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Interferometric sensors using bulk optical components exhibit very high measurement resolution.
In order to attain high accuracy, these sensors are often implemented as polarization
interferometers, in which stable and well-defined states of polarization are maintained. Unwanted
phenomena degrading accuracy of this class of sensors are discussed in the paper. Signal processing
technique which improves accuracy of polarization interferometric sensors is presented. Its
implementation using analogue circuits is discussed and a method of improving its performance
is devised.
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1. Introduction 

Interferometric measurement methods have been an indispensable measuring tool used
in an extensive range of applications (e.g., [1–4]). This is due to their advantages, such
as very high resolution and accuracy, ability to measure a broad range of quantities
and relative ease of use. Setups performing interferometric measurements can be
divided, according to the type of components used in their sensing part, into two
groups: i) sensors with bulk optical components, ii) optical fibre sensors. Both groups
of sensors share the same operating principles and basic analytical description.
However, due to the difference in the properties of corresponding components used in
setups belonging to each group (e.g., bulk beamsplitters vs. 2×2 fibre couplers) and in
description of light propagation in optical fibres and in free space, more detailed
descriptions of these two groups differ considerably. Consequently, it is difficult to
provide a concise unified description of both groups of sensors. Since the description
of bulk optical sensors is more straightforward and is also the basis for description of
optical fibre sensors, the following discussion covers interferometric bulk optical
sensors. For comprehensive discussion of all aspects of implementation and operation
of interferometric fibre optic sensors, refer to, e.g., [4–6].

Often quoted advantages of interferometric sensors which use bulk optical
components include: contactless operation, moderate requirements on the surfaces of
investigated objects (no special pre-treatment is required) and very high measurement
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resolution, which for displacement measurement is often better than 0.1 nm [7].
Accuracy of interferometric sensors is usually much lower than their resolution – about
1/100 of the operating wavelength λ. This is caused mainly by uncontrolled changes
in the state of polarization of the source and drifts of polarization properties of optical
components used in the interferometer.

Implementation of interferometric sensors using polarization interferometers, in
which interfering beams have stable state of polarization, not only results in improved
accuracy, but makes it possible to devise new configurations of increased sensitivity
(cf. [8] and Fig. 7b) or improved tolerance to misalignment. In order to maintain stable
and well-defined states of polarization, polarization interferometric sensors use
polarizing beamsplitters or birefringent prisms, optical components which do not
modify the states of polarization of interfering beams and the source which has stable
power, wavelength and state of polarization. 

Polarization interferometric sensors can perform absolute [9] and relative [10]
distance measurement, birefringence measurement [11], surface roughness measurement
[12] (i.e., optical profilometry) and wavelength measurement [13]. Moreover, they can
be incorporated into other precise measuring instruments, such as atomic force
microscope (AFM) [14]. Finally, polarization interferometric sensors are often used
for indirect measurement of several physical quantities (e.g., pressure, temperature,
refractive index) whose changes can be converted into changes of optical path length. 

An example of polarization interferometric sensor is presented in Fig. 1. Light from
a single frequency laser, linearly polarized at 45° to the plane of the figure, is split by
the polarizing beamsplitter PBS into the measurement beam, polarized in the plane of
the figure, and the reference beam, polarized perpendicularly to that plane.
Subsequently, the beams are reflected by retroreflectors and recombined in PBS. Phase
difference between the beams is proportional to the optical path length difference
between measurement and reference arms. On entering the detection setup each beam

Fig. 1. Displacement sensor using polarization interferometer and quadrature detection.
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is divided by the non-polarizing beamsplitter BS into two channels. In the first channel
the beams are brought to interference on detector D1 by polarizer A1 whose axis is
aligned at 45° to the plane of the figure. In the second channel, additional phase
difference of 90° is introduced between the reference and measurement beams using
quarter-wave plate Q1 placed in front of polarizer A2 bringing the beams to interference
on detector D2.

Intensity of light reaching detectors D1 and D2 can be expressed as
I1 = I0 /2[1 + cos(k∆l)] and I2 = I0 /2[1 + sin(k∆l)], respectively, where I0 – maximum
intensity on a detector, k – wavenumber (k = 2π/λ), ∆l – measured displacement. By
means of simple operations on analog signals from the detectors, two electrical signals,
U1 and U2, are obtained which are functions of ∆l:

(1)

where R is sensitivity of the detection setup. Using U1 and U2 and knowing
wavenumber k, value of ∆l can be calculated. As signals U1 and U2 are shifted by 90°
with respect to each other, the direction of ∆l changes can always be determined. 

In many particular applications custom polarization interferometric sensors must
be developed which perform these measurements with high resolution and accuracy.
In order to accomplish this task, it is vital to have a good understanding of factors
affecting accuracy and stability of these sensors, as discussed in the following section.
The possibility of appling correction methods that greatly reduce nonlinearity of
polarization interferometric sensors, also discussed there is very beneficial, too. These
methods can be used with most polarization interferometric sensors, athough they were
originally developed for displacement measurement metrology. Because a large
portion of these sensors is implemented as homodyne interferometers, the following
discussion is restricted to that class of interferometers.

2. Nonlinearity sources in polarization interferometric sensors 

The accuracy of homodyne polarization interferometric sensors is decreased as a result
of several parasitic phenomena, of which the most important are: i) polarization
cross-talk (Fig. 2a), ii) parasitic birefringence of components (Fig. 2b and c), iii) finite
extinction ratio of components (Fig. 2d) and iv) reflections at glass–air interfaces
(Fig. 2e). 

Polarization cross-talk (Fig. 2a) occurs when part of linearly polarized light beam
(Ex or Ey) is coupled to the orthogonal beam (Exo or Eyo, respectively) becoming a
parasitic component (Epx or Epy, respectively) of this beam. Present in waveplates,
polarizing beamsplitters and polarizing prisms (e.g., Wollaston or Nomarski prisms),
this phenomenon is caused by misalignment between the direction of the optical axis
in these components and polarization plane of beams Ex or Ey. When Ex or Ey
are reference and measurement beams of a polarization interferometer, polarization

U1 RI0 k∆l( ),cos=

U2 RI0 k∆l( )sin=
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cross-talk introduces a phase shift between them, which is an important source of errors
in polarization interferometric sensors.

Parasitic birefringence exists in optical elements, such as non-polarizing
beamsplitters, waveplates, retroreflectors or Dove prisms, affecting the state of
polarization of light propagating through them. When circular birefringence (i.e.,
optical activity) is present in an element, the plane of polarization of light incident on
it is rotated through an angle α, as shown in Fig. 2b. When linear birefringence is
present in an element and its optical axis is parallel to one of orthogonal components
of the light beam, a phase shift is introduced between them, as shown in Fig. 2c.
Otherwise, polarization cross-talk occurs, as described above. 

Polarizing beamsplitters and polarizing prisms, such as Wollaston or Nomarski
prisms, should divide a light beam incident on them into two beams linearly polarized
in orthogonal planes. Therefore, the beam incident on the polarizing beamsplitter PBS
shown in Fig. 2d should propagate across it. In fact, a small amount of power is coupled
out to the other direction (downwards in Fig. 2d). Extinction ratio e can be defined as
the ratio of power transmitted in the right direction Pout to power Pparasitic coupled into
the other direction, i.e., e = Pout /Pparasitic. Ideal beamsplitters and polarizing prisms
have infinite extinction ratio, due to Pparasitic = 0. In real components this parameter
ranges from 104 to 106.

Another source of inaccuracy of polarization interferometric sensors is Fresnel
reflection at the surfaces of optical components (e.g., glass–air, glass–vacuum or
plastic–air interfaces). When a beam having amplitude Eo crosses such an interface
(either entering or leaving a component), part of its power is reflected back. Reflected
beam, whose amplitude ER depends on refractive index difference between air and the
material of the optical component, can combine with another beam EC propagating
in the same direction, as shown schematically in Fig. 2e. Assuming that the beams are

Pout 

Pparasitic 

PBS 

Pin 

 ∆ϕ = 0 

∆ϕ ≠ 0
 

Optical axis 

Ex 

Exo 

α 

Epx 

Eyo 

Optical axis 
Epy 

Ey Ex 

Exo 

Fig. 2. Phenomena affecting accuracy of homodyne polarization interferometers polarization cross-talk
(a), parasitic birefringence (b and c), finite extinction ratio (d), reflections at glass-air interface (e).
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coherent and have the same state of polarization, amplitude ES of their superposition
can be expressed as: 

(2)

where ϕ – phase difference between beams ER and EC. This phenomenon can be seen
as an unwanted phase modification imparted on beam EC by reflected beam ER. When
phase difference ϕ is a function of the measured quantity, this is an important source
of errors in optical setups in which beams Eo and Ec overlap, e.g., in Michelson
interferometers.

Apart from measurement errors caused by the phenomena present in optical
components and described above, additional errors are introduced by the electronic
part of the detection setup. Most often these errors take the form of voltage offsets
present at the outputs of the setup or gain mismatch between the two outputs. 

All these phenomena manifest themselves as periodical nonlinearity of polarization
interferometric sensors. According to description introduced in [15], distorted output
signals U1d and U2d can be expressed in terms of undistorted output signals U1 and U2,
given by Eq. (1), as: 

(3)

where r – gain ratio of the two channels (r = G1/G2), p – offset in the first channel,
q – offset in the second channel, α – quadrature error. 

Lissajous figure of U1d and U2d is an ellipse, randomly distorted by the presence
of noise in U1d and U2d, as shown in Fig. 3. In an ideal system, gains of both channels
are equal (i.e., their ratio r = 1), no offsets are present (p = q = 0) and phase difference
between the channels is 90° (i.e., α = 0), therefore Eq. (3) reduces to Eq. (1) and
Lissajous figure of U1d and U2d becomes a circle. 

Performing the least-square fitting of Eq. (3) to measurement data acquired for the
range of k∆l greater than 2π, values of r, p, q and α can be found. Subsequently,
undistorted output signals U1 and U2 can be calculated from Eq. (3), rewritten as: 

(4)

Correction procedure described above is a very time-consuming process, in which
the most computation-intensive task is calculation of r, p, q and α by the least-square
fitting. Since Eq. (3) must remain fitted to data being processed, all parameters have
to be recalculated each time any one of them changes. In order to avoid frequent
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recalculations, the sensor should have low drift of polarization properties of its
elements, small dependence of these properties on the instantaneous value of measured
quantiy as well as low noise and drifts in detection electronics. 

Correction of measurement data can be performed either off-line, when data are
acquired and stored first and the correction process is performed afterwards, or on-line,
i.e., during data acquisition. Off-line correction is performed in digital domain, using
a PC or dedicated DSP hardware, often after passing the data through a digital noise
filter. On-line correction, which is much more difficult to perform due to time
constraints, can be carried out either in digital domain, using a high-throughput DSP
system [16] or in a mixed-signal mode, by performing the fitting in digital domain,
converting values of calculated parameters into voltages using D/A converters, and
feeding these voltages to an analog circuit performing the correction in analog domain
[9]. The latter method can reduce the amount of calculations, and when frequent
recalculations of ellipse parameters are not required, it may obviate the need to use
a high-throughput DSP system. 

An example of circuit for correcting output signals U1d and U2d from a polarization
interferometer is presented in Fig. 4. Its transfer function can be written as:

(5)

where K – scale factor of the multipliers, UGx and UGy – voltages controlling gain of
the first and second channel, respectively, UOx and UOy – voltages controlling offset
of the first and second channel and Uφ – voltage controlling phase difference between
the two channels. Comparing Eq. (5) with Eq. (3), values of Uφ, UGx , UGy , UOx and
UOy can be expressed in terms of ellipse parameters r, p, q and α. 
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Fig. 3. Lissajous figure of ideal (—) and real (+)
phase quadrature signals from a polarization
interferometer. 
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Nonlinearity reduction up to 18 times was demonstrated using the circuit from
Fig. 4 by authors of [9]. Further reduction seems to be possible by decreasing
nonlinearity of the correction circuit by addressing its most important source –
multipliers. Since the range of Uφ, UGx and UGy is limited (i.e., ∆U/U ≤ 1) for all
practical circuits, it is possible to use an elegant solution due to PEASE [17] in which
most of the gain is obtained with a linear amplifier, and a multiplier is used only to
adjust it over required range. In the following section we present our solution
employing this technique. 

3. Improved analog correction circuit

First, let us consider the first channel of correction circuit presented in Fig. 4. We can
safely assume that required gain range in this circuit is 0.8 to 1.2 (i.e., ±20% change
around nominal value 1.0), that U1d varies from –5 to +5 V and that maximum voltage
at any multiplier input can range from –10 to +10 V, while its output voltage can be
from –12 to +12 V. 

We can replace the first channel of this circuit with the circuit presented in Fig. 5,
where γ  is the division ratio of the resistive divider. The transfer function of the latter
circuit can be expressed as: 

(6)

Since the amplitude of input signal U1d is 5 V and maximum voltage allowed on
the multiplier is 10 V, G2 can be set to 2V/V. As in most cases |UGx /K| ≤ 1,
division ratio γ  needed to obtain ±20% gain change is 10. It should be noted that any
nonlinearity observed at the output of the multiplier is also divided by 10. Therefore,
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Fig. 4. Example implementation of nonlinearity correcting circuit.
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a nonlinearity reduction by one order of magnitude, compared to the first channel of
the circuit from Fig. 4, can be attained.

Second, let us start modification of the second channel of the circuit from Fig. 4
by rewriting its transfer function, which can be expressed using Eq. (4) as: 

(7)

The transfer function of the circuit from Fig. 6 is:

(8)

Comparing Eq. (7) with Eq. (8), we can write:

 

(9)

Let us assume that U1d and U2d vary from –5 to +5 V, required gain ratio r can
change from 0.8 to 1.2, |α | ≤ 15°, and that maximum voltage at any multiplier input
can be between –10 and +10 V while its output voltage can range from –12 to +12 V.

Gains G1 and G2 can be set to 2V/V since the amplitude of input signals U1d and
U2d is 5 V and maximum voltage allowed on the multiplier is 10 V. For the given range
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of α we have |tanα | ≤ 0.268 and 0.800 ≤ (r/cosα) ≤ 1.242. Using these values in
Eq. (9), together with the fact that |UGy/K | ≤ 1 and |Uφ /K | ≤ 1, we arrive at: 

(10)

from which division ratios γ1 and γ2 can be calculated:

γ1 = 7.463, γ2 = 8.764. (11)

It should be noted again that any nonlinearity present at the outputs of the multipliers
is divided by γ1 and γ2. Therefore, in the worst case, nonlinearity reduction in the
second channel is over seven times (γ1 = 7.46). 

Finally, let us compare the complexity of the circuit from Fig. 4 with that of our
modified circuit from Figs. 5 and 6. Assuming that summation points are implemented
using an operational amplifier, which is usually the case, the latter circuit contains
the same number of multipliers and only one operational amplifier more than the
former circuit. Therefore, the cost of the latter circuit is only marginally higher than
that of the original one.

In conclusion, the circuit presented in Figs. 5 and 6 offers nonlinearity improvement
which is over seven times compared to the original circuit from Fig. 4. Moreover,
this considerable improvement is obtained with only small additional complication of
the circuit. 

The method discussed can be used in sensors employing other, more sophisticated
detection setups, such as the four-detector setup presented in Fig. 7 or the setup shown
in Fig. 8 [18]. 

Operation of the balanced-quadrature detection setup from Fig. 7 is similar to that
of detection setup presented in Fig. 1. On entering the setup, planes of polarization of
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reference and measurement beams are rotated by 45° using the halfwave plate H1.
Then, each beam is divided by the non-polarizing beamsplitter BS into two channels.
In the first channel, the beams are brought to interference on detectors D1 and D2 by
the polarizing beamsplitter PBS1. In the second channel, additional phase difference
of 90° is introduced between the reference and measurement beams using a quarter
-wave plate Q1 placed in front of the polarizing beamsplitter PBS2. This beamsplitter
brings the beams to interference on detectors D3 and D4. Signals from detectors
D1–D4 after I/U converters can be expressed as 

(12)

Therefore, output signals of instrumentation amplifiers, giving directly the desired
information can be expressed as:

(13)

The detection setup presented in Fig. 8a [18] uses a Nomarski prism, an analyser
and a set of three photodiodes D1, D2 and D3 shown in Fig. 8b. Reference and
measurement beams entering the setup are expandend by the beam expander BE
and are incident on the Nomarski prism NP, whose optical axis is parallel to the
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polarization plane of one of the beams. This prism changes propagation directions of
reference and measurement beams, so that a small angle (0.5–5°) α is introduced
between the beams. The analyser A brings the two beams into interference, creating
a fringe pattern on the photodiodes, as shown in Fig. 8c. Positions of dark and bright
fringes depend on phase difference between the two beams. 

Assuming that maximum intensity of the fringe pattern Imax(x, y) is constant across
the surfaces of photodiodes (D1, D2, D3), it can be shown that their currents i1, i2 and
i3 can be written as: 

(14)

From Eqs. (14) it can be seen that in this case it is easier to obtain output signals
proportional to sin(k∆l + π/4) and cos(k∆l + π/4), rather than to sin(k∆l) and cos(k∆l).
These signals are obtained by:
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Fig. 8. Detection setup using Nomarski prism: view of the setup (a), dimensions of detectors (b), fringe
pattern illuminating detectors (c); h – fringe spacing.
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(15)

where V – visibility of fringes. 
An important advantage of this setup is its simplicity and compact layout.

Moreover, the setup does not use non-polarizing beamsplitters which can be an
important source of polarization cross-talk and birefringence in detection setups.

4. Polarization interferometric sensors 

The technique for nonlinearity reduction described above is used in several
applications, such as surface roughness measurement, wavelength measurement,
distance-measurement metrology as well as in AFM. It can be extended to other
polarization interferometric sensors, such as hydrostatic pressure sensors (Fig. 9a) or
relative displacement measurement sensors (Fig. 9b) [8]. Moreover, it can also be
applied to waveguide polarimetric sensors for complex refractive index measurement,
biosensing and immunosensing (Fig. 9c) [19].

Operation of hydrostatic pressure sensor presented in Fig. 9a is similar to that of
the Michelson interferometer. Light from the source is divided by the Wollaston prism
into the measurement beam, polarized in the plane of the figure and the reference beam
polarized perpendicularly to the plane of the figure. Reflected from the pressure-
sensing membrane, the beams return to the Wollaston prism, where they are combined.
Phase difference between the orthogonal components of the resulting beam is
proportional to the optical path length difference of reference and measurement arms.
An important advantage of this sensor is that it is sensitive only to pressure-induced
membrane deformation. Translation of the membrane, e.g., induced by change of
temperature, does not influence the measurement.

Relative displacement sensor, presented in Fig. 9b, which can also be used to
measure hydrostatic pressure, is a four-pass sensor, i.e., light travels four times in its
arms. Input beam is divided by the Wollaston prism into the measurement beam,
polarized in the plane of the figure and the reference beam polarized perpendicularly
to the plane of the figure. Reflected from the measured object, the beams pass through
a quarter-wave plate, are reflected from a mirror placed behind it and pass again
through the plate. The axes of the plate are aligned in such a way that the beams change
their polarizations into orthogonal ones, i.e., the measurement beam becomes polarized
perpendicularly to the plane of the figure and the reference beam becomes
polarized in that plane. The beams fall on the measured object, then are reflected from
it, and return to the Wollaston prism, where they are combined. An important
advantage of this sensor is that it is sensitive only to relative displacement ∆x, rather
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than to translation of measured object. Moreover, this sensor is not sensitive to small
tilts of the surface of measured objects. 

Complex refractive index sensor, presented in Fig. 9c, can also be used as a
biosensor, in which an antigen-antibody interaction affects refractive index. Polarized
light from the source is coupled into the sensing waveguide, where two polarization
modes xHE11 and yHE11 are excited with equal amplitudes. Propagation constants of
these modes are functions of refractive index of the sample (or antigen layer in
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biosensors). Therefore, the value of refractive index can be obtained based on
measured phase difference between polarization modes leaving the waveguide. This
measurement is accomplished by the detection setup, in which the polarization modes
are brought to interference by analysers.

5. Implementation issues 

While polarization interferometric sensors combined with nonlinearity reduction
technique described above are an attractive highly-accurate measuring tool, they
exhibit certain disadvantages hindering their implementation. The most important
problems are: excessive size of some optical setups, distortion of interfering
wavefronts, difficult setting up due to reflections from the surfaces of lenses, difficulty
to couple the sensors to a single-mode polarization-maintaining fiber as well as change
of the wavefront shape as a function of displacement.

Excessive size is often encountered in sensors using a Wollaston or Nomarski prism
in which spacing between sensing and reference beam is above 1 mm. The primary
cause of this problem is small (< 5–10°) splitting angle of the prism. A sensor similar
to that from Fig. 9b, in which the transverse spacing of the beams is 2 mm, has overall
length of optical setup over 60 mm [20]. Using Wollaston/Nomarski prisms with
higher splitting angle (up to 30°) often requires more sophisticated focusing optics,
such as multi-element assemblies containing aspheric lenses. Multiple lens surfaces
give rise to a number of reflections on glass-air interfaces, making these setups difficult
to align. Moreover, in such setups, wavefronts of measurement and reference beam
are often distorted in a different way, which decreases interference contrast and makes
these interferometers more sensitive to vibration.

Operation of polarization interferometric sensors may also be affected by change
of the wavefront shape, caused by the change in the shape of measured surface. As
illustrated in Fig. 9a, the measured hydrostatic pressure deforms the membrane in such
a way that its surface becomes convex, modifying focal length of the system. As a
result, the reflected measurement beam is no longer collimated (i.e., it does not have
a flat wavefront), which may affect the operation of the detection setup.

6. Conclusions 

The accuracy of polarization interferometric sensors, which is often degraded by
unwanted optical and electrical phenomena, can be improved by using a correction
technique developed for metrology, based on adjustment of gain and removal of offsets
in detection setup. Employing this technique it is possible to provide a real-time
correction of measured data using analog or digital signal processing. Analog correction
circuits can achieve accuracy much higher than demonstrated to date, by complementing
multiplier-based variable gain stages with linear gain stages, as discussed in Sec. 3.
Although some polarization interferometers are difficult to implement because of their
size or complicated alignment, this class of sensors shows considerable application
potential. Sensors employing optical components made from new crystalline and liquid
crystal birefringent materials can potentially be made more compact and economical
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at the same time offering high measurement accuracy. However, futher research is
needed on implementation of polarization interferometric sensors.
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