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Abstract 
 
This paper the model hardening of tool steel takes into considerations of mechanical phenomena is presented. Fields stresses and strains 
are obtained from solutions by FEM equilibrium equations in rate form. The stresses generated during hardening were assumed to result 
from thermal load, structural deformation, and plastic deformation and transformation plasticity. Thermophysical values in the constitutive 
relations are depended upon both the temperature and the phase composition. Condition Huber-Misses with the isotropic strengthening for 
the creation of plastic strains is used. However model Leblond to determined transformations plasticity applied. The analysis of stresses 
associated of the elements hardening made of tool steel was done. 
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1. Introduction 
 

Representing of mechanical phenomenon in process of heat 
treatment are mainly stress and their determination is depend on 
accuracy computing temperature fields and from kinetics of phase 
transformations in sold state. The kinetics of phase 
transformations has significant impact on temporary stresses and 
then on residual stresses [1-3]. Numerical simulations of steel 
hardening process need therefore to include thermal strains, 
plastic, and structural strains and transformations plasticity [1-4].  

The last decade showed strong evolution of numerical 
methods in order to in a greater or smaller extent design processes 
of heat-treatment. Every paper dealing with this topic should 
contain thermal, microstructural and stress analysis. To 
implement this type of algorithms one usually applies the FEM, 
which makes it possible to take into account both nonlinearities 
and inhomogeneity of thermally processed material [2,4,7-9,14].  

In the model of phase transformations diagrams of continuous 
heating (CHT) and cooling (CCT) are used [4,9,10]. The phase 
fraction transformed during continuous heating (austenite) is 

calculated in the model using the Johnson-Mehl and Avrami 
formula and modification Koistinen and Marburger formula, 
fractions pearlite or bainite are determined in model by Johnson-
Mehl and Avrami formula. The fraction of the martensite formed 
is calculated using the modified Koistinen equation [1,6,8] 

 
 

2. Mathematical model  
 

The equilibrium equation and constitutive relations are used 
in rate form [3,8,9], i.e.: 
 

( ) ee,,,div εDεDσσσ0σ o&&o&&&& +=== Ttxα  (1) 
 
where σ=σ(σαβ) is stress tensor, D=D(ν,E) is the tensor of 
material constants (isotropic materials), ν is Poisson ratio, E=E(T) 
is the Young’s modulus dependent on the temperature, however 

 is tensor elastic strains. eε



Total strains in the around considered points are result of the 
sum: 
 

ptpTphe εεεεε +++=  (2) 
 
where εTph are isotope of temperature and structural strains, εtp are 
transformations plasticity, and εp  are plastic strains. 

The strains εTph were obtained by solving the rate of the 
isotropic strain in the processes of heating and cooling [3]. 

For the Huber-Misses plasticity condition the flow function (f) 
have the form [3,5,9]: 
 

( ) 0,, p =−= efef TYf εησ  (3) 
 
where  is effective stress,  is effective plastic strains, Y is a 

plasticized stress of material on the phase fraction (η) in 
temperature (T) and effective strain ( ): 
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( η,00 TYY =  is a yield points of material dependent on the 

temperature and the phase fraction, however  is 
a surplus of the stress resulting from the material hardening. 
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Using the Leblond model, completed by decreasing functions 
( )η−1  which has been proposed by the authors of the work 
[2,4,10], transformations plasticity are calculated as following: 
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where  are volumetric structural strains when the material is 
transformed from the initial phase „1” into the k-phase, Y

ph
i13ε

1 is a 
actual yield points of phase output (in cooling process is 
austenite). 

The equations (1) are solved by means of the FEM [5,8,12]. 
The system of equations used for numerical calculation is: 
 
[ ]{ } { } { } { }( ) { ptpeTph tttRUK &&&&& +−+= } (6) 
 
where K is the element stiffness matrix, U is the vector of nodal 
displacement, R is the vector of nodal forces resulting from the 
boundary load and the inertial forces load, tTph is the vector of 
nodal forces resulting from thermal strains and structural strains, 
te is the vector of nodal forces resulting from the value change of 
Young’s modulus dependent on the temperature, tptp  is the vector 
of nodal forces resulting from plastic strains and transformation 
plasticity. 

Have marked rate of displacement solved rate stresses to 
result to gradient of displacement rate. The final displacements, 
strains and stress are resulting integration with respect to time, 
from initial t=t0  to actual time t, i.e. 
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Using one step scheme integration’s and marked by index „s” 

time t, however by index „s+1” - time , 
summation discrete value functions “f” obtain from solutions, in 
following time steps, carry out following: 

11 ++ Δ+= sss ttt
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The rate vectors of loads in the brackets in (6) are calculated 

only once in the increment of the load, whereas the vector tptp is 
modified in the iterative process [12]. In interactions process in 
following „i” steps are solved the system of equations 
 
[ ]{ } { }ptpii tUK && δδ =  (9) 
 
and updating successively displacements, strains and stresses 
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3. Example of numerical calculations 
 

Numerical simulations of hardening of the elements made of 
the carbon tool steel were performed. The thermophysical 
coefficients assumed from the works [2,6]. Heat transfer 
coefficient assumed constant equal α∞=2000 [W/(m2K)] (heating 
in fluid layer [13]). The temperature of the heating medium 
equalled T∞=1600 K.  

Young′s and tangential modulus (E and Et) were dependent on 
temperature, whereas the yields stress (Y0) was dependent on 
temperature and phase composition. Assumed, that Young′s and 
tangential modulus are equal 2×105 and 4×103 [MPa] (Et=0.05E), 
yield points 150, 480, 700 and 300 [MPa] for austenite, bainite, 
martensite and pearlite, respectively, in the temperature 300 K. In 
the temperature of solidus Young′s modulus and tangential 
modulus equalled 100 and 10 [MPa], respectively, whereas yield 
points equalled 5 [MPa]. These values were approximated with 
the use of square functions using the following assumptions based 
on the work [2,3]. 

The axisymmetrical object φ40×80 mm subjected hardening 
simulation. After heating the temperature in the point 2 (Fig. 1) 
was equalled 1400 K and the output phase fractions was austenite 
and pearlite [6]. The cooling was modelled with the Newton 
condition and the extreme of heat transfer coefficient assumed 
equal α∞=9000 [W/(m2K)] (cooling in the water [3]). The 
temperature of the cooling medium equalled T∞=300 K. 
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Fig. 1. The scheme of the system and boundary conditions  

 
The kinetic of transformations in the superficial points 1 and 2 

of the element are presented in figures 1. 
Exemplary residual stresses distributions after hardening, with 

and without transformation plasticity (εtp=0 and εtp≠0) are 
presented in figures 3-7. 
 

 
Fig. 2. The kinetic of transformations in the superficial points 1 

and 2 of the element (Fig. 1) 
 

 
Fig. 3. Stresses according to the time (point 1, Fig. 1), with and 

without transformation plasticity 
 

 
Fig. 4. Stresses according to the time (point 2, Fig. 1), with and 

without transformation plasticity 
 

 
Fig. 5. Residual stresses in the cross sections (Fig. 1), without and 

with considering transformation plasticity 
 

 
Fig. 6. Residual stresses without a) and with b) transformation 

plasticity 
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