.

3 Applications in Economics and Finance

There are many applications of functional coefficient models in economics
and finance but I only present two real examples in the next two subsec-
tions due to space limitations. For more empirical examples in economics
and finance, the reader is referred to the aforementioned papers and the
additional papers by Li, Huang, Li and Fu (2001), Hong and Lee (2003),
Fan and Zhang (2003), Fan, Jiang, Zhang and Zhou (2005), Cai, Kuan and
Sun (2009) and Cai and Wang (2009) and the references therein.

3.1 Functional coefficient instrumental variables models

Functional coefficient models are appropriate for many economics applica-
tions. For example, here is a labor economics problem. A large body of
work has established that while positive, marginal returns to education vary
with the level of schooling (see Schultz, 1997), if work experience is also
an attribute valued by employers, then the marginal returns to education
should vary with experience. In fact, Card (2001) suggested that if a wage
model assumes the additive separability of education and experience, the re-
turns to education will be understated at higher levels of education because
the marginal return to education is plausibly increasing in work experience.
This setting is therefore a natural one for a functional coefficient model.

Under a functional coefficient representation, the nonparametric struc-
tural model no longer exhibits the ill-posed problem of Newey and Powell
(2003). CDXW (2006) showed that under standard regularity conditions the
model is identified and the estimators are well-defined with known asymp-
totic distribution. It is also shown that under this representation the estima-
tors obtain faster convergence rates relative to analogous structural models
that do not satisfy a functional coefficient representation.
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Das (2005) considered a nonparametric IV model with discrete endoge-
nous variables,

Yi = g(Xi,Z1i) + εi, (13)

where Xi is a discrete endogenous variable and Z1i is an exogenous variable.
Here E[εi|Xi,Z1i] 6= 0. Without loss of generality, I assume that Xi = 0 or
1. Then, g(x, z1) in (13) can be rewritten as

g(x, z1) = g(0, z1)I(x = 0) + g(1, z1)I(x = 1) = a0(z1) + a1(z1)x,

where a0(z1) = g(0, z1) and a1(z1) = g(1, z1) − g(0, z1). Therefore, g(x, z1)
is linear in endogenous variable but nonlinear in exogenous variable Z1.
Clearly, this model belongs to the class of functional coefficient models.
Therefore, CDXW (2006) studied the following functional coefficient IV
model

Yi =
d∑

j=1

aj(Zi1)Xij + ui = a(Zi1)
⊤Xi + ui, E[ui|Zi] = 0, (14)

where Yi is an observable scalar random variable, {aj(·)} are the unknown
structural functions of interest, Xi0 ≡ 1, Xi = (Xi0, Xi1, · · · , Xid)

⊤ is a
(d + 1)-dimension vector consisting of d endogenous regressors, a(Zi1) =
(a0(Zi1), . . . , ad(Zi1))

⊤, and Zi is a (d1 +d2)-dimension vector consisting of
a d1-dimension vector Zi1 of exogenous variables and a d2-dimension vector
Zi2 of instrumental variables.

Model (14) includes the following nonparametric IV model with binary
endogenous variable Di as a special case:

Yi = a0(Zi1) + a1(Zi1)Di + εi,

which, as noted above, is analyzed in Das (2005). Further, if aj(·) is a
threshold function such as

aj(z) = aj1I(z ≤ rj) + aj2I(z > rj)

for some rj , then model (14) may describe a threshold IV regression model.
Indeed, Caner and Hansen (2004) considered a threshold model related to
this with endogenous covariates. In this way, the class of models in (14)
includes some interesting special cases that arise commonly in empirical
research in economics.
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To estimate {aj(z1)} in (14) nonparametrically, I propose using a two-
stage nonparametric method as in CDXW (2006), described as follows. I
begin with the first stage, where I obtain π̂j(Zi), the fitted value for πj(Zi) =
E[Xij |Zi] (1 ≤ j ≤ d; 1 ≤ i ≤ n). To this end, I apply the local linear fitting
technique and the jackknife (leave-one-out) idea as follows. Assuming that
{πj(·)} has a continuous second derivative, when Zk falls in a neighborhood
of Zi, a Taylor expansion approximates πj(Zk) by

πj(Zk) ≈ πj(Zi) + (Zk − Zi)
⊤ π′

j(Zi) = αij + (Zk − Zi)
⊤ βij .

The jackknife idea is to use the all observations except the ith observations
in estimating πj(Zi). Then, the least squares estimator with a local weight
(i.e., locally weighted least squares) is given by

n∑

k 6=i

{
Xkj − αij − (Zk − Zi)

⊤ βij

}2

Kh1
(Zk − Zi).

Minimizing the above locally weighted least square with respect to αij and
βij gives the local linear estimate of πj(Zi) by π̂j,−i(Zi) = α̂ij . Now, I derive

the local linear estimator of {aj(·)}. The local linear estimators b̂j and ĉj

are defined as the minimizers of the sum of weighted least squares

n∑

i=1



Yi −
d∑

j=0

{
bj + (Zi1 − z1)

⊤cj

}
π̂j,−i(Zi)




2

Lh2
(Zi1 − z1),

and âj(z1) = b̂j . CDXW (2006) showed that under some regularity condi-
tions, âj(z1) is asymptotically normally distributed. Also, CDXW (2006)
suggested an ad hoc bandwidth selection procedure to select two bandwidths
in a data-driven fashion; see CDXW (2006) for details. At the first step, the
bandwidth is chosen as small as possible and at the second step, one can use
the data-driven method mentioned in Section 2.2.2 to choose the optimal
bandwidth. This bandwidth selection criterion will be used in Example 1
below.

Example 1. I investigate the empirical relation between wages and ed-
ucation, using a random sample of young Australian female workers from
the 1985 wave of the Australian Longitudinal Survey. The endogeneity of
education in a wage model due to unobservable heterogeneity in schooling
choices is well known in the literature; see e.g., the review in Card (2001).
I consider the following functional coefficient specification:

Y = δ0(Z12)
⊤Z11 + g0(Z12) + g1(Z12)X + ε

13



and E(X |Z11, Z12, Z2) = π(Z11, Z12, Z2), where Y is the natural logarithm
of the hourly wage, Z11 includes indicators for marital status, government
employed, union status and Australian-born, Z12 is a measure of work ex-
perience measured in years, X is the measure of (endogenous) education
(“Schooling”), Z2 is an instrumental variable, and g0(·), g1(·) and π(·) are
unknown functions. The object of interest is g1(·), the functional coefficient
of education, that depends on the level of experience.

The main results from estimation of this model are summarized in Fig-
ure 1 which plots the estimators of the functional coefficient g1(·) correcting
for endogeneity (the smooth solid line), and without correcting for endo-
geneity (the dashed line). First, notice that the profile without correcting
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Figure 1: Functional coefficient estimates. The figure corresponds to the
functional coefficient g1(·), graphing the two-stage local linear estimate (solid
line) with pointwise 95% confidence intervals (dotted lines), and the ordinary
nonparametric estimate (dashed line).

for endogeneity is almost constant. In the profile correcting for endogeneity,
one can find that the range of ĝ1(·) is positive and nonlinear for all values
of experience in the sample. This implies that holding experience fixed at
any level, the marginal wage returns to schooling (given by the functional
coefficient) are strictly positive although. In addition, I provide the 95 per-
cent pointwise confidence interval (dotted lines) for the profile, which shows
clearly that the pointwise confidence interval does not contain a constant
function. This implies that ĝ1(·) indeed is not a constant function. This
result shows that the functional coefficient model captures the known non-
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linear effect of education on wages as discussed in Card (2001). However,
the confidence intervals indicate that the results correcting for endogeneity
are statistically significant only for experience between 0 and 15. Indeed,
CDXW (2006) gave details on how to construct a pointwise confidence in-
terval for functional coefficient IV models.

Finally, notice also that the derivative of ĝ1(·) changes over its range,
being negative at both low and high levels of experience but positive in the
middle range of experience. This suggests that while the marginal returns to
education are positive, these returns are themselves declining in experience
for both low experienced and high experienced workers.

3.2 Functional coefficient beta models

Although there is a vast amount of empirical evidences on time variation in
betas and risk premia, there is no theoretical guidance on how betas and
risk premia vary with time or variables that represent conditioning informa-
tion. Many recent studies focus on modelling the variation in betas using
continuous approximation and the theoretical framework of the conditional
CAPM; see Cochrane (1996), Jaganathan and Wang (1996, 2002), Wang
(2002, 2003) and Ang and Liu (2004) and the references therein. Recently,
Ghysels (1998) discussed the problem in detail and stressed the impact of
misspecification of beta risk dynamics on inference and estimation and ar-
gued that betas change through time very slowly and linear factor models
like the conditional CAPM may have a tendency to overstate the time vari-
ation. Further, he showed that among several well known time varying beta
models, a serious misspecification produces time variation in beta that is
highly volatile and leads to large pricing errors.

To combine the aforementioned varying coefficient beta models under a
unified framework, I consider a general nonparametric econometric model

ri,t = βi,0(Zi,t)+βi,1(Zi,t)
⊤ rm,t +εi,t, 1 ≤ i ≤ N and 1 ≤ t ≤ T, (15)

where ri,t is the i-th excess return on any asset or portfolio, βi,1(·) is a p×1
vector of the varying coefficient betas, the prime denotes the transpose of
a matrix or vector, rm,t represents a p × 1 vector of the excess returns on
the market portfolios or indices, and Zi,t is a set of instruments. Here, Zi,t

is either a set of instruments or time, both βi,0(·) and βi,1(·) are unknown
functions, and εi,t is the error term satisfying E[εi,t | rm,t, Zi,t] = 0. It is
common in the finance literature to assume that the market return rm,t and
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the state variable Zi,t are uncorrelated with the error term εi,t; see Akdeniz,
Altay-Salih and Caner (2003). Here, I allow that the error terms {εi,t} might
be autocorrelated among both i and t and the conditional variance σ2

i,t =
Var[εi,t | rm,t, Zi,t] might not be constant. This time varying conditional
heteroscedasticity can commonly be seen in many financial applications; see
Reyes (1999) and Cho and Engle (2000) and the references therein. Further,
I assume that the series {(ui,t, rm,t)} is strictly stationary α-mixing, where
ui,t = εi,t/σi,t. Clearly, model (15) covers the aforementioned models as a
special case and some other models in the finance literature.

Some specific examples of model (15) were studied by several authors in
the literature; see, for example, Ferson and Harvey (1998, 1999) in which
the betas are a linear function of instruments (an index model). To measure
the risk of an individual stock against the market of US stocks, Cui, He and
Zhu (2002) considered the following structural change model

rt = β0(t, T0) + β1 rm,t + εt,

where rt is the daily return of the Microsoft stock, rm,t is the Standard &
Poor’s 100 index, as a proxy to this market, and β0(t, T0) is a structure
change function with unknown change point T0, and You and Jiang (2007)
extended the above model to a semi-parametric setting

rt = β0,1 I(t ≤ T0) + β0,2I(t > T0) + β1(t)Xt + εt

with T0 = 64, where β1(·) is an unknown smooth function. Recently, Ferson
and Harvey (1998, 1999) and Harvey (1989) studied some parametric models
by assuming the betas to be linear combinations of the world market-wide
information variables and/or the attributes for the security, whereas Akd-
eniz, Altay-Salih and Caner (2003) investigated the threshold CAPM with
economic variable(s)

rt = β0 + (β11 I(ξt ≤ λ) + β12 I(ξt > λ) rm,t + εt,

where λ is an unknown threshold parameter and ξt is one of some economic
variables such as one month real t-bill rate, dividend yield of the CRSP
value weighted NYSE stock index, de-trended stock price level, measure
of the slope of the term structure, and quality related yield spread in the
corporate bond market.

If Zi,t is just time t, βi,j(t) depends on time t. To estimate βi,j(t) non-
parametrically, as argued by Robinson (1989), it is necessary to assume
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βi,j(t) to depend on the sample size T to provide the asymptotic justifica-
tion for any nonparametric smoothing estimators. Following this convention,
I assume that βi,j(t) = βi,j(Zt), 0 ≤ j ≤ 1, where Zt = t/T and βi,j(·) is an
unknown function. The intuitive explanation to this “intensity” assumption
is that it is an increasingly intense sampling of data points to derive the
consistent estimation; see Robinson (1989) and Cai (2007) for more discus-
sion. Similarly, I might assume that σi,t = σi(rm,t, Zt) for some unknown
function σi(·, ·). To estimate the beta functions βi,j(z0) nonparametrically
at any given grid point z0, one can apply the formulation in (9) to this set-
ting with a minor modification but the details are omitted due to similarity.
The bandwidth selection criterion described in Section 2.2.2 can be applied
here, in particular in our implementation in Example 2 below.

Example 2. I apply the proposed time-varying beta model in (15) and its
modeling procedures to analyze the common stock price (P1t) of Microsoft
(MSFT) during the year 2000 using the daily closing prices. To measure its
risk relative to the market of U.S. blue chip stocks, I take the Standard &
Poor’s 100 index (P2t) as a proxy to this market. For the first 10-month
period with 206 observations, Cui, He and Zhu (2002) modelled the stock
price gains Yt (the price at t-th day divided by the price on day one) and Xt

the change in the market index from day one to the t-th day through the
following threshold model

Yt = β0(t, T0) + β Xt + εt,

where β0(t, T0) is a threshold function with unknown change point T0 with
the estimated value T̂0 = 64. Recently, You and Jiang (2007) extended the
above model to a semiparametric setting

Yt = β0,1 I(t ≤ 64) + β0,2I(t > 64) + β1(t)Xt + εt

and they used a penalized spline method to estimate the unknown slope
function β1(t). Following the convention in the finance literature, here I
consider the simple daily stock returns rt = P1t/P1,t−1 − 1 for the MSFT
price and rm,t = P2t/P2,t−1 − 1 for the S&P 100 Index. It should be noted
that the returns of the S&P 100 index may not be as nonstationary as the
stock returns of Microsoft.

To establish the empirical relationship between the returns of MSFT and
S&P 100 Index, similar to Tsay (2005) who considered the linear relationship
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between the 1-year Treasury constant maturity rate and the 3-year Treasury
constant maturity rate, I first fit the following simple beta model

rt = α0 + α1 rm,t + εt.

Notice that in finance and security analysis, α1 measures the risk of an
individual stock or portfolio as its (standardized) beta coefficient in CAPM
against a market index or portfolio. If α1 is greater than 1, the change in
this stock price is expected to be more than that in the market index and
thus the stock is regarded as one risky stock. As a result, the least squares
estimates of α0 and α1 are −0.0027(0.0018) and 1.3612(0.1243) respectively,
which are plotted (dashed line) in Figure 2. By comparing these results with
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Figure 2: Results for Example 2. Left panel: The local linear estimator
(solid line) of the trend function β0(·) and the least square estimate of α0

(dashed line). Right panel: The local linear estimator (solid line) of the beta
coefficient β1(·) and the least square estimate of α1 (dashed line).

those from Cui, He and Zhu (2002) and You and Jiang (2007), I suspect
that the coefficients α0 and α1 might change over time. To provide more
empirical evidence, I examine the covariance between rt and rm,t, and I find
that the covariance does change over time, which is not presented due to
space limitations. Therefore, due to sufficient reasons, I fit the following
time varying beta model

rt = β0(t) + β1(t) rm,t + εt.
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The local linear estimators β̂0(·) and β̂1(·) are computed. The estimated
curves β̂0(·) (left panel) and β̂1(·) (right panel) are depicted in Figure 2.

It is evident from Figure 2 that both the trend β0(·) (left) and the slope
β1(·) (right) do change over time and the slope β1(·) is almost above 1
except the period of the trading days from 141 to 171 (The corresponding
calendar days are from July 26, 2000 to September 7, 2000). For the trend
function β0(·), reflecting the dynamic change for MSFT itself, although it
is up and down during this period, the overall trend increases slightly for
the first three quarters. But the trend decreases dramatically for the last
quarter. In contrast, the beta function β1(·) keeps a constant (around 1.17)
during the first 111 trading days of the year (June 13, 2000) and it decreases
afterwards until the 161st trading day (August 23, 2000) and finally, it
increases afterwards (to the end of the year). Therefore, it concludes that
MFST is a stock that was more volatile than the U.S. blue chip market as
a whole.

Finally, to support the aforementioned conclusions statistically, I con-
sider the testing null hypothesis H0 : β0(·) = α0 and β1(·) = α1, the testing
procedure described in Section 2.3 is used with the bootstrap sampling 1000
times. As a result, the p-value is less than 0.001. Therefore, this test result
further supports the finding that both the trend function β0(·) and the beta
function β1(·) do change over time.

4 Concluding Remarks

In this paper, I have presented a selective overview on the recent devel-
opments on the functional coefficient models with particular applications
in economics and finance. Indeed, there are numerous papers addressing
various types of functional coefficient models in the past two decades. My
citation in this paper is not exhaustive due to space limitations. In addi-
tion to the applications to economics and finance, the functional coefficient
models have also been used in other subjects in statistics such as time se-
ries, longitudinal data analysis and survival analysis (see Fan and Zhang,
2008). Finally, Cai and Li (2009) surveyed some recent developments in non-
parametric econometric models, including some applications of functional
coefficient models in economics, while Cai and Hong (2009) gave a review
on the recent developments of nonparametric estimation and testing of fi-
nancial econometric models, including functional coefficient diffusion models
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that are frequently used to describe the dynamics of an underlying process
including stock and bond prices and various interest rates.
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