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Abstract 
 

Instrumental variable methods are widely used to make inferences about the 
impact of some variable on economic outcomes; for example, whether or not institutions 
influence long-term growth. The test-statistics used for making these inferences, 
however, are based on the generally unrealistic identifying assumption that the 
instruments are exogenous. We find that when carefully chosen instruments are more 
realistically modeled as “nearly” exogenous, the standard test-statistics are unreliable: the 
t-statistic substantially and unpredictably either overrejects or underrejects the null and 
the Anderson-Rubin test always overrejects. We show how an Anderson-Rubin test-
statistic derived from the delete-d jackknife procedure developed by Wu [1986] can be 
used to make reliable inferences in small samples when instruments are “nearly 
exogenous.” Our procedure adjusts the critical values according to the correlation 
between the instrument and structural error. We are able to do this both in exactly 
identified systems as well as overidentified ones. Furthermore, our test is robust to the 
weak instruments problem. We use this test to confirm and to correct inferences about the 
impact of institutions in the celebrated work of Acemoglu, Johnson and Robinson [2001]. 
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I. Introduction 

 Economists frequently apply instrumental variable methods to draw inferences 

about whether or not some variable influences an economic outcome. Labor economists 

employ varied instruments, including quarter and year of birth [Angrist and Krueger 

1991], tuition and distance to nearest college [Kane and Rouse 1995], attending reform 

school [Meghir and Palene 1999] and birth year interacted with school buildings in 

region of birth [Dufflo 2001] to test for whether or not a person’s education influences 

her salary and wages. In a more recent literature that combines macro-economics, 

political economy and comparative institutions, economists employ instruments including 

early settler mortality [Acemoglu, Johnson and Robinson 2001], ethnic capital [Hall and 

Jones 1999], ethno-linguistic fractionalization [Mauro 1995] and legal families [Djankov 

et al. 2003, and Acemoglu and Johnson 2006] to determine whether or not the quality of 

institutions influences long-term growth and investment.   

 If long-term growth is regressed on institutions and other relevant variables using 

ordinary least squares (OLS), then inferences can be made about whether or not 

institutions and long-term growth are correlated; however, we would not necessarily be 

able to infer whether or not institutions drive long-term growth. One reason for this is that 

long-term growth could in fact partially be responsible for the quality of institutions since 

a country that is wealthy can afford good institutions, while a poor country typically 

cannot [Glaeser et al. 2004]. Or, there may be an unobserved variable or noisily measured 

factor such as culture or the education level of early settlers that simultaneously drives 

the quality of institutions and long-term growth [Guiso, Sapienza and Zingales 2006]. In 

either case, institutions are endogenous, and inferences about causality cannot be made.  
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 Instrumental variable methods are employed to make causal connections. 

Researchers pick relevant instruments: they should be related to the endogenous 

explanatory variable both on the basis of a priori argument and statistically. For example, 

Acemoglu et al. [2001], for herein sometimes denoted AJR [2001], argue that early settler 

mortality in colonies is strongly related to the quality of contemporary institutions that 

restrain the government from expropriating private assets. The a priori argument, roughly 

speaking, is that settlers who believed that they would live for a long time in their colony 

were more likely to invest in institutions that limit expropriation; settlers who anticipated 

that they could not survive very long in their colony would tend to set up extractive 

institutions; and the quality of institutions set up by all settlers tended to be persistent. 

Anticipated early settler mortality is proxied by using the disease environment in colonies 

around the time of settlement. This strong statistical relationship between the instrument 

(early disease environment) and endogenous explanatory variable (institutions hundreds 

of years later) is verified in a reduced form regression.1  

 Instruments must also be exogenous; that is, they are not related to the outcome 

variable after controlling for relevant explanatory variables. For example, early settler 

mortality is exogenous if it is not systematically related to long-term growth after 

controlling for institutions and other relevant variables such as population and latitude. 

This requirement, however, is very strong because it means that settler mortality can only 

influence long-term growth indirectly through the quality of contemporary institutions. 

The exogeneity of early settler mortality, however, is controversial: for example, as noted 

by Glaeser et al. [2004], early settler mortality could also influence long-term growth 

through its impact on the unobservable human capital of the early settlers.  There are 
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many other seemingly exogenous instruments that are also controversial. For example, 

Angrist [1990] argues that draft lottery numbers are instruments for testing whether 

serving in Vietnam affects the earnings of men in the civilian sector because these 

numbers influence earnings purely through military service. Wooldridge [2002, p.88] 

argues, however, that this is not necessarily true because civilian employers are more 

likely to invest in job training for employees who have low draft numbers. Therefore, 

lottery numbers could also influence earnings through job training, which is 

unobservable.  

 In this paper we develop a simple technique for making inferences about whether 

or not an endogenous variable matters for some outcome when instruments are “nearly 

exogenous.” Nearly exogenous instruments influence outcome variables primarily 

through the endogenous explanatory variable, but they also plausibly and weakly 

influence the outcome through other unobserved channels. They are therefore weakly 

correlated with the error term in the structural equation. Once we model instruments as 

nearly exogenous and not perfectly exogenous, there is both bad news and good news. 

The bad news is that standard test-statistics for making inferences are unreliable: even 

when the instrument is very close to being exogenous, the t-test-statistic grossly and 

unpredictably overrejects or underrejects the null hypothesis and the one-sided Anderson-

Rubin test overrejects. The good news is that we can make accurate inferences in small 

samples using an Anderson-Rubin statistic derived from the delete-d jackknife procedure 

(see Wu [1986]).  Even though none of the resampling methods are consistent in this 

case, the delete-d jackknife method comes arbitrarily close to the true distribution in large 

samples.  We also show that this method works well in small samples, and is better than 
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any other method used so far in terms of size properties. More generally, our technique 

allows practitioners to use instrumental variable methods for carefully chosen instruments 

that, while not perfectly exogenous, are more realistically modeled as nearly exogenous. 

 This test-statistic corrects for correlations between instruments and the structural 

error term by adjusting the critical values according to the degree of correlation. 

Researchers often employ the Sargan test and Hansen’s J-test to validate exogeneity in 

overidentified systems. It is well known, however, that both the Sargan and J-tests have 

low power and are unreliable for providing guidance about the validity of instruments 

(Bound et al. [1995]). Han and Hausman [2002] provide another test for validity that 

works when there are many instruments. It is, however, often difficult to find just one 

valid instrument. Our test can be used in exactly identified systems, and it is also robust 

to weak instruments.  

 In the next section we show that when instruments are relevant and nearly 

exogenous, inferences drawn from the t-test and the Anderson-Rubin test in two-stage 

least square systems are unreliable in small samples; and in section 3 we show that these 

problems hold in large samples. In section 4 we show that the t-statistic cannot be 

repaired, but the Anderson-Rubin test can be partially fixed using the delete-d jackknife 

procedure.  In section 5 we use Monte Carlo simulations to understand how the delete-d 

jackknife Anderson-Rubin test can be reliably constructed in small samples. We show 

that the delete-d jackknife AR-test is less size distorted than the standard AR-test and t-

test. In section 6 we use this test to confirm and correct inferences drawn about the 

impact of institutions on long-run growth by AJR [2001]. This test-statistic can be 
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implemented using STATA and the general program is available at 

http://www.at.edu/~dmberk/ddj-ARtest.txt. In section 7 we conclude. 

 

II. Inference Using the Standard Test-statistics 

In this section we relax the assumption that instruments must be exogenous and 

introduce a definition of “near exogeneity.” This section then delivers the bad news that 

the standard two-stage least squares (TSLS) test-statistics are unreliable when carefully 

chosen instruments are “nearly” exogenous. Subsequent sections, fortunately, report the 

good news that jackknife techniques can be used to derive a reliable test-statistic. 

Suppose we want to check for whether or not an institution, say property rights 

enforcement, influences long-term growth in a sample of countries.2 If we suspect that 

institutions are endogenous, and we also believe that a linear specification is appropriate, 

we would estimate and compute test-statistics for the following simple linear 

simultaneous equations model (Hausman [1984] and Phillips [1984]): 

(1)   uINSTLRGr ++= 10 ββ ; 

(2)   VZINST +Π+Π= 10 . 

Equation (1) is the structural equation, where LRGr is an nx1 vector of long-run growth, 

INST is an nx1 vector of institutions, and u is an nx1 vector of structural error terms that 

have zero mean and finite variance ∞<2
uσ . Equation (2) is the reduced form, Z is an 

nxk matrix of instruments and V is an nx1 vector of reduced form errors that has a zero 

mean and finite variance. ∞<2
Vσ . The error terms u and V may be correlated and n 

represents the number of countries. The parameters 1010 ,, ΠΠ andββ , are unknowns, 
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and, for notational conventional, we denote },{,},{ 1010 ΠΠ=Π= βββ . Other 

covariates, for example, population, latitude and education, can be added to the system in 

equations (1) and (2) without loss of generality.3 

In order to determine whether or not institutions matter, we estimate the unknown 

parameter β1 and use test-statistics to check whether β1 = 0. To do this properly, we need 

valid instruments that are both relevant and exogenous. As previously discussed, relevant 

instruments are picked on the basis of a theoretical, institutional and/or historical 

argument, and are validated ex post by estimating the reduced form. Staiger and Stock 

[1997] propose an F-statistic of at least 10 for the null that 01 =Π  as ex post validation 

of relevance. The second criterion for validity is that instruments are exogenous, which 

implies they are orthogonal to the error term in the structural equation: 

(3)   0' =⇒ ii uZCovExogenous . 

It is generally difficult, as we have previously argued, to find instruments that 

satisfy this strong condition. We want to check, then, if we can make reliable inferences 

about institutions when instruments are relevant but, as in the case of early settler 

mortality, may not be exogenous. In particular, while these instruments influence long-

run growth in the structural equation primarily through institutions, they may also be 

weakly correlated with unobserved factors that can also influence long-term growth. We 

model this potential small correlation as “nearly exogenous,” which is a local to zero 

setup: 

(4)  smallisnCuZCovExogenousNearly ii /' =⇒   

where C is an nx1 vector of constants.  
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If we choose CuZCov ii ='  to capture near exogeneity, then the test-statistics 

always diverge in the limit. Thus, this assumption does not provide any guidance for 

finite sample behavior when there is some mild correlation between the instrument and 

error. 

In what follows, small sample simulation methods are used to show that even a 

slight relaxation of the exogeneity assumption in equation (3) makes the standard test-

statistics unreliable.  Suppose we employ the TSLS t-test to determine whether or not 

institutions matter. Denoting the H0 and H1 as the null and the alternative, and TSLS,1

∧

β as 

the TSLS estimator of ,1β  we use the t-statistic to test 

 

0: 10 =βH , against  

0: 11 ≠βH , where the t-statistic is given by 

(5) TSLSTSLS at ,1,1 var/
∧∧

= ββ .      

  

In figures 1-2, we use standard methods to simulate the distribution of the t-

statistic for a sample of 100 countries with instruments that are exogenous and nearly 

exogenous. For simplicity and no loss of generality, the intercept coefficients 

00 Πandβ are both set at 0 and the true value of the coefficients 11 Πandβ are set at 0 

and 1, respectively. Thus, institutions are identified by a strong instrument and the true 

null hypothesis is that institutions do not matter.  

 We generate i.i.d. data for the one instrument, the structural error term and 

reduced form, (Z,u,V), from a joint normal distribution N(0, Λ) and  
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where Cov Zi’ui measures the correlation between the instrument Z and the error term u,  

and Cov Vi’ui  measures the endogeneity of institutions, which is set to 0.25 in all 

simulations. When the i.i.d. data (Z,u,V) are generated, we can derive the observation of  

and INST and LRGr by using equations (1) and (2) and specified true values of 

11 Πandβ . Based on the information of LRGr, INST and Z, we compute the t-statistic 

and then test whether the null of β1= 0 can be rejected at the 5% level by using the critical 

value 1.95. We replicate the simulation by 1000 times to derive the distribution of the t-

statistic and calculate the actual rejection probability which is reported in Table 1. 

 Figure 1 illustrates the distribution of the t-statistic when the instrument is 

exogenous, and nearly exogenous with small positive correlation: Cov Ziui  = 0.10. The 

distribution under exogeneity is close to a standard normal distribution, and the 

distribution under near exogeneity shifts to the right and is close to a normal distribution 

with a nonzero mean. This shift implies that the null is falsely rejected 19.2% of the time 

from the right-hand tail, which is much higher than the appropriate 2.5% rate. The null is 

falsely rejected at the 0.2% rate from the left-hand tail, which is conservative; and, the 

two-sided test falsely rejects at 19.4% rate, which is almost quadruple the nominal 5% 

rate.   

Figure 2 compares distributions when the instrument is exogenous and then nearly 

exogeneous: Cov Zi’ui  = - 0.10.  The t-statistic is conservative on the right-hand side and 
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falsely rejects roughly 0.3% of time. It overrejects from the left-hand side at a 14.0% rate; 

and, the two-sided test has size problems and falsely rejects 14.3% of the time.  

 Table 1 reports rates of right-hand side and left-hand false rejection when the 

instrument is more weakly correlated with the error term: Cov Zi’ui  = 0.06 or -0.06 and 

illustrates that as the absolute value of the correlation decreases, the size problems of the 

two-sided t-test are mitigated. When the correlation is positive there is a 9.4% false 

rejection rate on the right-hand side, a conservative 0.4% rate from the left-hand side and 

an overall 9.8% false rejection rate. When the correlation is negative, the rates of false 

rejection on the right-hand and left-hand sides are 0.6% and 7.2%, respectively, and the 

overall false rejection rate is 7.9%.   

 Suppose we test the null against the alternative using the one-sided Anderson-

Rubin (Anderson and Rubin [1949]) test: 

 

(7)4 )2/()'(/')0( 1 −== nLRGrMLRGrLRGrPLRGrAR zzβ .   

 

Here, )0( 1 =βAR is the test-statistic for the null, ZZZZPz
1)'( −= is the projection 

matrix and zz PIM −= .  

Figure 3 compares simulations of the small sample distributions of the Anderson-

Rubin statistic when the instrument is exogenous and nearly exogenous. Under 

exogeneity the distribution is close to a standard chi-square and, when Cov Zi’ui  = 0.10, 

the distribution shifts to the right and is close to a non-centered chi-square.  Because this 

is a one-sided test, the shift depends only on the absolute value of the correlation. If we 

set the critical value at 3.85, the nominal probability of falsely rejecting is 5%, and the 
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actual rate under near exogeneity is 17.5% so that near exogeneity creates small sample 

problems.  

Table 1 illustrates that the small sample problems of the Anderson-Rubin test (for 

herein, denoted the AR-test) are also diminished when the instrument is less endogenous. 

When the correlation decreases to 0.06, the AR-test falsely rejects 9.4% of the time. 

Since it is not possible to calculate the absolute value of the correlation between the 

instruments and structural error, it is not possible to adjust for this small sample distortion 

and the AR-test is also unreliable. 

 

III. Large Sample Distributions 

 This section adds to the bad news: we show that the shifts in test-statistic 

distributions observed in the small sample simulations for nearly exogenous instruments 

also hold in limit.  For the next three sections of the paper, we generalize the 

simultaneous equations system equations (1) and (2) to model a more general system 

with m ≥ 1 endogenous explanatory variables, and k ≥ m instruments: 

 

 
VZY

uYy

+Π=

+=

*)2(

*)1( β
   

 

where y is an nx1 vector of some outcome variable, Y is an nxm matrix of endogenous 

explanatory variables, Z is an nxk matrix of instruments, u is an nx1 vector of structural 

errors, V is an nxm matrix of reduced form errors; the errors have zero means and finite 
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variance, and u and V are correlated with each other. As noted before, other exogenous 

covariates can be added to the system. 

 In the next theorem, we show that near exogeneity shifts the asymptotic 

distribution of the t-statistic to normal with nonzero mean.  

 

Theorem 1:  Suppose that the instrument is nearly exogenous according to (4), and the 

standard assumption 2 in the appendix holds.  Then,  

 ]1,')'([ 2/11 CQNt zzu

d
ΠΠΠ→ −−σ      (8) 

andofrootsquaretheiswhere uu ,2σσ Qzz is the second moment matrix of 

instruments. 

Proof. See the Appendix. 

 

 According to Theorem 1, the mean of the distribution depends upon the parameter 

C, which, by equation (4), is related to the small correlation between structural error and 

instruments.  When C=0 and the instruments are exogenous, the t-statistic converges to 

the standard normal distribution. When C>0 (given 0>Π ), the distribution shifts to the 

right. When C<0 (given 0>Π ), the distribution shifts to the left. Since we cannot 

consistently estimate C let alone know its sign, we cannot use this large sample theorem 

to improve inference. 

  The next theorem characterizes the impact of near exogeneity on the distribution 

of the AR-test, which is now more generally defined from equation (7) for k instruments 

and m endogenous explanatory variables: 
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(7*) )/()()'(/)()'()( 00000 mknYyMYyYyPYyAR zz −−−−−−= βββββ   

 

We use this statistic to test 00 : ββ =H  against 01 : ββ ≠H  where 0β  is the true value. 

 

Theorem 2:  Suppose that the instrument is nearly exogenous according to (4), and the 

standard assumption 2 in the appendix holds.  If the null hypothesis is then,0ββ =  

(9) )()( 2
0 ςχβ K

d
AR →        

)(2 ςχ Kwhere is a non-central chi-square distribution with k degrees of freedom and the 

non-centrality parameter zzu QwhereCC ⊗=ΩΩ= − 21 ,' σς . 

Proof. See Caner [2006] and Fang [2006]. 

 

 According to Theorem 2, the mean of the non-centrality parameter is quadratic in 

parameter C.  Therefore, when C=0 the AR-test converges to the centered chi-square 

distribution, and when C≠0 the distribution shifts to the right. Again, since we do not 

know C, we cannot use these theorems to obtain appropriate critical values.  

 

IV. Reliable Inference under Near Exogeneity 

This section contains the good news that it is possible to make reliable inferences 

when instruments are nearly exogenous. When large sample results are problematic, a 

standard remedy is to employ resampling methods including the bootstrap, the jackknife 

and subsampling. While we cannot repair the t-statistic, we show that we can adjust the 

Anderson-Rubin test using the delete-d jackknife procedure developed by Wu [1986] and 
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get very close to the true limiting distribution and, more importantly, obtain good small 

sample properties. 

The reason why the t-statistic cannot be fixed using resampling methods is that it 

contains the TSLS estimator TSLS,1

∧

β  (see equation (5)). Resampling techniques that are 

designed to pick up correlations between instruments and the structural error term will 

fail because the TSLS estimator uses the estimated residual vector which, by 

construction, is orthogonal to the instrument. Thus, resampling procedures are forced 

essentially to ignore correlations between instruments and structural error terms. 

More formally, let tS denote the delete-d jackknife t-statistic (for herein, denoted 

as the ddj t-statistic): 

(10) TSLSSTSLSTSLSSS at ,1

^

,1,1 var/ βββ
∧∧

−=      

where TSLSS ,1

∧

β is the ddj estimator, TSLSSa ,1

^
var β is its estimated variance and TSLS,1

∧

β  

is the TSLS estimator for the full sample. The calculation of the ddj test-statistic at the 

10% level is implemented using the following algorithm: 

 Step 1: Pick d observations to be deleted: ,10, <<= γγ wherend where n is the 

sample size, and then delete d randomly chosen observations from the sample; 

 Step 2: For the block size b = n-d, compute the TSLS estimator and its 

corresponding estimated variance, TSLSS ,1

∧

β and TSLSSa ,1

^
var β , and then compute the 

ddj t-statistic as defined in (10); 

 Step 3: Put the d observations back into the sample and then repeat steps 1 and 2 

at least 1000 times and then sort these computed ddj t-statistics (sampling without 

replacement); 
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 Step 4: Use the 90% percentile ddj t-statistic as the data-dependent critical value; 

 Step 5: We reject the null hypothesis when the t-statistic from the full sample is 

larger than the data-dependent critical value found in step 4. 

 The next theorem characterizes the limiting distribution of the ddj t-statistic. To 

derive this, we set ∞→<<= nandwherend ,10, γγ  . 

 

Theorem 3: If the instrument is nearly exogenous according to (4), and the standard 

assumption 3 in the Appendix holds, then  

(11) ]122,0[ γγ −−−→ Nt
d

      

.10/ <<= γγ andndwhere  

Proof. See the Appendix. 

 

Theorem 3 shows that the limiting distribution of the ddj t-statistic deviates from 

the true distribution in Theorem 1: ]1,')'([ 2/11 CQNt zzu

d
ΠΠΠ→ −−σ ; the mean is not 

zero and the variance is not one. Thus, the delete-d jackknife procedure fails to correct 

for C≠0. Because we cannot estimate the sign or size of C, we cannot pick critical values 

that allow us to make reliable inferences. We have shown in finite sample simulations 

(available upon request) that the ddj t-test has massive size problems when instruments 

are exogenous and nearly exogenous. 

We can, however, compute a delete-d jackknife Anderson-Rubin test-statistic (for, 

herein denoted the ddj AR-test) to account for the noncentral chi-square distribution that 

emerges under near exogeneity. Let yb, Yb and Zb denote, respectively, subvectors or 

submatrices of y, Y and Z, where d is the number of observations randomly deleted 
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(without replacement), and b = n – d is the block size: yb is a bx1 vector Yb is a bxm 

matrix and Zb is a bxk matrix, and the AR-test-statistic for any block is denoted ARS(β0): 

 

(11) )/()()'(/)()'()( 00000 mkbYyMYyYyPYyAR bbzbbbbbzbbS b
−−−−−−= βββββ .  

 

We compute the ddj AR-test using the similar five steps for computing the ddj t-

test except that at step 2 we compute the ddj AR-test defined in equation (11), and test the 

null that .0ββ =  However, in steps 1-5 to compute the ddj AR-test, we use β0 rather 

than the estimator of β. Again, we reject when the full sample AR-test-statistic exceeds 

the data-dependent critical value. This delete-d jackknife procedure partially accounts for 

the correlation between structural errors and instrument. 

It is important to note that the bootstrap procedure cannot solve the near 

exogeneity problem because it requires that the correlation between the instruments and 

structural errors be estimated in the bootstrap samples, and it is impossible to obtain 

estimates that are consistent. Subsampling also does not work because it requires very 

small block sizes, and therefore it cannot replicate these correlations. These results are 

established in Caner [2006] and Fang [2006].  

The next theorem characterizes the limiting distribution of .)( 0βSAR  

  

Theorem 4: Suppose the instrument is nearly exogenous according to (4), and the 

standard assumption 3 in the Appendix holds. If the null is then,0ββ =  

(12) )()(
~

2
0 ςχβ K

d

SAR →        
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)(
~

2 ςχKwhere is a noncentral chi-square distribution with k  degrees of freedom and 
~
ς  

is the noncentrality  parameter: γσγς −⊗=ΩΩ−= − 1,,')1( 21
~

whereQandCC zzu = 

b/n is the share of the observations that is resampled.  

Proof. See Caner [2006] and Fang [2006]. 

 

Theorem 4 shows the delete-d jackknife procedure generates a large sample chi-

square distribution with a noncentrality parameter that is equal to b/n times the 

noncentrality parameter in Theorem 2. The distribution of the ddj AR-test in Theorem 4 

is very close to the true distribution in Theorem 2. Thus, a large block size is appropriate 

for obtaining an accurate limiting distribution. 

Regarding small samples, Wu [1990] argues that a block size between 1/4th 

and 3/4th’s of the sample size is desirable for reducing size distortion. Block sizes that are 

less than 1/4th are only relevant for subsampling, and block sizes greater than 3/4th’s are 

very conservative, and therefore, have severe power problems. We use Monte Carlo 

simulations in the next section and find that a block size of 1/4th  appears to be most 

appropriate for the small sample of 64 countries employed in AJR [2001], and a block of 

size of 3/8th‘s provides a conservative robustness check. More extensive simulation 

studies, however, are required for the choice of block size.  

 

V. Monte Carlo Simulations 

In this section we conduct Monte Carlo simulations showing that the ddj AR-test 

has good small sample properties when the block size is set at 1/4th the sample size.  We 

simulate the linear simultaneous equations model defined in (1*) and (2*) with one 
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endogenous variable and one instrument. All of our results are robust when we over-

identify using two instruments.  The true value of the structural parameter β  is 00 =β . 

We set the sample size equal to 64 in order to conduct comparisons of various tests' 

performance with AJR [2001]. The i.i.d. data ),,( iii VuZ  are generated from a joint normal 

distribution  ),0( ΛN  which is described in (6), and there is endogeneity: iiuVcov  = 25.0 . 

The measure of near exogeneity, iiuZcov  can take on values of 0.10 or 0.15. We set Π 

(the regressor for the instrument) at either 0.1 or 1 in all cells of the vector to represent a 

weak and a strong instrument. The nominal size is 10%.5 

We have shown that only the Anderson-Rubin test can be repaired with the 

delete-d-jackknife procedure. Table II Panel A reports the rate of false rejection for the 

full sample (“unrepaired”) AR-test when the instrument is strong; Panel B reports these 

rates when the instrument is weak. The AR-test, as predicted by Theorem 2, clearly has 

poor small sample properties. It is striking that the small sample properties are virtually 

similar for the strong and weak instruments; under exogeneity, the false rejection rate is 

roughly 10%; when iiuZcov = 0.10, the rate is about 23%; and when iiuZcov  = 0.25, the 

false rejection rate is 34%. The reason that the distinction between strong and weak 

instruments does not matter is that the AR-test does not rely on estimates of the reduced 

form parameter Π (see equations (7) and (7*)).  

Table III reports the small sample properties of the ddj AR- test for block sizes 

covering 1/4th to1/2 the sample: }32,30,28,24,22,20,18,16{=b . Because the ddj AR-test 

also does not rely on estimates of the reduced form parameter (see eq (11)), it has similar 

small sample properties for strong and weak instruments. Thus, with no loss of 

generality, we discuss results for the case of strong instruments. When the block size is 
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large, for example, b=32, the rates of false rejection are 1.3% and 2.3% respectively, 

when the correlation between instruments and structural errors are 0.10 and 0.15, this 

result is highly conservative since the nominal size is 10%. As the block size shrinks, 

there are more rejections. When b=16 covering 1/4th the sample, the false rejection rate is 

7.4% and 11.8% when 15.010.0cov anduZ ii = , and the small sample properties are 

quite good. When b = 24 covering 3/8th’s the sample, the false rejection rate is 4.0% and 

9.5% when 15.010.0cov anduZ ii = , and the test is more conservative. 

By comparing Tables II and III, we see that regardless of the choice of block size, 

the ddj AR-test is less size distorted than the AR-test. Our advice for practitioners is to 

first pick a block size that is 1/4th the sample; then use a block size that is 3/8th’s the 

sample as a conservative robustness check. If the results are similar, then the inferences 

are reliable.  

 

VI. Implementation using Early Settler Mortality 

In this section, we use the ddj AR-test to check inferences made about the impact 

of institutions, INST, on long-run growth, LRGr, where Z is the instrument (early settler 

mortality) from AJR [2001]. We add X, an nxh vector of controls to equations (1) and 

(2), where X is the null set in some of the regressions, and includes combinations of 

variables such as latitude, continent dummies, colonial and legal origins, etc.: 

 

uXINSTLRGr +++= 210 βββ    (1) 

VXZINST +∏+Π+Π= 210     (2) 
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We test the null 0: 10 =βH   against the alternative 0: 11 ≠βH . Tables IV-VI 

contain sets of control variables used in AJR [2001]. Panel A contains point estimates 

and standard errors (in parentheses); panel B contain test-statistics including the regular t-

statistic and associated p-values, the regular (full-sample) AR-test statistic, the p-values 

for the ddj AR-test when the block size is 16 (1/4th the sample size), 24 (3/8th’s the 

sample size) and for the full sample. AJR [2001] use the t-statistic for making inferences; 

we check these inferences primarily with the ddj AR-test with block size 16 and then 

with block size 24 as a conservative robustness check. Finally, we also compare p-values 

for the ddj AR-test and the full sample AR-test to get a sense of the endogeneity of the 

instrument. 

Table IVa replicates and then checks inferences made in the baseline regressions 

in AJR [2001], Table IV. In column (1) there are no control variables; the p-value of the 

ddj AR-test when b=16 is 0.012, and institutions are significant at 10% the level. In 

column (2) we control for latitude and institutions continue to be significant at the 10% 

level.  In column (3) we add Asia, Africa and “other” continent dummy variables: latitude 

is included in column (4). The ddj AR-tests have p-values of 0.082 and 0.094, 

respectively. The p-values of the ddj AR-test when b=24 marginally exceed 0.10 in two 

out of four cases; however, this is a conservative robustness test. Generally, we can say 

that at the 10% level we find evidence that institutions matter for long-run growth. 

In Tables V and VI we check for the significance of institutions with additional 

controls (see AJR [2001] Tables V and VII). The ddj AR-test-statistics confirm that 

institutions matter. In Table V, the British and French colonial dummies or the French 

legal origin dummy are included as controls: because the ddj AR-test has p-values 
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between 0.022 and 0.051 when b=16 and the p-values are never greater than 0.06 for the 

conservative test with b=24, we always reject the null at the 1 level.  

Table VI includes contemporary health-related variables, including malaria in 

1994, life expectancy in 1995 and infant mortality in 1995. The standard t-test and AR-

test always reject the null at the 10% level. The more reliable ddj AR-test with b =16, 

however, fails to significantly reject the null in all cases. When we control for malaria in 

column (1), the p-value of ddj AR-test is 0.130. When we control for both malaria and 

latitude in column (2), the p-value is 0.147. When we control for life expectancy in 

column (3), the p-value is 0.152; when we control for both life expectancy and latitude in 

column (4), the p-value is 0.147. In column (5) we add infant mortality and in column (6) 

we add both infant mortality and latitude; and, the p-values are 0.161 and 0.202.   

The reason why institutions are marginally significant in Table VI is that they are 

also correlated with the contemporary health variables. For example, the correlation 

between log settler mortality and malaria risk is 0.67 (Gallup and Sachs [2001]; Glaeser 

et al. [2004]). Thus, the correlation between the instrument and the structural error terms 

depends upon the correlation between the instrument and control variables in the 

structural equation. The higher this correlation, the less nearly exogenous is the 

instrument. From the simulations in Table III, it is clear that the larger the correlation 

between the structural errors and the instruments, the larger is the difference between the 

sizes of the regular AR-test based on a chi-square distribution and delete-d jackknife AR- 

test based on data dependent critical values. The same is true for differences in p-values 

for the AR-test and the ddj AR-test.   
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The difference between p-values of the ddj AR-test and the AR-test in Table VI 

are relatively large compared to those in Tables IV and V, hence leading to a failure to 

reject the null in Table VI. However, the level of near exogeneity is not enough to 

overturn most of the AJR [2001] findings. 

 

VII. Conclusions 

 Instrumental variable methods have been used by economists to identify casual 

relations between variables such as institutions and long-run growth, or education and job 

market performance. It is clear, however, that it is difficult to find instruments that are 

truly exogenous. We have shown that once we relax the exogeneity assumption to allow 

for near exogeneity, the standard test-statistics are unreliable. More constructively, we 

find that it is also possible to use jackknife methods to repair the Anderson-Rubin test so 

that reliable inferences can be made. Our method is novel because it enables practitioners 

to validate near exogeneity in exactly identified as well as overidentified systems. It can 

also be used for weak instruments. 
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Appendix 

In the beginning of this appendix, we first list near exogeneity assumption and 

some moment conditions that are required to obtain the theorems in the paper. 

Assumptions 1 and 2 are sufficient for Lemma 1, Theorem 1 and Theorem 2. 

Assumptions 1 and 3 are sufficient for Theorem 3 and Theorem 4. 

 

Assumption 1: Near Exogeneity  [ ] NCuZE ii /=′  , where  C   is a fixed  1×K   

vector. 

 

Assumption 2: The following limits hold jointly when the sample size  N   

converges to infinity: 

(a)  ),,()/,/,/( 2
VVVuu

p

NVVNuVNuu ΣΣ→′′′ σ  , where  2
uσ  ,  VuΣ   and  VVΣ   are 

respectively a  11×   scalar, an 1×m   vector and an  mm×   matrix. 

 

(b)  ZZ

p

QNZZ →′ /   where  ZZQ   is a positive definite, finite   KK ×   matrix. 

 

(c)  ),()/',/'( ZVZuNVZNuZ ΨΨ→  , and 
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These convergences in Assumption 2 are not primitive assumptions but hold 

under weak primitive conditions. Parts (a) and (b) follow from the weak law of large 

numbers, and Part (c) follows from triangular arrays central limit theorem. Instead of a 

mean zero normal distribution in Staiger and Stock [1997], the ZuΨ  in (c) is a normal 

distribution with nonzero mean, which is a drift term C coming from the near exogeneity 

assumption. For any independent sequence  ii uZ ′  , if  [ ] ∞<Δ<
+′ δ2

ii uZE   for some  

0>δ   for all  Ni ,...,3,2,1=   , then Liapunov's theorem leads to the limiting results in 

(c); see James Davidson (1994). 

 

Assumption 3: Define 

)/( buuE bbb
′=σ  

and 

)/( bZZEQ bbb
′=  

Assume the following conditions hold jointly for  ,0>δ   

(a)   ∞<Δ<
+

1

2

,

δ

bib uzE   for all  Nb <   and all  Ki ≤≤1   

(b)    ∞<Δ<
+

2

1

,,

δ

jbib zzE   for all  Nb <   and all  Kji ≤≤ ,1   

(c)    ∞<Δ<
+

3

12 δ

buE   for all  Nb <   

(d)    02 >→ ub σσ   uniformly as  ∞→b   

(e)    ZZb QQ →   uniformly and uniformly positive definite as  ∞→b   

 



 24

Lemma 1. If Assumptions 1 and 2 hold for the model defined by (1*) and (2*), then 

the TSLS estimator  TSLS

∧

β   is consistent and  

))(,)(()( 121
0

−−
∧

ΠΠ′Π′ΠΠ′→− ZZuZZ

d

TSLS QCQNN σββ  

where  22 )(/ uiuENuu σ=→′  ,  ZZii QZZENZZ =→′ ′ )(/  . 

Proof of Lemma 1:  We know that  

).()( 1 yPYYPY ZZTSLS ′′= −
∧

β  

So we have 

)]())([()]())([(
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111

0

N
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N
ZZ

N
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N
YZ

N
ZZ

N
ZY
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′′′′′′
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−

−−−

∧

ββ
 

By Assumption 2, we can obtain that  

1
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)]())([(

−
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Now, we consider  

)(1)]([1
11
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N

i
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NN
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By the triangular array central limit theorem, we have 

].,0[)]([1 2

1
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d

iiii
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QNuZEuZ
N
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=
∑  

By the triangular array weak law of large number and Assumption 1, we have 
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Combining the above results, we obtain 
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],[ 2
ZZu

d
QCN

N
uZ σ→
′

. 

Then the result in the lemma follows directly.           Q.E.D. 

Lemma 1 summarizes the limiting results of the TSLS estimator under near 

exogeneity. The reason why we can obtain a consistent estimator under near exogeneity 

is because the correlation between instruments and structural errors shrinks toward zero 

asymptotically. When C=0, we can obtain the regular results of the TSLS estimator under 

the orthogonality condition. Instead of a normal distribution with a zero mean, near 

exogeneity can shift the distribution away from the zero mean. The nonzero mean 

depends on an unknown local to zero parameter C which is impossible to be estimated 

consistently [Andrews 2000]. 

 

Proof of Theorem 1:  The result in the theorem directly follows from Lemma 1.        

Q.E.D. 

 

Proof of Theorem 3:   As defined in (10),  

)var( ,

,

TSLSS

TSLSTSLSS
S

a
t

∧

∧∧

−
=

β

ββ
 

where 

112
,, )]'()')('[(ˆ)ˆvar( −−= bbbbbbbTSLSS YZZZZYa μσβ  

and  

)/()ˆ()'ˆ(ˆ ,,
2
, mKbYyYy TSLSSbbTSLSSbbbu −−−−= ββσ  

By Assumption 3 and weak law of large number [Fang 2006], we have 



 26

22
,ˆ ubu σσ → in probability, 

and 
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The  tS-statistic can be rewritten as  

)var(

)()(

,

00,

TSLSS

TSLSTSLSS
S

a
t

∧

∧∧

−−−
=

β

ββββ
 

Consider the first term in the above equation, 
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By Assumption 3 and the triangular array central limit theorem, we can obtain 
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By the similar method, noting that  Nb ×−= γ1  we can obtain that 
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)(
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0 γδ
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ββ
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d
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b
 

Then the result in the theorem follows from above.                   Q.E.D. 
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Table I: Test-statistics 

Sample Size = 100, and 1,000 simulations 
Truth is that Institutions Do Not Matter 

Test-
statistic 

Nominal 
5% Critical 
Values 

Cov Zi’ui   Actual 
rejection 
rate  

Actual 
rejection 
rate (RHS)

Actual 
rejection 
rate (LHS) 

t-statistic ±1.95   0.06  9.8% 9.4% 0.4% 
t-statistic ±1.95  -0.06  7.9% 0.6% 7.2% 
AR-test   3.85 ±0.06  9.4% n.a. n.a. 
t-statistic ±1.95   0.10 19.4% 19.2% 0.2% 
t-statistic ±1.95  -0.10 14.3% 0.3% 14.0% 
AR-test   3.85  ±0.10 17.7% n.a. n.a. 
 
 
 
 

Table II: Sizes of Anderson-Rubin test 
  0=′

iiuCovZ    10.0=′
iiuCovZ    15.0=′

iiuCovZ   
П=1 (strong instrument) 
Rate of false 
rejection 

 9. 7    21. 8    33. 5   

П=0.1 (weak instrument) 
Rate of false 
rejection 

 10. 1    22. 6    34. 4   

 
Note: The data generating process of the simulation is based on (6). The sample size is 
N=64 and the nominal size is 10%. The Anderson-Rubin is defined in (7). 
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Table III: 
Size properties of the ddj Anderson Rubin test 

Part A: П=1 (strong instrument) 
Rate of false rejection of the null 

Block size  10.0' =ii uZCov  15.0' =ii uZCov  
16   7. 4    11. 8   
18   6. 0    13. 5   
20  5. 3    10. 4   
22  4. 0    9. 5   
24  3. 3    8. 4   
26  2. 5    6. 0   
28  1. 9    3. 7   
30   1. 5    3. 2   
32   1. 3    2. 3   

Part B: П=0.1 (weak instrument) 
16   7. 2    13. 0   
18   6. 7    9. 4   
20  3. 8    10. 7   
22  3. 1    7. 0   
24  3. 4    7. 0   
26  3. 2    5. 2   
28  1. 7    3. 6   
30   0. 8    3. 3   
32   1. 2    2. 6   
 
Note: The data generating process of the simulation is based on (6). The sample size is 
n=64 and the nominal size is 10%. The parameter b represents block size and b=64-d, 
where d = the deleted observations. We compute the delete-d jackknife Anderson-Rubin 
test defined in (11) with b = {16, 18, 20, 22, 24, 26, 28, 30, 32}. 
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Table IV: Baseline regressions 

 (1) (2) (3) (4) 
Table IVa: Two-Stage Least Squares 

 0. 94    1. 00    0. 98    1. 10   Average protection against expropriation 
risk 1985-1995  )16.0(    )22.0(    )30.0(    )46.0(  

  65.0−     20.1−   Latitude 
  )34.1(     )8.1(   
   92.0−    10.1−   Asia dummy 
   )40.0(    )52.0(  
   46.0−   -0.44 Africa dummy 
   )36.0(    )42.0(  
   94.0−    99.0−  “Other” continent dummy 
   )85.0(    )0.1(   

Table IVb: test-statistics for significance of expropriation risk 
t-statistic and p-values  

 6.03  4.49  3.28 2.39  
]000.0[<   ]000.0[<  ]001.0[   ]017.0[  

Full sample AR-statistic, full sample and delete-d jackknife p-values 
AR(β0) 56.602 36.838 20.321 14.492 
b = 16 [0.012] [0.028] [0.082] [0.094] 
b = 24 [0.029] [0.054] [0.102] [0.134] 
Full sample [<0.000] <0.000] [<0.000] [0.006] 
 
Notes: Tables 4-6 were generated using STATA 9. In tables 4-6 the dependent variable is 
log GDP per capita in 1995. The numbers in parentheses are standard errors of coefficient 
estimators. The numbers in brackets in panel B in tables 4-7 are these p-values for the 
test-statistics. We use b=16 (1/4th the sample size) and b=24 (3/8th’s the sample size) to 
compute the delete-d jackknife Anderson-Rubin test, where b=16 has the best small 
sample properties and b=24 is very conservative. The results in this table are based on 
AJR (2001), p1386. AR (β0) is calculated from the full sample. “Full Sample” shows the 
p-value when the AR(β0)  and chi-square (Theorem 2) critical values are used. 
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Table V: Controls for Colonial and Legal Origin 

 (1) (2) (3) (4) 
Table Va: Two-Stage Least Squares 

1.08 1.16 1.08 1.18 Average protection against expropriation 
risk 1985-1995 (0.22) (0.34) (0.19) (0.29) 

 -0.75  -1.12 Latitude 
 (1.70)  (1.56) 
-0.78 -0.80   British colonial dummy 
(0.35) (0.39)   
-0.12 -0.06   French colonial dummy 
(0.35) (0.42)   
  0.89 -0.96 French legal origin dummy 
  (0.32) (0.39) 

Table Vb: test-statistics for significance of expropriation risk  
t-statistic and p-values 

4.95 3.43 5.65 4.06  
[<0.000] [<0.000] [<0.000] [<0.000]

Full sample AR-statistic, full sample and delete-d jackknife p-values 
AR(β0) 46.302 27.466 56.702 37.349 
b = 16 [0.022] [0.051] [0.015] [0.034] 
b = 24 [0.029] [0.060] [0.028] [0.044] 
Full sample [<0.000] [<0.000] [<0.000] [<0.000]
 
Notes: Results are based on AJR [2001], p1389.  
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Table VI: Controls for Contemporary 
Health Environment  

 (1) (2) (3) (4) (5) (6) 
Table VIa: Two-Stage Least Squares 

 0. 69    0. 72    0. 63    0.72  0. 55    0. 56   Average protection against 
expropriation risk 1985-
1995 

)25.0(   )30.0(   )28.0(   (0.29)  )24.0(   )31.0(   

 57.0−    -0.56   -0.10 Latitude 
 )04.1(    (1.04)   )95.0(   
-0.58 60.0−       Malaria in 1994 

)47.0(   )47.0(       
   0. 03    -0.60    Life expectancy in 1995 
  )02.0(   (0.47)   
     01.0−    01.0−   Infant mortality in 1995 
    )005.0(   )006.0(  

Table VIb: test-statistics for significance of expropriation risk 
t-statistic and p-values 
 2.73  2.43  2.28  2.43 2.30  1.79  
[0.008] [0.018] [0.026] [0.018] [0.025] [0.079] 

Full sample AR-statistic, full sample and delete-d jackknife p-values 
AR(β0)  8.364  7.290  7.003  7.290  5.513  3.593 
b = 16 [0.130] [0.147] [0.152] [0.147] [0.161] [0.202] 
b = 24 [0.193] [0.197] [0.182] [0.197] [0.201] [0.230] 
Full sample [0.004] [0.009] [0.009] [0.009] [0.017] [0.061] 
 
Notes: Results are based on AJR [2001], p1392.  
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1 Instruments that marginally satisfy this requirement are denoted weak and are the 
subject of a large and growing literature [see Staiger and Stock, 1997; Stock et al. 2000]. 
This paper focuses primarily on strong instruments that satisfy the relevance criteria. 
Weak instruments are briefly discussed in section 5. 
 
2 We just consider one kind of institution and, hence, one endogenous variable for 
expositional simplicity. Our method also works for multiple endogenous variables. See 
Acemoglu and Johnson (2006) for an analysis of how instrumental variables can be used 
to identify how two endogenous institutions, property rights (measured by a survey of 
risk of expropriation) and efficiency of contracts (measured by an index of legal 
formalism), can affect long-run growth.   
 
3 By the Frisch-Waugh-Lovell Theorem, we can always project out these covariates and 
obtain the system in equations (1) and (2) (see Davidson and McKinnnon, 1993, p.19). 
4 We can generalize this test-statistic to allow for multiple endogenous explanatory 
variables and as least as many instruments. 
 
5 The simulation results reported in this section are robust to different values of 
endogeneity. 
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Figure 1: The t-test with an Almost Exogenous Instrument (Positively correlated)
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Figure 2: The t-test with an Almost Exogenous Instrument (Negatively correlated)
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Figure 3: The Anderson-Rubin test with an Almost Exogenous Instrument (0.10)
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