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Abstract

This chapter studies the asymptotic properties of estimation and infer-
ence with weak identification and near exogeneity in a GMM framework
with instrumental variables. We obtained limiting results under weak
identification and near exogeneity of general GMM estimators and some
specific GMM estimators, such as one-step GMM estimator, two-step
GMM estimator and continuous updating estimator. We also examine
the asymptotic properties of the Anderson-Rubin type and the Kleiber-
gen type tests under weak identification and near exogeneity.
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1 Introduction

This chapter studies the asymptotic properties of estimation and inference with
weak identification and near exogeneity in a GMM framework with instrumen-
tal variables. GMM is a natural extension of a linear simultaneous equations
model which allows a set of nonlinear and non-differentiable equations. The
technique used in Chapter 1 which is mainly based on mean value theorem
and the classic central limit theorem cannot be applied into a nonlinear and
non-differentiable environment. We can benefit from empirical process theory
and the functional central limit theorem to establish large sample properties.
We obtained limiting results under weak identification and near exogeneity of
general GMM estimators and some specific GMM estimators, such as one-step
GMM estimator, two-step GMM estimator and continuous updating estimator.
We also examine the asymptotic properties of the Anderson-Rubin type and the
Kleibergen type tests under weak identification and near exogeneity.

This chapter is organized as follows. Section 2 decribes the model and as-
sumptions. Section 3 examines the limiting results of GMM estimators under
near exogeneity and weak identification. Section 4 studies inference under near
exogeneity and weak identification, and Section 5 concludes.

2 The Model and Assumptions

In this chapter, we consider a GMM framework with instrumental variables
under weak identification and near exogeneity. Let θ = (α′, β′) be an m-
dimensional unknown parameter vector with true value θ0 = (α′0, β

′
0)
′ in the

interior of the compact parameter space Θ. The true value θ0 satisfies some
conditional moment restrictions which can be explicitly written as

Eφi(θ0) = E[h(Yi, θ0)⊗ Zi] = C/
√

N , (1)

where h(.) is a real valued H × 1 vector of functions, Zi is a K × 1 vector
of instrumental variables, and Yi is the observation which possibly contains
endogenous variables, for i = 1, 2, ..., N and HK ≥ m. The C is a HK × 1
vector of constants. When C is a vector of zeros, this is the GMM model with
instrumental variables defined by Stock and Wright (2000). When C is not all
zeros, Equation (1) defines the GMM model with near exogeneity. The degree
of near exogeneity is local to zero. When the sample size N grows to large,
the correlation between h(.) and the instruments Zi tends to zero. The linear
simultaneous equations model defined in Chapter 1 is a special case of Equation
(1), where

Eφi(θ0) = E[Z ′i(yi − Yiθ0)] = C/
√

N . (2)

So h(.) = yi−Yiθ0 is a linear function and Yi = (yi, Yi) contains only endogenous
variables. But in this chapter, the h(.) can be a set of general nonlinear functions
with possible non-differentiability.
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We follow Stock and Wright (2000)’s paper to consider a mixed case in which
a subset of θ, say α, is weakly identified. Let Θ = A × B, where α ∈ A is an
m1 × 1 vector, β ∈ B is an m2 × 1 vector, and m1 + m2 = m. Also, let
m̃N (α, β) = EN−1

∑N
i=1 φi(α, β). Now, we can utilize the following identity,

m̃N (α, β) = m̃N (α0, β0) + m̃1N (α, β) + m̃2N (β) (3)

where
m̃1N (α, β) = m̃N (α, β)− m̃N (α0, β) (4)

and
m̃2N (β) = m̃N (α0, β)− m̃N (α0, β0) (5)

The identification of θ requires whether the moment restrictions can be satisfied
uniquely. If β is strictly identified, then m̃2N (β) should be large when β 6= β0.
However, m̃1N (α, β) should be close to zero when α 6= α0 and β = β0 if α
is weakly identified. We can use a local to zero model to define the weak
identification of the α,

m̃N (α, β)− m̃N (α0, β) = m1N (α, β)/
√

N (6)

where m1N (α, β) : A × B → RHK is a set of continuous functions such that
m1N (θ) → m1(θ) uniformly on Θ as N grows to large. The m1(θ) : A ×
B → RHK is a set of continuous functions and is bounded on Θ. Also, let
m̃2N (β) : B → RHK be a set of continuous functions such that m̃2N (β) →
m2(β) uniformly on B as N grows to large, where m2(β) : B → RHK is a
set of continuous functions such that m2(β0) = 0 and m2(β) 6= 0 for β 6= β0.
By taking into account a joint case of near exogeneity and weak identification,
Equation (3) can be rewritten as

m̃N (α, β) = m̃N (α0, β0) + m̃1N (α, β) + m̃2N (β) (7)

= C/
√

N + m1N (α, β)/
√

N + m̃2N (β)

because of Equation (1). When C = 0, we can obtain the result of Stock and
Wright (2000), in which case they don’t consider the problem of near exogeneity.
Now, we can give assumptions that formally define near exogeneity and weak
identification.

Assumption 1 The true parameter θ0 = (α′0, β
′
0)
′ is in the interior of the

compact space Θ = A × B, A ⊂ Rm1 , B ⊂ Rm2 , and m = m1 + m2. The true
parameter θ0 satisfies the moment conditions defined by Equation (1).

Assumption 2

EN−1
N∑

i=1

φi(α, β) = C/
√

N + m1N (α, β)/
√

N + m̃2N (β), where (8)
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(2.1) m1N (θ) → m1(θ) uniformly on Θ, m1(θ0) = 0, and m1(θ) is continuous
in θ and is bounded on Θ;

(2.2) m̃2N (β) → m2(β) uniformly on Θ, m2(β) = 0 if and only if β = β0.
Define R(β) = ∂m2(β)/∂β′ which is a HK ×m2 matrix. R(β) is continuous in
β and R(β0) has a full column rank.

We can apply the above assumptions into the linear simultaneous equations
model defined in Chapter 1. In Chapter 1, all parameters in θ are weakly
identified. The identity defined by (3) can be rewritten as

m̃N (θ) = m̃N (θ0) + [m̃N (θ)− m̃N (θ0)] (9)

= m̃N (θ0) + m1N (θ)/
√

N

where m̃N (θ0) = EN−1
∑N

i=1 φi(θ0) = C/
√

N by the near exogeneity in As-
sumption 2. In the linear simultaneous equations model,

EN−1
N∑

i=1

φi(θ) = EN−1
N∑

i=1

[Z ′i(yi − Yiθ)] (10)

= EN−1
N∑

i=1

[Z ′i(yi − Yiθ0)− Z ′iYi(θ − θ0)] (11)

= EN−1
N∑

i=1

{[Z ′i(yi − Yiθ0)]− [Z ′iZiΠ(θ − θ0)]} (12)

By Equation (2), we obtain

EN−1
N∑

i=1

[Z ′i(yi − Yiθ0)] = C/
√

N (13)

Since Π = ΠN = C1/
√

N defined by Assumption ID in Chapter 1, we have

m̃N (θ) = C/
√

N + m1N (θ)/
√

N (14)

where m1N (θ) = EN−1
∑N

i=1[Z
′
iZiC1(θ − θ0)]. The first term in (14) is due to

near exogeneity and the second term is used to define the weak identification of
θ.

Next, we consider the GMM estimator that minimizes the objective function
SN (θ, θN (θ)) for θ ∈ Θ, where

SN (θ, θN (θ)) = [N−1/2
N∑

i=1

φi(θ)]′WN (θN (θ))[N−1/2
N∑

j=1

φj(θ)] (15)

where WN (θN (θ)) is a positive definite HK×HK weighting matrix and bounded
in probability. Different GMM estimators depend upon the adoption of different
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weighting matrix. For a one-step GMM estimator, the weighting matrix is
usually an identity matrix so WN (θN (θ)) doesn’t depend upon the data and the
unknown parameter θ. For a two-step efficient GMM estimator (Hansen, 1982),
the weighting matrix is computed by using a one-step GMM estimator. For
a continuously updating GMM estimator (Hansen, Heaton and Yaron, 1996),
the weighting matrix is changed with each choice of the unknown parameter
θ, so WN (θN (θ)) can be written as WN (θ). In order to establish the large
sample properties of the GMM estimators, we need the uniform convergence of
the weighting matrix WN (θ). This is also the assumption used by Stock and
Wright (2000).

Assumption 3 WN (θ)
p→ W (θ) uniformly on Θ, where W (θ) is a HK ×HK

symmetric positive definite matrix and is continuous in θ.

Next, following Andrews (1994) and Stock and Wright (2000), we define an
empirical process ΨN (θ) by

ΨN (θ) = N−1/2
N∑

i=1

[φi(θ)− Eφi(θ)] for θ ∈ Θ (16)

Note that φi(θ) = φi(Yi, Zi, θ) where Yi and Zi are independent observations.
φi(θ) can be regarded as a class of RHK valued functions defined on Yi and Zi

indexed by θ ∈ Θ. Let ”⇒” denote weak convergence of a sequence of empirical
processes. By Andrews (1994) and Vaart and Wellner (1996), weak convergence
of the empirical process in Equation (16) can be defined as

ΨN (θ) ⇒ Ψ(θ) if E∗f(ΨN (.)) → Ef(Ψ(.)) (17)

for all bounded, uniformly continuous real functions f on B(Θ), where B(Θ) is
the set of all continuous, bounded functions f : Θ → R. Note that ”E∗” is the ex-
pectation over the empirical process. Let Ω(θ1, θ2) = limN→∞EΨN (θ1)ΨN (θ2)′.
The following assumption of weak convergence is mainly based on Pollard (1984,
1990), Andrews (1994) and Vaart and Wellner (1996). It’s similar to Assump-
tion A and B used in Stock and Wright (2000).

Assumption 4 ΨN (θ) ⇒ Ψ(θ), where Ψ(θ) is a Gaussian limit stochastic
process on Θ with zero mean and covariance Ω(θ1, θ2).

Assumption 4 is a kind of high level assumption which follows from three
sufficient conditions (Andrews, 1994): (1) Θ is a totally bounded space; (2)
finite dimensional convergence holds: ∀(θ1, ..., θJ) ∈ Θ, (ΨN (θ1)′, ...,ΨN (θJ)′)′

converges in distribution; (3) ΨN (θ) is stochastic equicontinuity. Condition
(1) is satisfied by Assumption 1 that Θ is a compact space. Condition (2) is
easily to verified by multivariate central limit theorem. For example, we can
use univariate triangular array central limit theorem (Liapunov Theorem, see
Davidson, 1994) to obtain the normal limit of the stochastic process ΨN (θ) at
θ = θ0, say
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ΨN (θ0)
d→ N(0,Ω(θ0, θ0) (18)

by imposing the moment condition such that E | φi(θ0) |2+δ< ∆ < ∞ for some
δ > 0. For the finite dimensional convergence, we can assume a similar moment
condition which holds uniformly on Θ. Condition (3) stochastic equicontinuity
relies on a condition which is referred as entropy condition (Pollard, 1990). By
Theorem 1 and 2 in Andrews (1994), φi(θ) falls into a type II class of functions
so that the Pollard’s entropy condition follows from the Lipschitz continuity. To
be summarized, Assumption 4 follows from the following primitive assumptions.

(i) Θ is a compact parameter space;
(ii) φi(θ) is independent;
(iii) E | φi(θ) |2+δ< ∆ < ∞ uniformly over Θ for some δ > 0;
(vi) Lipschitz in θ: | φi(θ1)− φi(θ2) |≤ Bi(.)‖θ1−θ2‖ ∀θ1, θ2 ∈ Θ, and Bi(.)

satisfies limN→∞N−1
∑N

i=1 E[Bi(.)2+δ] < ∞ for some δ > 0.

Assumption (i) implies totally boundedness. Assumptions (ii) and (iii) im-
ply finite dimensional convergence. Assumptions (i) and (vi) imply stochastic
equicontinuity. It’s very easy to verify that the φi(θ) defined in the linear si-
multaneous equations model in Chapter 1 satisfies these assumptions.

3 Estimation: Limiting Results of GMM Esti-
mators

In this section, we derive the asymptotic results of GMM estimators under near
exogeneity and weak identification. We firstly derive general limiting results of
GMM estimators and then derive limiting results of some specific GMM estima-
tors, such as one-step estimator, two-step efficient estimator and continuously
updating estimator. In each case, we examine the limiting results of the weakly
identified parameter α and the well identified parameter β.

3.1 General Limiting Results of GMM Estimators

We derive the general asymptotic results of GMM estimators in this subsection.
First, we examine the limiting results of the well identified parameter β. The
following lemma shows that the GMM estimator β̂ is consistent under near
exogeneity and the convergence rate is square root of the sample size N .

Lemma 1
√

N(β̂ − β0) = Op(1).

All proofs are given in the appendix.
Lemma 1 shows that near exogeneity doesn’t affect the convergence of a well

identified parameter. Intuitively, the drift term in Equation (1) shrinks toward
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zero as the sample size N grows to large. We have a similar story in the linear
case. In the linear simultaneous equations model defined in Chapter 1, when
there only exists the problem of near exogeneity, both the TSLS estimator and
the LIML estimator are consistent. However, situations are a little complicated
in this chapter. There are two parameters, of which one is weakly identified and
the other is well identified. One natural question is whether the weakly identified
parameter α affect the limiting results of the well identified parameter β. A joint
limiting result of α and β is necessary to answer such a question. The following
theorem gives the joint limits of both parameters under near exogeneity and
weak identification for a general GMM estimator.

Theorem 1 Suppose that Assumptions 1-4 hold,
then

(α̂,
√

N(β̂ − β0))
d→ (a∗, b∗) (19)

where
a∗ = arg min

α∈A
S∗(α; θ(α, β0)) (20)

b∗ = −[R(β0)′W (θ(a∗, β0)R(β0)]′R(β0)′W (θ(a∗, β0) (21)
×[Ψ(a∗, β0) + C + m1(a∗, β0)]

S∗(α; θ(α, β0)) = [Ψ(α, β0) + C + m1(α, β0)]′M(α, β0, θ(α, β0)) (22)
×[Ψ(α, β0) + C + m1(α, β0)]

where

M(α, β0, θ(α, β0)) = W (θ(α, β0)−W (θ(α, β0)R(β0) (23)
×[R(β0)′W (θ(α, β0)R(β0)]−1

×R(β0)′W (θ(α, β0)

The above theorem is similar to Theorem 1 in Caner (2005) and is analogous
to Theorem 1 in Stock and Wright (2000) and Theorem 2 in Guggenberger and
Smith (2005). We can obtain Stock and Wright’s result by setting C = 0. It’s
not surprising that α̂ is not consistent since α is a weakly identified parameter.
Like the case of the linear simultaneous equations model, the estimator of the
weakly identified parameter convergences to a nonstandard distribution a∗. The
joint limits given in the above theorem can explain why the estimator β̂ of the
well identified parameter also convergence to a nonstandard distribution b∗. The
distribution of β̂ depends on a∗ but we cannot estimate α consistently. When
we set C = 0 and α = α0, Equation (21) can be simplified as

b∗ = −[R(β0)′W (θ(α0, β0)R(β0)]′R(β0)′W (θ(α0, β0)Ψ(α0, β0) (24)
d→ N(0, (R(β0)′Ω−1(α0, β0)R(β0))
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since m1(α0, β0) = 0 by Assumption 2 and Ψ(α0, β0)
d→ N(0,Ω(α0, β0)) by

triangular array central limit theorem. Near exogeneity doesn’t affect the con-
vergence rate of β but it shifts the distribution of the estimator. When the drift
term C 6= 0, we have

b∗
d→ N(C, (R(β0)′Ω−1(α0, β0)R(β0)) (25)

To the weakly identified parameter α, near exogeneity can enlarge the bias term
which is obtained by Stock and Wright (2000).

3.2 Limiting Results for Specific GMM Estimators

We first consider a one-step GMM estimator with an identity weighting matrix.
Denote by (α̂1, β̂1) the one-step GMM estimator which minimizes the following
objective function

S1N (θ) = [N−1/2
N∑

i=1

φi(θ)]′[N−1/2
N∑

j=1

φj(θ)]. (26)

The following corollary gives the joint limits of (α̂1,
√

N(β̂1−β0)) under near
exogeneity and weak identification.

Corollary 1 Suppose that Assumptions 1, 2, 4 holds, then

(α̂1,
√

N(β̂1 − β0))
d→ (a∗1, b

∗
1) (27)

where
a∗1 = arg min

α∈A
S∗1 (α, C) (28)

b∗1 = −[R(β0)′R(β0)]−1R(β0)′[Ψ(a∗1, β0) + C + m1(a∗1, β0)] (29)

S∗1 (α, C) = [Ψ(α, β0) + C + m1(α, β0)]′M1(α)[Ψ(α, β0) + C + m1(α, β0)] (30)

where
M1(α) = I −R(β0)[R(β0)′R(β0)]−1R(β0)′. (31)

The two-step efficient GMM estimator is obtained by using the one-step
GMM estimator (α̂1, β̂1) to establish an estimate of the weighting matrix. De-
note by (α̂2, β̂2) the two-step efficient GMM estimator which minimizes the
following objective function

S2N (θ) = [N−1/2
N∑

i=1

φi(θ)]′WN (α̂1, β̂1)[N−1/2
N∑

j=1

φj(θ)] (32)

The following corollary establishes the joint limits of (α̂2,
√

N(β̂2−β0)) under
near exogeneity and weak identification.
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Corollary 2 Suppose that Assumptions 1-4 hold, then

(α̂2,
√

N(β̂2 − β0))
d→ (a∗2, b

∗
2) (33)

where
a∗2 = arg min

α∈A
S∗2 (α, a∗1, C) (34)

b∗2 = −[R(β0)′Ω−1(a∗1, β0)R(β0)]−1R(β0)′Ω−1(a∗1, β0) (35)
×[Ψ(a∗2, β0) + C + m1(a∗2, β0)]

S∗2 (α, a∗1, C) = [Ψ(α, β0) + C + m1(α, β0)]′M1(α, a∗1) (36)
×[Ψ(α, β0) + C + m1(α, β0)]

where

M1(α, a∗1) = Ω−1(a∗1, β0) (37)
−Ω−1(a∗1, β0)R(β0)[R(β0)′Ω−1(a∗1, β0)R(β0)]−1

×R(β0)′Ω−1(a∗1, β0)

In the two-step efficient GMM estimator, the weighting matrix WN (α̂1, β̂1)
is based on the one-step GMM estimator α̂1 and β̂1, and so the weighting
matrix converge to Ω−1(a∗1, β0) in the limiting concentrated objective function
S∗2 (α, a∗1, C).

In the case of the linear simultaneous equations model defined in Chapter 1,
when the conditional homoskedasticity of the errors is assumed, the objective
function of the two-step efficient GMM estimator can be rewritten as

S2N (θ) = (y − Y θ)′PZ(y − Y θ)/Σ̂hh(θ̂1) (38)

where

Σ̂hh(θ̂1) = N−1
N∑

i=1

E{[hi(θ̂1)− Ehi(θ̂1)] (39)

×[hi(θ̂1)− Ehi(θ̂1)]′}

and
PZ = Z(Z ′Z)−1Z ′. (40)

In the linear simultaneous equations model, hi(θ) = yi−Yiθ and all parameters
in θ are weakly identified. Since θ is quadratic in S2N (θ), we can derive an
analytical solution from Equation (38), which yields

θ̂ = (Y ′PZY )−1(Y ′PZy) (41)
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We know this is just the TSLS estimator.
The continuously updating estimator is obtained when the weighting ma-

trix is continuously updated at the parameter value θ. Denote by (α̂c, β̂c) the
continuously updating estimator that minimizes the following objective function

ScN (θ) = [N−1/2
N∑

i=1

φi(θ)]′WN (θ)[N−1/2
N∑

j=1

φj(θ)] (42)

The following corollary establishes the joint limits of the continuously up-
dating estimator (α̂c, β̂c) under near exogeneity and weak identification.

Corollary 3 Suppose that Assumptions 1-4 hold, then

(α̂c,
√

N(β̂c − β0))
d→ (a∗c , b

∗
c) (43)

where
a∗c = arg min

α∈A
S∗c (α, C) (44)

b∗c = −[R(β0)′Ω−1(a∗c , β0)R(β0)]−1R(β0)′Ω−1(a∗c , β0) (45)
×[Ψ(a∗c , β0) + C + m1(a∗c , β0)]

S∗c (α, C) = [Ψ(α, β0) + C + m1(α, β0)]′Ω−1(a∗c , β0) (46)
×{I −R(β0)[R(β0)′Ω−1(a∗c , β0)R(β0)]−1R(β0)′Ω−1(a∗c , β0)}
×[Ψ(α, β0) + C + m1(α, β0)].

Consider a special case of Corollary 3: the linear simultaneous equations
model with all weakly identified parameters and conditional homoskedasticity
defined in Chapter 1. Since

φi(θ) = Z ′i(yi − Yiθ) (47)

and

WN (θ) = [N−1
N∑

i=1

N∑
j=1

φi(θ)φj(θ)′]−1, (48)

the objective function ScN (θ) defined in (42) can be simplified as

ScN (θ) = [N−1/2
N∑

i=1

φi(θ)]′[N−1
N∑

i=1

N∑
j=1

φi(θ)φj(θ)′]−1

×[N−1/2
N∑

j=1

φj(θ)]

= (y − Y θ)′Z(Z ′Z)−1Z ′(y − Y θ)/u(θ)′u(θ)
= N [1 + κ−1(θ)]−1 (49)
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where
u(θ) = y − Y θ

κ(θ) = (y − Y θ)′Pz(y − Y θ)/(y − Y θ)′Mz(y − Y θ) (50)

and
MZ = I − PZ . (51)

Note that Equation (49) is obtained since we have

T−1(y − Y θ)′Mz(y − Y θ)
p→ u(θ)′u(θ) (52)

The continuously updating estimator in the linear case is identical to minimize
κ(θ), which is just the LIML estimator; see Davidson and MacKinnon (1993).

4 Inference with Near Exogeneity and Weak Iden-
tification

In a GMM framework with instrumental variables, we want to test H0 : θ = θ0

versus H1 : θ 6= θ0 under near exogeneity and weak identification. Staiger and
Wright (2000) examined several conventional test statistics under weak identifi-
cation, such as Wald statistic and likelihood ratio statistic. These conventional
test statistics do not work in general under weak identification. The exogeneity
tests of instruments, like J-test (Hansen, 1982; Newey, 1985), cannot be valid
in general under weak identification either.

In this section, we firstly consider some robust test statistics which have
been recently developed against weak identification in the literature, and then
examine their performance under near exogeneity.

We first consider an Anderson-Rubin type test proposed by Stock and Wright
(2000). The test is given by

SN (θ0; θ0) = [N−1/2
N∑

i=1

φi(θ0)]′WN (θ0)[N−1/2
N∑

j=1

φj(θ0)]. (53)

Since the moment function is generally nonlinear, it’s easier to work on the
objective function rather than on the estimator as we did in the case of the
linear simultaneous equations model. The Anderson-Rubin type test given by
Equation (53) is just the objective function ScN (θ) of the continuously updating
estimator when θ = θ0. Since it utilizes the objective function ScN (.), it was
called ”S statistic” by Stock and Wright (2000). The S statistic is robust to weak
identification because the test itself is asymptotically pivotal and convergence
in distribution to a chi-square distribution under the null hypothesis. Note
that we cannot establish an Anderson-Rubin type test based on the objective
function of the two-step GMM estimator. The objective function of the two-step
GMM estimator is not asymptotically pivotal because the weighting matrix in
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the objective function is derived through the one-step estimator, which is not
consistent under weak identification.

To examine the asymptotic property of the S statistic under near exogeneity,
we can work under a much weaker assumption described in Equation (18) than
Assumption 4. The following theorem summarizes the asymptotic result of the
S statistic under near exogeneity.

Theorem 2 Suppose Assumptions 1-3 and Equation (18) hold under the null
hypothesis of θ = θ0, then

SN (θ0; θ0)
d→ χ2

HK(C ′Ω−1(θ0; θ0)C) (54)

where χ2
HK(C ′Ω−1(θ0; θ0)C) is a noncentral chi-square distribution with non-

central parameter C ′Ω−1(θ0; θ0)C and the degree of freedom HK.

Theorem 2 shows that the S statistic is not asymptotically pivotal under
near exogeneity. The limit of the test statistic depends on the nuisance un-
known parameter C which comes from near exogeneity. We obtain a chi-square
distribution with degree of freedom HK when we set C = 0. It leads to a size
distortion under near exogeneity when we use critical values from the chi-square
distribution. In empirical practice, it’ll overreject a true hypothesis.

Kleibergen (2005) proposes a GMM version K statistic. The K statistic is
also based on the objective function of the continuously updating GMM estima-
tor. To establish the limits of the K statistic, we need two more assumptions.
Denote by qi(θ0) the first order derivative of φi(θ) with respect to θ which is
evaluated at θ = θ0, and let

Jθ(θ0) = lim
N→∞

E[N−1
N∑

i=1

qi(θ0)] (55)

Assumption 5 Let

qi,j(θ0) = ∂φi(θ)/∂θ′j |θ=θ0 j = 1, 2, ...,m. (56)

and qi(θ0) = (q′i,1(θ0), q′i,2(θ0), ..., q′i,m(θ0))′. We assume the following limits
hold jointly

1√
N

N∑
i=1

(
φi(θ0)− E[φi(θ0)]
qi(θ0)− E[qi(θ0)]

)
d→

(
Ψ′φ,Ψ′q

)′ (57)

where (
Ψφ

Ψq

)
∼ N(0, V (θ)) (58)

and V (θ) is a positive semi-definite symmetric (HK + mHK)× (HK + mHK)
matrix

V (θ) =
(

Vφφ Vφq

Vqφ Vqq

)
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and

V (θ) = lim
N→∞

EN−1
N∑

i=1

N∑
l=1

(
φi(θ0)− E[φi(θ0)]
qi(θ0)− E[qi(θ0)]

)(
φl(θ0)− E[φi(θ0)]
ql(θ0)− E[qi(θ0)]

)′
. (59)

Assumption 6 Assume that the estimator of the covariance matrix V (θ0) and
the estimator of the derivative of W (θ0) = V −1

φφ (θ0) with respect to θ have the
limits that hold jointly

V̂ (θ0)
p→ V (θ0) (60)

and
∂vec(V̂φφ(θ0))/∂θ′

p→ ∂vec(Vφφ(θ0))/∂θ′ (61)

where

Vφφ(θ0) = lim
N→∞

E{N−1
N∑

i=1

N∑
l=1

(φi(θ0)−E[φi(θ0)])(φi(θ0)−E[φi(θ0)])′}. (62)

The K statistic is based on the first order derivative of Equation (53) with
respect to θ. The K statistic is given by

K(θ0) =
1

4N
(∂SN (θ0; θ0)/∂θ)[D̂N (θ0)′V̂ −1

φφ (θ0)D̂N (θ0)]−1 (63)

×(∂SN (θ0; θ0)/∂θ)′

where
1
2
∂SN (θ0; θ0)/∂θ = φN (θ0)′V̂ −1

φφ (θ0)D̂N (θ0) (64)

D̂N (θ0) = [qN,1(θ0)− V̂qφ,1(θ0)V̂ −1
φφ (θ0)φN (θ0) ... (65)

...qN,m(θ0)− V̂qφ,m(θ0)V̂ −1
φφ (θ0)φN (θ0)]

and V̂qφ(θ0) = (V̂qφ,1(θ0)′, V̂qφ,2(θ0)′, ..., V̂qφ,m(θ0))′.

Note that D̂N (θ0) is a consistent estimator of Jθ(θ0) even in the case of weak
identification. Either under strong identification or weak identification, the K
statistic is an asymptotically pivotal distribution conditional on D̂N (θ0). Be-
cause of the asymptotic independence between D̂N (θ0) and Ψφ, the K statistic
converges unconditionally to a chi-square distribution with degree of freedom m
under weak identification. The following theorem summarizes the asymptotic
results of the K statistic under near exogeneity and weak identification.

Theorem 3 Suppose that Assumptions 1, 2, 5 and 6 hold under the null
hypothesis of θ = θ0, then

K(θ0)
d→ (ξ + Ξ(C))′(ξ + Ξ(C))

13



where
ξ ∼ N(0, IHK) (66)

Ξ(C) = [D′V −1
φφ (θ0)D]−1/2D′V −1

φφ (θ0)C (67)

and D is the limit of γ(N)D̂N (θ0), and further D varies when
(i) θ is well identified, D

d→ Cq

(ii) θ is weakly identified, D
d→ Cq+ Ψq.φ

(iii) θ is nonidentified, D
d→ Ψq.φ where

Cq = Jθ(θ0) which has a fixed full rank value, and Ψq.φ is a limiting distribution
such that

N−1/2vec[D̂N (θ0)− Jθ(θ0)]
d→ Ψq.φ. (68)

Theorem 3 shows that the K statistic converges to a nonstandard distribu-
tion under near exogeneity. The nonstandard distribution is a quadratic form of
the sum of a standard normal variable ξ and the drift term Ξ(C) which comes
from near exogeneity. When the identification condition varies, we obtain dif-
ferent limits of Ξ(C). We can obtain a chi-square distribution with degree of
freedom m when C = 0. So Theorem 3 provides a general result. Theorem 3 also
implies that inference based on the critical value from chi-square distribution
can result in a large size distortion.

5 Conclusions

This chapter studies the asymptotic properties of estimation and inference un-
der near exogeneity and weak identification in a GMM framework with instru-
mental variables. We derive the limits of the one-step GMM estimator, the
efficient two-step GMM estimator and the continuously updating estimator un-
der near exogeneity and weak identification. We consider a mixed case where
some parameters are weakly identified and others are well identified. The GMM
estimators of the well identified parameters are consistent but converge to a non-
standard distribution. In all cases, near exogeneity can bring a relatively large
asymptotic bias for GMM estimators compared to the case where only weak
identification occurs. We show that the Anderson-Rubin type S statistic and
the Kleibergen type K statistic are no longer asymptotically pivotal under near
exogeneity. It leads to a serious size distortion when using critical values from
chi-square distribution.

Appendix
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Proof of Lemma 1 First, we show that β is consistent. Consider the
objective function SN (θ, θN (θ)) given by (15). The first term can be rewritten
as

N−1/2
N∑

i=1

φi(θ) = N−1/2
N∑

i=1

[φi(θ)− Eφi(θ)] + N−1/2
N∑

i=1

Eφi(θ). (69)

The first term converges to Ψ(θ) by Assumption 4 and the second term can be
rewritten as

N−1/2
N∑

i=1

Eφi(θ) =
√

NEN−1
N∑

i=1

φi(θ) (70)

→ C + m1(α, β) +
√

Nm2(β)

by Assumption 2. By Assumption 3, we have

SN (θ, θN (θ))
p→ [Ψ(θ) + C + m1(α, β) +

√
Nm2(β)]′W (θ(θ)) (71)

×[Ψ(θ) + C + m1(α, β) +
√

Nm2(β)].

Scale Equation (71) by N−1, we obtain

N−1SN (θ, θN (θ))
p→ m2(β)′W (θ(θ))m2(β) (72)

uniformly in β. Since W (θ(θ)) is positive definite by Assumption 3 and m2(β) =
0 if and only if β = β0, the consistency of β follows by the continuity of the
arg min operator. The rate of convergence follows from the proof of Lemma A1
in Stock and Wright(2000). Q.E.D.

Proof of Theorem 1 To derive the limiting results in the theorem, we
work on the objective function SN (α, β, θN (θ)) directly. First, we define

b =
√

N(β − β0). (73)

By Lemma 1, we know that b = Op(1). The objective function then can be
written as

SN (α, β, θN (θ)) = SN (α, β0 + b/
√

N, θN (θ)) (74)

= [N−1/2
N∑

i=1

φi(θ)]′WN (θN (θ))[N−1/2
N∑

j=1

φj(θ)].

The first and last terms in Equation (74) can be written as

N−1/2
N∑

i=1

φi(α, β0 + b/
√

N) (75)

= N−1/2
N∑

i=1

[φi(α, β0 + b/
√

N)− Eφi(α, β0 + b/
√

N)] + N−1/2
N∑

i=1

Eφi(α, β0 + b/
√

N).
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By Assumption 4 and Lemma 1, we have

N−1/2
N∑

i=1

[φi(α, β0 + b/
√

N)− Eφi(α, β0 + b/
√

N)] ⇒ Ψ(α, β0).

The second term in Equation (75) can be written as

N−1/2
N∑

i=1

Eφi(α, β0 + b/
√

N) =
√

NEN−1
N∑

i=1

φi(α, β0 + b/
√

N) (76)

= C + m1N (α, β0 + b/
√

N) +
√

Nm2N (β0 + b/
√

N)

which follows from Assumption 2. Note that m1N (θ) → m1(θ) uniformly in θ
and by Lemma 1, we have

m1N (α, β0 + b/
√

N)
p→ m1(α, β0).

We apply the mean value theorem to the last term in Equation (76). We can
obtain √

Nm2N (β0 + b/
√

N) =
√

Nm2N (β0) + R(β̃)b (77)

where β̃ ∈ [β0, β0 + b/
√

N ] and R(β) = ∂m2(β)/∂β′ which is defined in As-
sumption 2. By Assumption 2, m2N (β0) → m2(β0) = 0 and β̃

p→ β by Lemma
1. So we have √

Nm2N (β0 + b/
√

N) → R(β0)b. (78)

By Assumption 3, we have

WN (θN (θ))
p→ W (θ(α, β0)).

So the objective function has the following limits

SN (α, β, θN (θ)) ⇒ [Ψ(α, β0) + C + m1(α, β0) + R(β0)b]′ (79)
×W (θ(α, β0))[Ψ(α, β0) + C + m1(α, β0) + R(β0)b].

Next, we fix α in Equation (79) and differentiate it with respect to b. By
solving the first order condition, we denote the solution by b∗,

b∗(α) = −[R(β0)′W (θ(α, β0))R(β0)]−1R(β0)′W (θ(α, β0)) (80)
×[Ψ(α, β0) + C + m1(α, β0)]

Plug b∗(α) into Equation (79) to yield the concentrated limiting objective
function S∗(α; θ(α, β0)). To see this, note that

R(β0)b∗ = −R(β0)[R(β0)′W (θ(α, β0))R(β0)]−1R(β0)′W (θ(α, β0)) (81)
×[Ψ(α, β0) + C + m1(α, β0)].
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So we have

Ψ(α, β0) + C + m1(α, β0) + R(β0)b∗ (82)
= [I −R(β0)(R(β0)′W (θ(α, β0))R(β0))−1R(β0)′W (θ(α, β0))]

×[Ψ(α, β0) + C + m1(α, β0)].

Plug Equation (82) into Equation (79),

S∗(α; θ(α, β0)) (83)
= [Ψ(α, β0) + C + m1(α, β0)]′

×[I −R(β0)(R(β0)′W (θ(α, β0))R(β0))−1R(β0)′W (θ(α, β0))]′

×W (θ(α, β0))
×[I −R(β0)(R(β0)′W (θ(α, β0))R(β0))−1R(β0)′W (θ(α, β0))]
×[Ψ(α, β0) + C + m1(α, β0)].

Note that

[I −R(R′WR)−1R′W ]′W [I −R(R′WR)−1R′W ]
= [I −R(R′WR)−1R′W ]′[W −WR(R′WR)−1R′W ]
= [I −R(R′WR)−1R′W ]′[I −WR(R′WR)−1R′]W
= [I −WR(R′WR)−1R′]W
= M(α, β0, θ(α, β0)).

So we obtain that

S∗(α; θ(α, β0)) = [Ψ(α, β0) + C + m1(α, β0)]′ (84)
×M(α, β0, θ(α, β0))[Ψ(α, β0) + C + m1(α, β0)].

and α∗ = arg minα∈A S∗(α; θ(α, β0)). Substituting α∗ into b∗(α) in Equation
(80), we can obtain b∗(α∗) defined in the theorem.

Since arg min is a continuous mapping and α∗ is a unique minimum over A,
by Theorem 3.2.2 of Vaart and Wellner (1996), it follows that (α̂,

√
N(β̂−β0))

d→
(a∗, b∗). Q.E.D.

Proof of Corollary 1 The result in the corollary follows by Theorem 1
when we replace the general objective function SN (α, β, θN (θ)) by the one-step
objective function S1N (θ) defined in (26). Q.E.D.

Proof of Corollary 2 The two-step efficient GMM estimator depends on
an estimate of the weighting matrix which utilizes the first-step GMM estimator.
By Assumption 3, Lemma 1, and the definition of the two-step efficient GMM
estimator, we have

WN (α̂1, β̂1)
p→ Ω−1(a∗1, β0). (85)

Following Theorem 1 by replacing the general objective function SN (α, β, θN (θ))
by the two-step objective functionS2N (θ) defined in (32), we can obtain the
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results in the corollary. Note that in this case the b∗2 depends on both the
one-step estimator a∗1 and the two-step estimator a∗2. Q.E.D.

Proof of Corollary 3 The continuously updating estimator depends on a
weighting matrix which is continuously updated by the value of the estimator.
But, we can simplify the limiting weighting matrix by Lemma 1 and Assumption
3,

WN (α, β) = WN (α, β0 + b/
√

N) (86)
p→ Ω−1(a, β0).

The limiting weighting matrix doesn’t depend on b. Then we can follow Theorem
1 by replacing the general objective function SN (α, β, θN (θ)) by the continuously
updating objective function ScN (θ) defined in (42). Q.E.D.

Proof of Theorem 2 By Equation (53), we have

SN (θ0; θ0) = [N−1/2
N∑

i=1

φi(θ0)]′WN (θ0)[N−1/2
N∑

j=1

φj(θ0)]

The first and the last terms can be rewritten as

N−1/2
N∑

i=1

φi(θ0) = N−1/2
N∑

i=1

[φi(θ)− Eφi(θ)] +
√

NEN−1
N∑

i=1

φi(θ)

⇒ Ψ(θ0) + C + m1(θ0) +
√

Nm2(β0)

by Assumptions 2 and 4. Since m1(θ0) = 0 and m2(β0) = 0 from Assumption
2, we have

N−1/2
N∑

i=1

φi(θ0)
d→ % = N(C,Ω(θ0, θ0)). (87)

By Assumption 3, we have

WN (θ0)
p→ Ω−1(θ0, θ0) (88)

So we obtain that

SN (θ0; θ0)
d→ %′Ω−1(θ0, θ0)%
d→ χ2

HK(C ′Ω−1(θ0, θ0)C). Q.E.D.

Proof of Theorem 3 We follow Kleibergen’s (2005) idea to construct two
asymptotically independent variables. By Assumption 5, we have

1√
N

N∑
i=1

(
φi(θ0)− E[φi(θ0)]
qi(θ0)− E[qi(θ0)]

)
d→

(
Ψ′φ,Ψ′q

)′
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where (
Ψφ

Ψq

)
∼ N(0, V (θ)).

Pre-multiplying it by (
IHK 0

−V̂qφ(θ0)V̂φφ(θ0)−1 ImHK

)
, (89)

and by Assumption 6, we have(
IHK 0

−V̂qφ(θ0)V̂φφ(θ0)−1 ImHK

)
p→

(
IHK 0

−Vqφ(θ0)Vφφ(θ0)−1 ImHK

)
.

Let

φN (θ0) =
N∑

i=1

{φi(θ0)− E[φi(θ0)]}

and

qN (θ0) =
N∑

i=1

{qi(θ0)− E[qi(θ0)]}.

Then, we can obtain that

√
N

(
IHK 0

−V̂qφ(θ0)V̂φφ(θ0)−1 ImHK

) (
N−1φN (θ0)
N−1qN (θ0)

)
(90)

=
√

N

(
N−1φN (θ0)

N−1qN (θ0)−N−1V̂qφ(θ0)V̂φφ(θ0)−1φN (θ0)

)
d→

(
Ψφ

Ψq.φ

)
where

Ψq.φ = Ψq − Vqφ(θ0)Vφφ(θ0)−1Ψφ

and (
Ψφ

Ψq.φ

)
∼ N(0, (

Vφφ(θ0) 0
0 Vqq.φ(θ0)

)) (91)

Note that
Vqq.φ(θ0) = Vqq(θ0)− Vqφ(θ0)Vφφ(θ0)−1Vφq(θ0)

So (Ψ′φ,Ψ′q.φ)′ has a joint normal distribution with zero correlation which means
the asymptotic independence between Ψφ and Ψq.φ.

Next, note that

N−1qN (θ0)−N−1V̂qφ(θ0)V̂φφ(θ0)−1φN (θ0)

= [N−1qN (θ0)−N−1V̂qφ(θ0)V̂φφ(θ0)−1φN (θ0)]− EN−1qN (θ0)

= N−1D̂N (θ0)− Jθ(θ0).

19



So we have

√
N

(
N−1φN (θ0)

vec(N−1D̂N (θ0)− Jθ(θ0))

)
d→

(
Ψφ

Ψq.φ

)
.

Now, consider the K statistic given by (63),

K(θ0) =
1

4N
(∂SN (θ0; θ0)/∂θ)[D̂N (θ0)′V̂ −1

φφ (θ0)D̂N (θ0)]−1

×× (∂SN (θ0; θ0)/∂θ)′

= N−1/2φN (θ0)′V̂ −1
φφ (θ0)D̂N (θ0)[D̂N (θ0)′V̂ −1

φφ (θ0)D̂N (θ0)]−1

×D̂N (θ0)′V̂ −1
φφ (θ0)N−1/2φN (θ0).

Let

ξ̂ = [D̂N (θ0)′V̂ −1
φφ (θ0)D̂N (θ0)]−1/2D̂N (θ0)′V̂ −1

φφ (θ0)N−1/2φN (θ0). (92)

and

Ξ̂ = [D̂N (θ0)′V̂ −1
φφ (θ0)D̂N (θ0)]−1/2D̂N (θ0)′V̂ −1

φφ (θ0) (93)

×
√

NEN−1
N∑

i=1

φi(θ0).

By Assumption 2 and Assumption 4, we have

ξ̂ ⇒ ξ ∼ N(0, IHK)

and
Ξ̂

p→ Ξ[C]

where
Ξ[C] = [D′V −1

φφ (θ0)D]−1/2D′V −1
φφ (θ0)C

which is defined by (67) and γ(N)D̂N (θ0)
d→ D.

When θ is well identified, Jθ(θ0) has full rank. We set γ(N) = 1/N , then

N−1D̂N (θ0) =
1√
N
{
√

N [N−1D̂N (θ0)− Jθ(θ0)]}+ Jθ(θ0)

p→ Cq

because
√

N [vec(N−1D̂N (θ0)− Jθ(θ0))]
d→ Ψq.φ.

When θ is weakly identified, Jθ(θ0) = Jθ,N (θ0) = Cq/
√

N . We set γ(N) =
1/
√

N , then

N−1/2D̂N (θ0) =
√

N [N−1D̂N (θ0)− Jθ(θ0)] +
√

NJθ(θ0)
d→ Cq + Ψq.φ
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When is totally nonidentified, Jθ(θ0) = 0. We set γ(N) = 1/
√

N , then

N−1/2D̂N (θ0)
d→ Ψq.φ. Q.E.D.
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