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Graded multiplication modules and the graded ideal 6,(M)

Shahabaddin Ebrahimi Atani and Reza Ebrahimi Atani

Abstract

Let G be a group and let R be a G-graded commutative ring. For a graded R-module M , the notion
of the associated graded ideal 84(M) of R is defined. It is proved that the graded ideal 6,(M) is important
in the study of graded multiplication modules. Among various application given, the following results are
proved: if M is a graded faithful multiplication module, then 04(M) is an idempotent graded multiplication
ideal of R such that 64(0,(M)) = 0,(M), and every graded representable multiplication R-module is finitely

generated.
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1. Introduction

A grading on a ring and its modules usually aids computations by allowing one to focus on the homoge-
neous elements, which are presumably simpler or more controllable than random elements. However, for this
to work one needs to know that the constructions being studied are graded. One approach to this issue is to
redefine the constructions entirely in terms of the category of graded modules and thus avoid any consideration
of non-graded modules or non-homogeneous elements; Sharp gives such a treatment of attached primes in [12].
Unfortunately, while such an approach helps to understand the graded modules themselves, it will only help to
understand the original construction if the graded version of the concept happens to coincide with the original
one. Therefore, notably, the study of graded modules is very important.

In this paper we study the concepts of graded multiplication modules and graded representable modules
over a G-graded commutative ring. We study these concepts in analogous way to that done for graded modules
in [4, 5, 12]. However, if G is a finitely generated abelian group then G is isomorphic to the direct sums of
some copies of Z,,, and Z" and, for this case, the results are well-known [4, 5, 12]. Throughout this paper G
is a non-finitely generated abelian group. So, our work is a new direction in the study of graded multiplication
modules and related results.

A module M over a commutative ring R is called a multiplication module if for any submodule N of
M there exists an ideal I of R such that N = IM. Let M be a multiplication module. Anderson [1], defines
O(M) =3 cp(Rm: M). In case M is faithful, it is proved in [2] that 6(M) is an idempotent multiplication
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ideal such that 6(0(M)) = 6(M). Let G be a group. Graded modules over a commutative G-graded ring have
been studied by many authors (see [4], [8], [12], [13] and [14], for example). Here we study graded multiplication
R-modules (see Definition 1.1). In the present paper we show that the graded module structures of M and
04(M) (see Remark 2.1) are closely related. The main aim of this paper is that of extending some results
obtained by [2, 10] to the theory of graded modules (see Section 2 and 3).

For the sake of completeness, we recall some definitions and notations used throughout. Let G be an
arbitrary group. A commutative ring R with non-zero identity is G-graded if it has a direct sum decomposition
(as an additive group) R = @geq Ry such that for all g,h € G, RyR, C Rgyn. If R is G-graded, then
an R-module M is said to be G-graded if it has a direct sum decomposition M = ®4eqM, such that for
all g,h € G, RgMy, € My,. An element of some R, or M, is said to be a homogeneous element. A
submodule N C M, where M is G-graded, is called G-graded if N = @4ea(N N M,) or if, equivalently,
N is generated by homogeneous elements. Moreover, M/N becomes a G-graded module with g-component
(M/N)g = (Mg + N)/N for g € G. Clearly, 0 is a graded submodule of M. We write h(R) = UgeqR, and
hM) = UgeaM,.

Let R be a G-graded ring R. A graded ideal I of R is said to be a graded prime ideal if I # R; and
whenever ab € I, we have a € I or b € I, where a,b € h(R). The graded radical of I, denoted by Gr(I), is the
set of all € R such that for each g € G there exists ny > 0 with xy° € I. A proper graded submodule N of
a graded R-module M is called graded prime if rm € N, then me N or r € (N: M)={re R:rM C N},
where r € h(R), m € h(M). The set of all graded prime submodules of M is called the graded spectrum of
M and denoted by Spec,(M). A graded R-module M is called graded finitely generated if M = > Ry,
where x4, € h(M) (1 <i<mn). It is clear that a graded module is finitely generated if and only if it is graded
finitely generated.

Definition 1.1 Let R be a G-graded ring. A graded R-module M is defined to be a graded multiplication
module if for each graded submodule N of M, N = IM for some graded ideal I of R [9]. Graded multiplication

ring is defined in a similar way.

One can easily show that if N is a graded submodule of a graded multiplication module M, then
N = (N : M)M. It is clear that every graded module which is multiplication is a graded multiplication
module. Moreover, the class of graded multiplication domains has been characterized in [5] as the class of
graded Dedekind domains which is the class of graded domains in which every graded ideal is graded invertible
(a graded ideal I of a graded ring R is called graded invertible ideal if there exists a graded ideal J of R
such that IJ = R). In [14], we can see an example of a graded multiplication ring which is not multiplication.
Indeed, the group ring R[Z], where R is a Dedekind domain is a graded Dedekind domain and so it is a graded
multiplication domain. On the other hand, if R is not a field, then R[Z] is not a Dedekind domain and so it
is not a multiplication domain. So a graded multiplication module need not be multiplication. We need the

following lemma proved in [9, Lemma 2.1 and Proposition 2.3].

Lemma 1.2 Let M be a graded module over a G -graded ring R. Then the following hold:
(i) If N is a graded submodule of M, a € h(R) and m € h(M), then Rm, IN and aN are graded
submodules of M and Ra is a graded ideal of R.
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(i1) If {Ni}iea is a collection of graded submodules of M, then Y ..\ N;i and ();cx N; are graded
submodules of M .

(i) M is graded multiplication if and only if for each m in h(M) there exists a graded ideal I of R
such that Rm = IM .

2. The graded ideal 6,(M)

In this section we study the graded ideal 6,(M) where R is a commutative G-graded ring with identity

and M is a graded multiplication R-module.

Remark 2.1 Let M be a graded module over a G -graded ring R.

(i) Assume that M is a finitely generated R-module and that I is be a graded ideal of R such that
IM = M. Then by standard determinant arguments, we have that(1 — t)M = 0 for some t € I (note that
every graded finitely generated R-module is finitely generated), so R =1+ (0: M). Moreover, if I is finitely
generated ideal of R, then IM is a finitely generated submodule of M .

(ii) Let m = 377 mg, € M, where 0 # mg, € h(M). Then m € Rmg, + -+ Rmg, €35 ) Ba;
hence M =3 cpr) R

(ii) If N is a graded submodule of M , then we define the subset 04(N) of R as 04(N) = 3, c nopar) (B :
M). Therefore, by Lemma 1.2, 04(N) is a graded ideal of R. In particular, 85(M) = cpap) (R : M).

Lemma 2.2 Let N be a graded submodule of a graded multiplication module over a G -graded ring R. Then
M =6,M)M and N =64,(M)N.

Proof. By Remark 2.1, M = -, o Bm = X cpony(Bm « MM = (3, cpon(Bm : M))M =
0y(M)M . Moreover, N = (N : M)M = (N : M)(0g(M)M) = 0,(M)(N : M)M) = 04(M)N . O

Proposition 2.3 Let M be a graded multiplication module over a G -graded ring R. If I is a finitely generated
ideal of R with I C 04(M), then IM is finitely generated. Conversely, if I is a graded ideal of R with IM
finitely generated, then I C 64(M).

Proof. Let I =< ay,...,a, >, where a; € I Nh(R). Then there exist z; € h(M) (1 < ¢ < n) such
that a; € (Rz; : M) (note that a; is a homogeneous element); hence I C Y. (Rxz; : M). Therefore,
IM C " Rx; = N. It follows from Remark 2.1 that 04(M)N = N, so R = 04(M) + (0 : N). There
are elements a € 03(M) and b € (0 : N) such that 1 = a + b. Hence there exist yi,...,ys € h(M) such
that a € Y25 (Ry; : M); thus R = (0 : N)+ 3% (Ry; : M). It follows that IM = IRy, + --- + IRys
(since IM(0 : N) = 0); hence IM is finitely generated by Remark 2.1. Conversely, let I be a graded
ideal of R and suppose that IM is finitely generated. First we show that I(0 : IM) C (0 : M). It suf-
fices to show that for each a € I NA(R), b € (0 : IM)Nh(R), abM = 0. As bIM = 0, we must
have abM = 0. Since IM is finitely generated and IM = 04(M)IM, so R = 04(M) + (0 : IM). Hence
I=10,(M)+1(0:1IM)C6,(M)+(0: M) C0y(M) because (0: M) C §,(M). O
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Theorem 2.4 Let R be a G-graded ring and M a graded multiplication R-module. Then the following
conditions are equivalent:

(i) M is finitely generated.

(ii) 6,(M)=R.

(i13) 04(M) is finitely generated.
Proof. (1) — (4). Apply the second part of Proposition 2.3. (i) — (iii). Clear. (iii) — (¢). Set
I =604(M). Then by 2.3, M = 0,(M)M is graded finitely generated. O

Theorem 2.5 Let R be a G-graded ring and M a graded multiplication R-module and I a graded ideal of R
with I C 04(M). Then the following hold:

(1) I+ (0:M)=10,(M)+ (0:M).

(ii) O4(M) = (04(M))% + (0: M). In particular, If M is faithful, then (04(M))* = 04(M).
Proof. (i) Since the inclusion I64(M)-+(0 : M) C I+(0 : M) is clear, we will prove the reverse inclusion. Let
r+a€l+(0: M) forsome r e I CO(M) and a € (0: M). Assume that r=>_" | ry, with 0 # ry, € INA(R)
(1 <i<mn)andlet c € {ryg,...,rg,}. Then Rc is a graded cyclic ideal of R and (Rc)M = cM is finitely
generated by Proposition 2.3. Hence 0y(M)cM = cM gives §,(M) + (0 : ¢M) = R. Thus ¢ 64(M) + ¢
(0: M) = Rec. It follows from ¢ (0:cM) C (0: M) that ¢ 8,(M)+ (0: M) = (0: M)+ Rc. Therefore, we
have Rr+ (0: M) C (Rrg, +(0: M))+---+ (Rrg, +(0: M)) = (11 84(M) + (0: M)) + ... 4+(rg, 04(M)
+ (0:M) =1 60,(M)+ (0:M),s0 r+acrfy,(M) + (0: M), and we have equality.

(ii) By (i), setting I = 0,(M) gives 0,(M) = 04(M) + (0: M) = (05(M))? + (0 : M), as required O

Given a graded R-module M, R a G-graded ring, there is a number of graded ideals associated with M
besides 6,(M). By Lemma 1.2, Ty(M) = ({I+ (0: M) : I is a graded ideal of R with IM = M} is a graded
ideal of R. We next show that for M a graded faithful multiplication R-module, these two associated graded
ideals coincide: T, (M) = 64(M).

Lemma 2.6 Let M be a graded faithful multiplication module over a G -graded ring R. Then the following
hold:

(i) m € Tg(M)m for each m € h(M).

(ii) Ty(M) = (Ty(M))>.

(i11) Ty(M) is a graded essential ideal of R.

(iv) M is a graded multiplication Ty(M)-module.

(v) M # JM for each proper graded ideal J of T,(M).
Proof. (i) Let T'=T,(M). By [9, Theorem 2.11], TM = (NI)M = ((IM) =T. Then Rm = AM for
some graded ideal A of R. Thus Rm = ATM = T'm and hence m € T'm.

(ii) M =TM =T(TM) =T*M implies T = T? by the definition of T'.
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(iii) Let K be a graded ideal of R such that K NT =0. Then KM = KM NTM = (KNT)M =0, so
K =0 since M is faithful.
(iv) Let N be a graded T-submodule of M. By (i), for each y € h(N), we have y € Ty, so N CTN;

hence RN = RTN = N. Therefore, N is a graded R-submodule of M. So N = CM for some graded ideal
C of R and hence N =CM = CTM. But CT is a graded ideal of T', as needed.

(v) Let U be a graded ideal T such that M = UM . Then TM = M gives M = UTM and UT is a
graded ideal of R. It follows that T' C UT C RU C T, thatis U =T O

Theorem 2.7 Let R be a G-graded ring and M a graded faithful multiplication R-module. Then the following
hold:

(1) Oy (M) =Ty (M).

(it) Og(M) = 04(04(M)).
Proof. (i) Let M be a graded faithful multiplication R-module. Now 8,(M)M = M, so T,(M) C ,(M).
By Theorem 2.5, T,(M) = T4(M)04(M). For each my € h(M) (g € G), Ty(M)Rmgy = Rmy by Lemma 2.6.
Hence Ty,(M)+ (0:mg) = R. Now (Rmg: M)(0:my) € (0: M) =0, s0 Ty(M)(Rmg : M) = (Rmgy : M).
Thus T, (M)8,(M) = Ty(M)(Zenary(Bm = M) = Sonencan Ty (B = M) = 0y (Rm = M) =
04(M). Hence Ty(M) = 6,(M).

(ii) Since M is faithful and 6y (M)M = M, we must have 6,(M) is faithful. Hence by Theorem 2.5, §,(M)
is a faithful idempotent multiplication graded ideal of R. Now (0,(M))? = 0,(M) gives T,(0,(M)) C 0,(M).
S0 04 (04(M)) = Ty(0(M)) C 0y(M) S 04(04(M)) and hence 0,(0y(M)) = 04(M). U

3. Graded representable modules

The theory secondary representations and attached primes, dual to the more familiar theory of primary
decomposition and associated primes, is a useful tool for studying Artinian modules, and in particular for
studying the local cohomology H; (M) of finitely generated modules relative to the maximal ideal of a local
ring [11, 12]. In fact, the set of attached prime ideals of a module contains a lot of information about the module
itself. One approach to the graded case is simply to define all of the terminology to involve only homogeneous
elements and graded submodules. Let R be a G-graded ring. A non-zero graded module M is said to be graded
secondary if for each a € h(R), the endomorphism ¢, ps (i.e., multiplication by a in M) is either surjective
or nilpotent. It is immediate that Gr(annM) = P is a graded prime ideal of R, and M is said to be graded
P-secondary (see [12, Proposition 2.2]). A graded module M is said to be graded secondary representable if it
can be written as a sum M = My +- - -+ M}, with each M; graded secondary, and if such a representation exists
(and is irredundant) then the graded attached primes of M are Atty,(M) = {Gr(annM,),...,Gr(annMy)}.
Note that a graded secondary module, in general, is not secondary (see [12, 8]). So the graded secondary and
secondary modules are different concepts and these concepts do not always agree with the original ones (see the

beginning of the introduction).
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Let R be a G-graded ring. A graded R-module M is sum-irreducible if M # 0 and the sum of any
two proper graded submodules of M is always a proper submodule. If M is a graded R-module, then M is
graded Noetherian (resp. Artinian) if any non-empty set of graded submodules of M has a maximal (resp.
minimal) member with respect to set inclusion. This definition is equivalent to the ascending chain condition
(resp. descending chain condition) on graded submodules of M. Graded Noetherian rings and graded Artinian

rings are defined in a similar way.

Proposition 3.1 If R is a G-graded Noetherian (resp. Artinian) ring, then any graded multiplication R-

module is graded Noetherian (resp. Artinian).

Proof. Consider a chain of graded submodules of M :
NiCNyC---CNgC...

Then, there exist graded ideals (N; : M) such that N; = (N; : M)M for each i. So we can have a chain
of graded ideals in R:
(Ni:M)C---C(Np:M)C....

Since R is graded Noetherian, there exists n such that (N, : M) = (Np41 : M) = .... Therefore, N,, = N;

for each > n, as required. O

Lemma 3.2 Let R be a G-graded ring. Then a finite sum of graded P -secondary modules is graded P -
secondary.
Proof. Let M = M; +---+ My, where for each i (1 <i<k), M; is graded P-secondary. Let a € h(R). If

a € P, then there is a positive integer n such that a™M; = 0 for every ¢; hence a™M = 0. Similarly, if a ¢ P,
then aM = M. Thus M is graded P-secondary. O

Theorem 3.3 Let R be a G-graded ring. Then every graded Artinian R-module M has a graded secondary
representation.

Proof. First, we show that if M is sum-irreducible, then M is graded secondary. Suppose M is not graded
secondary. Then there is an element r € h(R) such that M # M and ™M # 0 for every positive integer

n. By assumption, there exists a positive integer k such that r*M = r*T'M = .... Set M; = Kerp,r ar
and My = r*M . Then M; and M are proper graded submodules of M. Let x € M. Then r*z = r?*y for
some y € M; hence z —r*y € M; and therefore x € M; + M,. Hence M = M; + M,, and therefore M

is not sum-irreducible. Next, suppose that M is not graded representable. Then the set of non-zero graded
submodules of M which are not graded representable has a minimal element N. Certainly N is not graded
secondary and N # 0; hence N is the sum of two strictly smaller graded submodules N; and N;. By the

minimality of IV, each N7, N> is graded representable, and therefore so also is N, which is a contradiction. O

Let R be a G-graded ring and M, N graded R-modules. Let f: M — N be an R-module homomor-
phism. Then f is said to be graded homomorphism if f(M,;) C N, for all g € G. It is easy to see that Ker(f)
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is a graded submodule of M and Im(f) is a graded submodule of N. A graded R-module M is said to be
graded Hopfian if each graded R-epimorphism f: M — M is graded isomorphism.

Proposition 3.4 If M is a graded multiplication module over a G -graded ring R, then M is a graded Hopfian.

Proof. Let f: M — M be a graded epimorphism. By assumption, there exist a graded ideal I of R such
that N = Ker(f) =IM. Hence 0= f(N) =1f(M)=1M = N, as needed. O

Proposition 3.5 Let R be a G-graded ring, M a graded multiplication R-module and N a graded P -secondary
R-submodule of M. Then there exists a € h(R) such that a € 04(M) and a ¢ P. In particular, aM is a
finitely generated R-submodule of M .

Proof.  Suppose not. Then 64(M) C P. Let x € h(N). Then by Lemma 2.2, Rx = §,(M)Rx C Pz C Rz,
so x = px for some p € PN h(R). There is a positive integer m such that p™x = x = 0, which is a contradic-

tion. Finally, aM is graded finitely generated by Proposition 2.3. |

Theorem 3.6 Let R be a G-graded ring and let M be a graded representable multiplication R-module. Then

M s finitely generated.

Proof. Let M =37 | M; be aminimal graded secondary representation of M with Atty(M) = {Py, Ps,..., Pa}.
By Proposition 3.5, for each i (1 < i < n), there exists a; € h(R) such that a; € 04(M) and a; ¢ P;. Then
foreach i (1<i<n), a;M = a;My + -+ a;M;_1 + M; + a;M; 1 + - -+ a; M, . Setting a = >_""_, a; gives

M =aM =a1M + ---+ a, M is finitely generated by Proposition 2.3. |

Theorem 3.7 Let R be a G-graded ring and let M be a graded Artinian multiplication R-module. Then M
is finitely generated.

Proof. Apply Theorem 3.3 and Theorem 3.6. O

Theorem 3.8 Let R be a G-graded ring and let M be a graded representable multiplication R-module. Then
every graded submodule of M is representable.

Proof. Let M =" | M; be a minimal graded secondary representation of M with Att,(M) = {Py, P,..., P,}.
Then N = IM for some graded ideal I of R and N = """ | IM;. It suffices to show that for each i (1 <i <n),
IM; is graded P;-secondary. Let a € h(R). If a € P;, then a™(IM;) = I(a™M;) =0 for some m. If a ¢ P;,
then a(IM;) = IM;, as required. O

Lemma 3.9 Let I and J be graded ideals of a G-graded ring R and M a graded finitely generated multipli-
cation R-module. Then IM C JM if and only if I C J+ (0: M).
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Proof. Set K = (0 : M). Let R’ denote the graded ring R/K and note that M is a graded faithful
multiplication R’'-module such that I'M C J'M, where I' = (I + K)/K, J = (J+ K)/K and K = (0: M).
By [9, Theorem 2.12], I’ C J'; hence I C I+ K C J+ K, as needed. O

Lemma 3.10 If M is a graded finitely generated multiplication module over a G-graded ring R and I is a
graded ideal of R containing (0 : M), then I = (IM : M).
Proof. The proof will be completed by proving that (IM : M) C I. Clearly, UM : M)M C IM . Now the

assertion follows from Lemma 3.9. O

Lemma 3.11 Let R be a G-graded ring. Then the following hold:
(i) A graded submodule N is a graded prime submodule of a graded R-module M If and only if whenever
IK C N implies that K C N or I C (N : M), where I is a graded ideal of R and K a graded submodule of

M.
(ii) A graded ideal P is a graded prime ideal of R if and only if whenever IJ C P implies that I C P

or J C P, where I and J are graded ideals of R.

Proof. (i) Assume that N is a graded prime submodule of N and let z € K N h(M) — N; we show that
I C(N:M). Let a=>" a4 €I with 0 # a5, € INh(R) (1 <i < n). By assumption, for each i,
ag,;x € N, so N graded prime gives ay,M C N; hence aM C N. Conversely, suppose that cy € N, where
c€h(R) and y € h(M). Take I = Rc and K = Ry. Then IK C N, so either c € (N : M) or y € N, and the
proof is complete. The proof of (ii) is similar to that (i). O

Proposition 3.12 If M is a graded finitely generated multiplication module over a G -graded ring R and P
is a graded prime ideal of R containing (0 : M), then PM is a graded prime submodule of M .

Proof. Note that PM # M. Otherwise (1 —p)M = 0 for some p € P, which is a contradiction. Suppose
that [ is a graded ideal of R and N is a graded submodule of M such that IN C PM. Since M is a graded
multiplication module, there exists a graded ideal J of R such that N = JN. Then IN = (IJ)N C PM. By
Lemma 3.10, IJ C P,so I C P or JC P;hence I CP = (PM: M) by Lemma 3.90or JM =N C PM. By
Lemma 3.11, PM is a graded submodule of M. O

Theorem 3.13 Let R be a G-graded ring and let M be a graded representable multiplication R-module with
Atty(M) ={P1, Ps,..., Py}. Then Spec, (M) ={PM,...,P,M}.

Proof. Let M =" | M; be a minimal graded secondary representation of M. Then (0: M) = (’_,(0:
M;) C Ny P, C Py forall k (1 <k <mn). Since by Theorem 3.6, M is a finitely generated, we must have
P;M # M for all i. It follows from Proposition 3.12 that P;M € Spec, (M) for all i, i =1,...,n. Now let N
be a graded P-prime submodule of M. Then by [7, Theorem 2.10], M = N + M; and so M/N = M; /NN M,
is graded P;-secondary R-module; hence P = P;. Thus N = (N : M)M = P1 M, as required. O
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