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Testing for the Markov Property in Time Series

Abstract

The Markov property is a fundamental property in time series analysis and is often assumed

in economic and �nancial modelling. We develop a test for the Markov property using the

conditional characteristic function embedded in a frequency domain approach, which checks the

implication of the Markov property in every conditional moment (if exist) and over many lags.

The proposed test is applicable to both univariate and multivariate time series with discrete or

continuous distributions. Simulation studies show that with the use of a smoothed nonparametric

transition density-based bootstrap procedure, the proposed test has reasonable sizes and all-

around power against non-Markov alternatives in �nite samples. We apply the test to a number

of high-frequency �nancial time series and �nd strong evidence against the Markov property.

Key words: Markov property, Conditional characteristic function, Generalized cross-spectrum,

Smoothed nonparametric bootstrap
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1. INTRODUCTION

The Markov property is a fundamental property in time series analysis and is often a main-

tained assumption in economic and �nancial modelling. Testing for the validity of the Markov

property has important implications in economics, �nance as well as time series analysis. In eco-

nomics, Markov decision processes (MDP), which are based on the Markov assumption, provide a

broad framework for modelling sequential decision making under uncertainty (see Rust 1994 and

Ljungqvist and Sargent 2000 for excellent surveys) and have been extensively used in economics,

�nance and marketing. Applications of MDP include investment under uncertainty (Lucas and

Prescott 1971, Sargent 1987), asset pricing (Lucas 1978, Hall 1978, Hansen and Singleton 1983,

Mehra and Prescott 1985), economic growth (Uzawa 1965, Romer 1986, 1990, Lucas 1988), op-

timal taxation (Lucas and Stokey 1983, Zhu 1992), and equilibrium business cycles (Kydland

and Prescott 1982). In the MDP framework, an optimal decision rule can be found within the

subclass of non-randomized Markovian strategies, where a strategy depends on the past history

of the process only via the current state. Obviously, the optimal decision rule may be suboptimal

if the foundational assumption of the Markov property is violated. Recently non-Markov decision

processes (NMDP) have attracted increasing attention (e.g., Mizutani and Dreyfus 2004, Aviv

and Pazgal 2006). The non-Markov nature can arise in many ways. The most direct extension

of MDP to NMDP is to deprive the decision maker of perfect information on the state of the

environment.

In �nance, the Markov property is one of the most popular assumptions among most continuous-

time models. It is well known that stochastic integrals yield Markov processes. In modelling

interest rate term structure, such popular models as Vasicek (1977), Cox, Ingersoll and Ross

(1985), a¢ ne term structure models (Du¢ e and Kan 1996, Dai and Singleton 2000), quadratic

term structure models (Ahn, Dittmar and Gallant 2002), and a¢ ne jump di¤usion models (Du¢ e,

Pan and Singleton 2000) are all Markov processes. They are widely used in pricing and hedging

�xed-income or equity derivatives, managing �nancial risk, and evaluating monetary policy and

debt policy. If interest rate processes are not Markov, alternative non-Markov models, such as

Heath, Jarrow and Morton�s (1992) model may provide a better characterization of the interest

rate dynamics. In general, if a process is obtained by discretely sampling a subset of the state

variables of a continuous-time process that evolves according to a system of nonlinear stochastic

di¤erential equations, it is non-Markov. A leading example is the class of stochastic volatility

models (e.g., Anderson and Lund 1997, Gallant, Hsieh and Tauchen 1997).

In the market microstructure literature, an important issue is the price formation mechanism,

which determines whether security prices follow a Markov process. Easley and O�Hara (1987)

develop a structural model of the e¤ect of asymmetric information on the price-trade size rela-

tionship. They show that trade size introduces an adverse selection problem to security trading

because informed traders, given their wish to trade, prefer to trade larger amounts at any given

price. Hence market makers�pricing strategies must also depend on trade size, and the entire

sequence of past trades is informative of the likelihood of an information event and thus price
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evolution. As a result, prices typically will not follow a Markov process. Easley and O�Hara

(1992) further consider a variant of Easley and O�Hara�s (1987) model and delineate the link

between the existence of information, the timing of trades and the stochastic process of security

prices. They show that while trade signals the direction of any new information, the lack of

trade signals the existence of any new information. The latter e¤ect can be viewed as event

uncertainty and suggests that the interval between trades may be informative and hence time

per se is not exogenous to the price process. One implication of this model is that either quotes

or prices combined with inventory, volume, and clock time are Markov processes. Therefore,

rather than using the prices series alone, which itself is non-Markov, it would be preferable to

estimate the price process consisting of no trade outcomes, buys and sells. On the other hand,

other models also explain market behavior but reach opposite conclusions on the property of

prices. For example, Amaro de Matos and Rosario (2000) and Platen and Rebolledo (1996) pro-

pose equilibrium models, which assume that market makers can take advantage of their superior

information on trade orders and set di¤erent bid and ask prices. The presence of market makers

prevents the direct interaction between demand and supply sides. By specifying the supply and

demand processes, these market makers obtain the equilibrium prices, which may be Markov.

By testing the Markov property, one can check which models re�ects reality more appropriately.

Our interest in testing the Markov property is also motivated by its wide applications among

practitioners. For example, technical analysis has been used widely in �nancial markets for

decades (see, e.g., Edwards and Magee 1966, Blume, Easley and O�Hara 1994, LeBaron 1999).

One important category is priced-based technical strategies, which refer to the forecasts based

on past prices, often via moving-average rules. However, if the history of prices does not provide

additional information, in the sense that the current prices already impound all information,

then price-based technical strategies would not be e¤ective. In other words, if prices adjust

immediately to information, past prices would be redundant and current prices are the su¢ cient

statistics for forecasting future prices. This actually corresponds to a fundamental issue �namely

whether prices follow a Markov process.

In risk management, �nancial institutions are required to rate assets by their default proba-

bility and by their expected loss severity given a default. For this purpose, historical information

on the transition of credit exposures is used to estimate various models that describe the prob-

abilistic evolution of credit quality. The simple time-homogeneous Markov model is one of the

most popular models (e.g., Jarrow and Turnbull 1995, Jarrow, Lando and Turnbull 1997), speci-

fying the stochastic processes completely by transition probabilities. Under this model, a detailed

history of individual assets is not needed. However, whether the Markov speci�cation adequately

describes credit rating transitions over time has substantial impact on the e¤ectiveness of credit

risk management. In empirical studies, Kavvathas (2001) and Lando and Sk�derberg (2002)

document strong non-Markov behaviors such as dependence on previous rating and waiting-time

e¤ects in rating transitions. In contrast, Bangia, Diebold, Kronimus, Schagen and Schuermann

(2002) and Kiefer and Larson (2004) �nd that �rst-order Markov ratings dynamics provide a
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reasonable practical approximation.

Despite innumerable studies rooted in Markov processes, there are few existing tests for the

Markov property in the literature. Ait-Sahalia (1997) �rst proposes a test for whether the interest

rate process is Markov by checking the validity of the Chapman-Kolmogorov equation, where

the transition density is estimated nonparametrically. The Chapman-Kolmogorov equation is

an important characterization of Markov processes and can detect many non-Markov processes

with practical importance, but it is only a necessary condition of the Markov property. Feller

(1959), Rosenblatt (1960) and Rosenblatt and Slepian (1962) provide examples of stochastic

processes which are not Markov but whose �rst order transition probabilities nevertheless satisfy

the Chapman-Kolmogorov equation. Ait-Sahalia�s (1997) test has no power against these non-

Markov processes.

Amaro de Matos and Fernandes (2007) extend the smoothed nonparametric density approach

proposed by Fernandes and Flôres (2004) to test whether discretely recorded observations of a

continuous-time process are consistent with the Markov property. They test the conditional

independence of the underlying data generating process (DGP).1 Because only a �xed lag order

in the past information set is checked, the test may easily overlook the violation of conditional

independence from higher order lags. Moreover, the test involves a relatively high-dimensional

smoothed nonparametric joint density estimation (see more discussion below).

In this paper, we provide a conditional characteristic function (CCF)-characterization for the

Markov property and use it to construct an omnibus test for the Markov property. The char-

acteristic function has been widely used in time series analysis and �nancial econometrics (e.g.,

Feuerverger and McDunnough 1981, Epps 1987, 1988, Feuerverger 1990, Hong 1999, Singleton

2001, Jiang and Knight 2002, Knight and Yu 2002, Chacko and Viceira 2003, Carrasco, Chernov,

Florens and Ghysels 2007, and Su and White 2007a). The basic idea of the CCF-characterization

for the Markov property is that when and only when a stochastic process is Markov, a generalized

residual associated with the CCF is a martingale di¤erence sequence (MDS). This characteri-

zation has never been used in testing the Markov property. We use a nonparametric regression

method to estimate the CCF and use a spectral approach to check whether the generalized resid-

uals are explainable by the entire history of the underlying processes. Our approach has several

attractive features:

First, we use a novel generalized cross-spectral approach, which embeds the CCF in a spectral

framework, thus enjoying the appealing features of spectral analysis. In particular, our approach

can examine a growing number of lags as the sample size increases without su¤ering from the

"curse of dimensionality" problem. This improves upon the existing tests, which can only check

1There are other existing tests for conditional independence of continuous variables in the literature. Linton
and Gozalo (1997) propose two nonparamtric tests for conditional independence based on a generalization of the
empirical distribution function. Su and White (2007a, 2007b) check conditional independence by the Hellinger
distance and empirical characteristic function respectively. These tests can be used to test the Markov property.
However, they will encounter the "curse of dimensionality" problem because the Markov property implies that
conditional independence must hold for in�nite number of lags.
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a �xed number of lags.

Second, as the Fourier transform of the transition density, the CCF can also capture the full

dynamics of the underlying process, but it involves a lower dimensional smoothed nonparametric

regression than the nonparametric density approaches in the literature.

Third, because we impose regularity conditions directly on the CCF of a discretely observed

random sample, our test is applicable to discrete-time processes and continuous-time processes

with discretely observed data. It is also applicable to both univariate and multivariate time series

processes.

Fourth, unlike tests based on characteristic functions in the statistical literature (e.g., Epps

and Pulley 1983), which often have nonstandard asymptotic distributions, our test statistic has

a convenient null asymptotic N(0; 1) distribution.

In Section 2, we describe the hypotheses of interest and propose a novel approach to testing

for the Markov property. We derive the asymptotic distribution of the proposed test statistic

in Section 3, and discuss its asymptotic power in Section 4. In Section 5, we use Paparoditis

and Politis�(2000) smoothed nonparametric transition-based bootstrap procedure to obtain the

critical values of the test in �nite samples and examine the �nite sample performance of the

test. In Section 6, we apply our test to stock prices, interest rates and foreign exchange rates

and document strong evidence against the Markov property with all three �nancial time series.

Section 7 concludes. All mathematical proofs are collected in the appendix. A GAUSS code to

implement our test is available from the authors upon request. Throughout the paper, we will

use C to denote a generic bounded constant, k�k for the Euclidean norm, and A� for the complex
conjugate of A:

2. HYPOTHESES OF INTEREST AND TEST STATISTICS

Suppose fXtg is a strictly stationary d-dimensional time series process, where d is a positive
integer. It follows a Markov process if the conditional probability distribution of Xt+1 given the

information set It = fXt;Xt�1; :::g is the same as the conditional probability distribution ofXt+1

given Xt only. This can be formally expressed as follows:

H0 : P (Xt+1 � xjIt) = P (Xt+1 � xjXt) almost surely (a.s.) for all x 2 Rd and all t � 1:
(2.1)

Under H0, the past information set It�1 is redundant in the sense that the current state variable
or vector Xt will contain all information about the future behavior of the process that is contained

in the current information set It: Alternatively, when

HA : P (Xt+1 � xjIt) 6= P (Xt+1 � xjXt) for some t � 1; (2.2)

then Xt is not a Markov process.
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Ait-Sahalia (1997) proposes a nonparametric kernel-based test forH0 by checking the Chapman-
Kolmogorov equation

g (Xt+1jXt�1) =

Z
Rd
g (Xt+1jXt = x) g (Xt = xjXt�1) dx for all t � 1;

where g(�j�) is the conditional probability density function estimated by the smoothed nonpara-
metric kernel method. The Chapman-Kolmogorov equation is an important characterization

of the Markov property and can detect many non-Markov processes with practical importance.

However, there exist non-Markov processes whose �rst order transition probabilities satisfy the

Chapman-Kolmogorov Equation (Feller 1959, Rosenblatt 1960, Rosenblatt and Slepian 1962).

Ait-Sahalia�s (1997) test has no power against these processes.

Amaro de Matos and Fernandes (2007) propose a nonparametric kernel-based test for H0 by
checking the conditional independence between Xt+1 and Xt�j given Xt, namely

g (Xt+1jXt) = g (Xt+1jXt;Xt�j) for all t; j � 1;

which is implied by H0. By choosing j = 1; Amaro de Matos and Fernandes (2007) check

g (Xt+1;Xt;Xt�1) = g (Xt+1jXt) g (Xt;Xt�1) for all t � 1;

in their simulation and empirical studies. This approach requires a 3d-dimensional smoothed

nonparametric joint density estimation for g(Xt+1;Xt;Xt�1).

Both the existing tests essentially check the conditional independence of

g(Xt+1jXt;Xt�1) = g(Xt+1jXt) for all t � 1;

which is implied by H0 in (2.1) but the converse is not true. The most important feature of H0
is the necessity of checking the entire currently available information It: There will be inevitably
information loss if only one lag order is considered. For example, the existing tests may overlook

the departure of the Markov property from higher order lags, say, Xt�2: Moreover, their tests

may su¤er from the "curse of dimensionality" problem when the dimension d is relatively large,

because the nonparametric density estimators ĝ(Xt+1jXt;Xt�1) and ĝ(Xt+1jXt) involve 3d and

2d dimensional smoothing respectively.

We now develop a new test for H0 using the CCF. As the Fourier transform of the conditional
probability density, the CCF can also capture the full dynamics of Xt+1. Let '(ujXt) be the

CCF of Xt+1 conditioning on its current state Xt; that is,

'(ujXt) =

Z
Rd
eiu

0xg(xjXt)dx; u 2 Rd; i =
p
�1: (2.3)
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Let '(ujIt)as the CCF of Xt+1 conditioning on the currently available information It; that is,

'(ujIt) =
Z

Rd
eiu

0xg(xjIt)dx; u 2 Rd; i =
p
�1:

Given the equivalence between the conditional probability density and the CCF, the hypothe-

ses of interest H0 in (2.1) versus HA in (2.2) can be written as follows:

H0 : '(ujXt) = '(ujIt) a.s. for all u 2 Rd and all t � 1 (2.4)

versus the alternative hypothesis

HA : '(ujXt) 6= '(ujIt) for some t � 1: (2.5)

There exist other characterizations of the Markov property. For example, Darsow, Nguyen and

Olsen (1992) and Ibragimov (2007) provide copula-based characterizations of Markov processes.

The CCF-based characterization is intuitively appealing and o¤ers much �exibility. To gain

insight into this approach, we de�ne a complex-valued process

Zt+1(u) = exp(iu
0Xt+1)� '(ujXt); u 2 Rd:

Then the Markov property is equivalent to the following MDS characterization

E [Zt+1(u)jIt] = 0 for all u 2 Rd and t � 1: (2.6)

The process fZt(u)g may be viewed as an residual of the following nonparametric regression

exp(iu0Xt+1) = E[exp(iu0Xt+1)jXt] + Zt+1(u) = '(ujXt) + Zt+1(u):

The MDS characterization in (2.6) has implications on all conditional moments on fXtg when
the latter exist. To see this, we consider a Taylor series expansion of (2.6), for the case of d = 1;

around the origin of u:

E [Zt+1(u)jIt] =
1X
m=0

(iu)m

m!
fE(Xm

t+1jIt)� E(Xm
t+1jXt)g = 0 for t � 1 (2.7)

for for all u near 0:2 Thus, checking (2.6) is equivalent to checking whether all conditional

moments of Xt+1 (if exist) are Markov. Nevertheless, the use of (2.6) itself does not require any

moment conditions on Xt+1:

It is not a trivial task to check (2.6). First, the MDS property in (2.6) must hold for all u 2 Rd;

2A multivariate Taylor series expansion can be obtained when d > 1: Since the expression is tedious, we do
not present it here.
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not just a �nite number of grid points of u. This is an example of the so-called nuisance parameter

problem encountered in the literature (e.g., Davies 1977, 1987 and Hansen 1996). Second, the

generalized residual process Zt+1(u) is unknown because the CCF '(ujXt) is unknown, and it has

to be estimated nonparametrically to be free of any potential model misspeci�cation. Third, the

conditioning information set It in (2.6) has an in�nite dimension as t!1, so there is a �curse
of dimensionality�di¢ culty associated with testing the Markov property. Finally, fZt (u)g may
display serial dependence in its higher order conditional moments. Any test for (2.6) should

be robust to time-varying conditional heteroskedasticity and higher order moments of unknown

form in fZt (u)g.
To check the MDS property of fZt (u)g; we extend Hong�s (1999) univariate generalized spec-

trum to a multivariate generalized cross-spectrum.3 Just as the conventional spectral density is

a basic analytic tool for linear time series, the generalized spectrum, which embeds the char-

acteristic function in a spectral framework, is an analytic tool for nonlinear time series. It can

capture nonlinear dynamics while maintaining the nice features of spectral analysis, particularly

its appealing property to accommodate all lags information. In the present context, it can check

departures of the Markov property over many lags in a pairwise manner, avoiding the "curse of

dimensionality" di¢ culty. This is not achievable by the existing tests in the literature. They

only check a �xed lag order.

De�ne the generalized covariance function

�j(u;v) = cov[Zt(u); exp(iv0Xt�jjj)]; u;v 2 Rd: (2.8)

Given that the conventional spectral density is de�ned as the Fourier transform of the auto-

covariance function, we can de�ne a generalized cross-spectrum

F (!;u;v) =
1

2�

1X
j=�1

�j(u;v)e
�ij!; ! 2 [��; �]; u;v 2 Rd; (2.9)

which is the Fourier transform of the generalized covariance function �j(u;v); where ! is a

frequency. This function contains the same information as �j(u;v): No moment conditions on

fXtg are required. This is particularly appealing for economic and �nancial time series. It has
been argued that higher moments of �nancial time series may not exist (e.g., Pagan and Schwert

1990, Loretan and Phillips 1994). Moreover, the generalized cross spectrum can capture cyclical

patterns caused by linear and nonlinear cross dependence, such as volatility clustering and tail

clustering of the distribution.

Under H0; we have �j(u;v) = 0 for all u;v 2 Rd and all j 6= 0: Consequently, the generalized

3This is not a trivial extension since we use nonparametric estimation in the �rst stage.
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cross-spectrum F (!;u;v) becomes a "�at" spectrum as a function of frequency !:

F (!;u;v) = F0(!;u;v) �
1

2�
�0(u;v); ! 2 [��; �]; u;v 2 Rd: (2.10)

Thus, we can test H0 by checking whether a consistent estimator for F (!;u;v) is �at with respect
to frequency !: Any signi�cant deviation from a �at generalized cross-spectrum is evidence of

the violation of the Markov property.

Suppose now we have a discretely observed sample fXtgTt=1 of size T; and we consider consis-
tent estimation of F (!;u;v) and F0(!;u;v): Because Zt(u) is not observable, we have to estimate

it �rst. Then we can estimate the generalized covariance �j (u;v) by its sample analogue

�̂j(u;v) =
1

T � jjj

TX
t=jjj+1

Ẑt(u)
h
eiv

0Xt�jjj � '̂(v)
i
; u;v 2 Rd; (2.11)

where the estimated generalized residual

Ẑt(u) = exp(iu
0Xt)� '̂(ujXt�1);

'̂(ujXt�1) is a consistent estimator for '(ujXt�1) and '̂(v) = T�1
PT

t=1 e
iv0Xt is the empiri-

cal characteristic function of Xt: We do not parameterize '(ujXt�1), which would su¤er from

potential model misspeci�cation. We use nonparametric regression to estimate '(ujXt�1). Var-

ious nonparametric estimation methods are available. We use the most popular kernel method,

mainly due to its simplicity and intuitive appeal.

To ensure that the nonparametric CCF estimator '̂(ujXt�1) has a fast convergence rate so

that the estimation of '(ujXt�1) has no impact on the generalized cross-spectral density estima-

tion asymptotically, we use a higher order kernel to estimate '(ujXt�1): For this, we introduce

a rth order kernel K; such that
R1
�1K (u) du = 1;

R1
�1 u

aK (u) du = 0;
R1
�1 u

rK (u) du =

BK < 1 and BK 6= 0: Examples of higher order kernels include: K4(u) =
1
2
(3� u2)� (u) ;

K6(u) =
1
8
(15� 10u2 + u4)� (u) ; K8(u) =

1
48
(105 � 105u2 + 21u4 � u6)� (u) ; where � (u) =

(2�)�1=2 exp(�1
2
u2). Then the Nadaraya-Watson estimator for '(ujXt�1) is

'̂(ujx) =
PT

s=2 e
iu0XsKh (x�Xs�1)PT

s=2Kh (x�Xs�1)
; (2.12)

where Kh (x�X) =
Qd
a=1Kh(xa � Xat) =

Qd
a=1

�
h�1K

�
xa�Xat

h

��
and h = h(T ) is the band-

width. The regression estimator '̂(ujx) only involves a d-dimensional smoothing, thus enjoying
some advantages over the existing nonparametric density approaches which involve a 2d or 3d

dimensional smoothing:

With the sample generalized covariance function �̂j(u;v); we can construct a consistent
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estimator for the �at generalized spectrum F0(!;u;v)

F̂0(!;u;v) =
1

2�
�̂0(u;v); ! 2 [��; �]; u;v 2 Rd: (2.13)

Consistent estimation for F (!;u;v) is more challenging. We use a nonparametric smoothed

kernel estimator for F (!;u;v) :

F̂ (!;u;v) =
1

2�

T�1X
j=1�T

(1� jjj =T )1=2k(j=p)�̂j(u;v)e�ij!; ! 2 [��; �];u;v 2 Rd; (2.14)

where p = p(T ) ! 1 is a bandwidth or lag order, and k : R ! [�1; 1] is a kernel function
that assigns weights to various lag orders. Note that k(�) here is di¤erent from the kernel K(�)
in (2.12): Most commonly used kernels discount higher order lags. Examples of commonly used

k(z) include the Bartlett kernel

k (z) =

(
1� jzj ; jzj � 1;
0; otherwise,

(2.15)

the Parzen kernel

k (z) =

8><>:
1� 6z2 + 6 jzj3 ; jzj � 0:5;
2(1� jzj)3; 0:5 < jzj � 1;

0; otherwise.

(2.16)

and the Quadratic-Spectral kernel

k (z) =
3

(�z)2

�
sin(�z)

�z
� cos (�z)

�
; z 2 R: (2.17)

In (2.14), the factor (1 � jjj =T )1=2 is a �nite-sample correction. It could be replaced by unity.
Under certain regularity conditions, F̂ (!;u;v) and F̂0(!;u;v) are consistent for F (!;u;v) and

F0(!;u;v) respectively. The estimators F̂ (!;u;v) and F̂0(!;u;v) converge to the same limit

under H0 and generally converge to di¤erent limits under HA: Thus any signi�cant divergence
between them is evidence of the violation of the Markov property.

We can measure the distance between F̂ (!;u;v) and F̂0(!;u;v) by the quadratic form

L2(F̂ ; F̂0) =
�T

2

Z Z Z �

��

���F̂ (!;u;v)� F̂0(!;u;v)
���2 d!dW (u) dW (v)

=
T�1X
j=1

k2(j=p)(T � j)

Z Z ����̂j(u;v)���2 dW (u) dW (v) ; (2.18)

where the second equality follows by Parseval�s identity, and W : Rd ! R+ is a nondecreasing
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weighting function that weighs sets symmetric about the origin equally.4 An example of W (�)
is the multivariate independent N(0; I) CDF, where I is a d � d identity matrix. Throughout

unspeci�ed integrals are all taken over the support of W (�) : We can compute the integrals over
(u;v) by numerical integration. Alternatively, we can generate random draws of u and v from

the prespeci�ed distribution W (�); and then use the Monte Carlo simulation to approximate the
integrals over (u;v): This is computationally simple and is applicable even when the dimension

d is large. Note that W (�) need not be continuous. They can be nondecreasing step functions.
This will lead to a convenient implementation of our test but it may adversely a¤ect the power.

See more discussion below.

Our proposed omnibus test statistic for H0 against HA is an appropriately standardized
version of (2.18), namely,

M̂ =

"
T�1X
j=1

k2(j=p)(T � j)

Z Z ����̂j(u;v)���2 dW (u) dW (v)� Ĉ

#
=
p
D̂; (2.19)

where the centering factor

Ĉ =
T�1X
j=1

k2(j=p)(T � j)�1
TX

t=jjj+1

Z Z ���Ẑt(u)���2 ��� ̂t�j(v)���2 dW (u) dW (v) ;

and the scaling factor

D̂ = 2
T�2X
j=1

T�2X
l=1

k2(j=p)k2(l=p)

Z Z Z Z

�

������ 1

T �max(j; l)

TX
t=max(j;l)+1

Ẑt(u1)Ẑt(u2) ̂t�j(v1) ̂t�l(v2)

������
2

�dW (u1) dW (u2) dW (v1) dW (v2) :

where  ̂t(v) = eiv
0Xt � '̂(v); and '̂(v) = T�1

PT
t=1 e

iv0Xt is the ECF of fXtg: The factors Ĉ and
D̂ are approximately the mean and variance of the quadratic form in (2:18) : They have taken

into account the impact of higher order serial dependence in the generalized residual fZt (u)g :
As a result, the M̂ test is robust to conditional heteroskedasticity and time-varying higher order

conditional moments of unknown form in {Zt(u)g.
In practice, M̂ has to be calculated using numerical integration or approximated by simulation

methods. This can be computationally costly when the dimension d of Xt is large. Alternatively,

one can only use a �nitely many number of grid points for u and v. For example, we can generate

�nitely many numbers of u and v from a multivariate standard normal distribution. This will

4If W (u) is di¤erentiable, then its derivative (@=@ua)W (u) is an even function of ua for a = 1; 2; :::d:
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dramatically reduce the computational cost but it may lead to some power loss. We will examine

this issue by simulation studies.

We emphasize that although the CCF and the transition density are Fourier transforms of

each other, our nonparametric regression-based CCF approach has an advantage over the non-

parametric conditional density-based approach, in the sense that our nonparametric regression

estimator of CCF only involves d�dimensional smoothing but the nonparametric joint density
estimators used in the existing tests involves 2d- and 3d-dimensional smoothing. We expect that

such dimension reduction will give better size and power performance in �nite samples.

3. ASYMPTOTIC DISTRIBUTION

To derive the null asymptotic distribution of the test statistic M̂; we impose the following

regularity conditions.

Assumption A.1: (i) fXtg is a strictly stationary �-mixing process with mixing coe¢ cient

� (j) = O (j��) for some constant � > 3; (ii) the marginal density g (x) of Xt is bounded away

from 0 and has at least rth order partial derivatives for some integer r > 0:

Assumption A.2: For each su¢ ciently large integer q, there exists a q�dependent stationary
process fXqtg; such that E kXt �Xqtk2 � Cq�� for some constant � � 1 and all large q: The

random vector Xqt is measurable with respect to some sigma �eld, which may be di¤erent from

the sigma �eld generated by fXtg :

Assumption A.3: K (�) is a rth order, bias-reduction kernel, satisfying
R1
�1K (u) du = 1;R1

�1 u
aK (u) du = 0; for 0 < a � r � 1; and

R1
�1 u

rK (u) du < 1; where r is the same as in

Assumption A.1 :

Assumption A.4: (i) k : R ! [�1; 1] is a symmetric function that is continuous at zero and
all points in R except for a �nite number of points. (ii) k (0) = 1; (iii) k (z) � c jzj�b for some
b > 1

2
as z !1:

Assumption A.5: W : Rd ! R+ is a nondecreasing weighting function that weighs sets sym-
metric about the origin equally, with

R
dW (u) <1 and

R
kuk4 dW (u) <1:

Assumption A.1 and A.2 are regularity conditions on the DGP of fXtg: Assumption A.1(i)
restricts the degree of temporal dependence of fXtg. We say that fXtg is �-mixing (absolutely
regular) if

� (j) = sup
s�1

E

"
sup

A2F1s+j
jP (AjF s

1 )� P (A)j
#
! 0;

as j ! 1; where F s
j is the �-�eld generated by fX� : � = j; :::; sg; with j � s: Assumption

A.1(i) holds for many well-known processes such as linear stationary ARMA processes and a

large class of processes implied by numerous nonlinear models, including bilinear, nonlinear AR,

and ARCH-type models (Fan and Li, 1999). Ait-Sahalia, Fan and Peng (2006), Amaro de Matos
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and Fernandes (2007) and Su and White (2007a, 2007b) also impose �-mixing conditions. Our

mixing condition is weaker than Amaro de Matos and Fernandes�(2007) and Su and White�s

(2007b). They assume a �-mixing condition with a geometric decay rate.

Assumption A.1(ii) �rst appears restrictive as it rules out some most commonly used prob-

ability densities, such as N (�;�2) : This allows us to focus on the essentials and still maintain

a relatively straightforward treatment. To satisfy such an assumption, it is a common practice

to exclude data in the tails. This, however, leads to information loss. Tails may be particularly

informative and interesting for �nancial time series.

It is well-known that the Markov property is invariant to any strictly monotonic transfor-

mation.5 One can exploit such a property to ensure that g (�) is bounded away from zero from

below. Let Yt have the cumulative density function (CDF) ~G (�) with density ~g (�) and let L (�)
be a prespeci�ed CDF with density l (�) : Then Xt � L (Yt) has support on Rd and the CDF of
Xt is given by G (x) = ~G [L�1 (x)] ; x 2 Rd: It follows that

g (x) � @dG (x)

@x1:::@xd
= ~g

�
L�1 (x)

� ��det J �L�1 (x)����1 ;
where J(�) is the Jacobian matrix: To ensure minx2Rd g (x) � c > 0; it su¢ ces that jdet J (y)j �
c�1~g (y) ; y 2 Rd:6 No information would be lost in the transformation. In fact, the condition
that g(x) � c > 0 is made for simplicity of the asymptotic analysis. It seems plausible that

one could allow g (x) ! 0 at the end points with a su¢ ciently slow rate, and our theory would

continue to hold under strengthened conditions on the bandwidth h used in kernel regression

estimation of CCF. As the involved technicality would be quite complicated and would detract

from our main goal, we do not pursue this here. However, we will use simulation to examine the

consequence of allowing g (x)! 0 at the end points.

Assumption A.2 is required only under H0: It assumes that a Markov process fXtg can be
approximated by a q-dependent process fXqtg arbitrarily well if q is su¢ ciently large. In fact, a
Markov process can be q-dependent. Lévy (1949), Rosenblatt and Slepian (1962), Aaronson, Gi-

lat and Keane (1992). and Matús (1996, 1998) provide examples of a q-dependent Markov

process. Ibragimov (2007) provides the conditions that a Markov process is a q-dependent

process. In this case, Assumption A.2 holds trivially. Assumption A.2 is not restrictive even

when Xt is not a q-dependent process. To appreciate this, we �rst consider a simple AR(1)

process fXtg :

Xt = �Xt�1 + "t; f"tg � i:i:d: (0; 1) :

5Rosenblatt (1971, Ch. III) provides conditions under which functions of a Markov process are Markov.
6When d = 1; it boils down to l (y) � c�1~g (y) :
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De�ne Xqt =
Pq

j=0 �
j"t�j; a q-dependent process: Then we have

E (Xt �Xqt)
2 = E

 1X
j=q+1

�j"2t�i

!
=
�2(q+1)

1� a
:

Hence Assumption A.2 holds if j�j < 1:
Another example would be an ARCH(1) process fXtg :8><>:

Xt = h
1=2
t "t;

ht = �+ �X2
t�1;

"t � i:i:d:N(0; 1):

This is a Markov process. By recursive substitution, we have ht = �+�
P1

j=1

Qj
i=1 �"

2
t�i: De�ne

Xqt � h
1=2
qt "t; where hqt � �+ �

Pq
j=1

Qj
i=1 �"

2
t�i: Then Xqt is a q-dependent process and

E (Xt �Xqt)
2 = E

�
h
1=2
t � h

1=2
qt

�2
� E (ht � hqt) = �

1X
j=q+1

jY
i=1

E
�
�"2t�i

�
=
��q+1

1� �
:

Thus Assumption A.2 holds if � < 1:

For the third example, we consider a mean-reverting Ornstein-Uhlenbeck process Xt :

dXt = � (� �Xt) dt+ �dWt;

where Wt is the standard Brownian motion. This is known as Vasicek�s (1977) model in the

interest rate term structure literature. From the stationarity condition, we haveXt s N
�
�; �

2

2�

�
:

De�ne Xqt = � +
R t
t�q �e

��(t�s)dWs; which is a q-dependent process: Then

E (Xt �Xqt)
2 = E

�
e��t (X0 � �) +

Z t�q

0

�e��(t�s)dWs

�2
= e�2�t

�
�2

2�

�
+

Z t�q

0

�2e�2�(t�s)ds

=
�2e�2�q

2�
= o

�
q��
�
; for any � > 0:

Thus Assumption A.2 holds.

Assumption A.3 imposes regularity conditions on the kernel function k(�) used for nonpara-
metric regression estimation of CCF. Bierens (1987), Pagan and Ullah (1999) and Li and Racine

(2007) provide a discussion of how to construct speci�c kernels satisfying these conditions. The

class of higher order kernels allows for reducing the bias of the marginal density estimator p̂ (x)

and therefore obtains a faster rate of convergence. The smoothness of p (x) as measured by the

derivative order r determines how much the bias can be reduced with. These bias-reduction
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kernels have been widely used in the literature (e.g., Robinson 1988, 1989, Andrews 1995).

Assumption A.4 imposes regularity conditions on the kernel function k(�) used for generalized
cross-spectral estimation. This kernel is di¤erent from the kernel K(�) used in the �rst stage
nonparametric regression estimation of '(ujXt�1): Here, k(�) provides weighting for various lags,
and it is used to estimate the generalized cross-spectrum F (!;u;v). Among other things, the

continuity of k (�) at zero and k (0) = 1 ensures that the bias of the generalized cross-spectral

estimator F̂ (!;u;v) vanishes to zero asymptotically as T ! 1: The condition on the tail

behavior of k (�) ensures that higher order lags will have little impact on the statistical properties
of F̂ (!;u;v) : Assumption A.4 covers most commonly used kernels. For kernels with bounded

support, such as the Bartlett and Parzen kernels, b =1: For kernels with unbounded support, b

is a �nite positive real number. For example, b = 1 for the Daniell kernel k (z) = sin (�z) = (�z) ;

and b = 2 for the Quadratic-spectral kernel k (z) = 3= (�z)2 [sin (�z) =(�z)� cos (�z)] :
Assumption A.5 imposes mild conditions on the prespeci�ed weighting function W (�) : Any

CDF with �nite fourth moments satis�es Assumption A.6. Note that W (�) need not be contin-
uous. This provides a convenient way to implement our tests, because we can avoid relatively

high dimensional numerical integrations by using �nitely many numbers of grid points for u and

v:

Theorem 1: Suppose Assumptions A.1�A.5 hold, and p = cT � for 2d
2r�+d

< � < (3 + 1
4b�2)

�1

and 0 < c <1; h = cT��; � 2
�
2��
4r
;min(��

2d
; 2��
2d
)
�
: Then under H0,

M̂ !d N(0; 1) as T !1:

As an important feature of M̂; the use of the nonparametrically estimated generalized residual

Ẑt (u) in place of the true unobservable residual Zt (u) has no impact on the limit distribution of

M̂: One can proceed as if the true CCF '(ujXt�1) were known and equal to the nonparametric

estimator '̂(ujXt�1): The reason is that by choosing suitable bandwidth h and lag order p,

the convergence rate of the nonparametric CCF estimator '̂(ujXt�1) is faster than that of the

nonparametric estimator F̂ (!;u;v) to F (!;u;v) : Consequently, the limiting distribution of M̂

is solely determined by F̂ (!;u;v) ; and replacing '̂(ujXt�1) by '(ujXt�1) has no impact on the

asymptotic distribution of M̂ under H0. However, '̂(ujXt�1) may have substantial impact on

the �nite sample size performance of the M̂ test. To overcome such adverse impact, we will

use Paparoditis and Politis�(2000) nonparametric smoothed transition density-based bootstrap

procedure to obtain the critical values of the test in �nite samples. See more discussion in Section

5 below.

We note that our condition on bandwidth h allows the optimal bandwidth rates for estimating

CCF. Thus, data-driven choices of bandwidth, which usually balance the variance and squared

bias, can be used. In contrast, Ait-Sahali (1997) and Su and White (2007a) require an under-

smoothing procedure to ensure that the squared bias vanishes to zero faster than the variance.

Such undersmoothing rules out asymptotically optimal data-driven choices of bandwidth h.
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4. ASYMPTOTIC POWER

Our test is derived without assuming a speci�c alternative to H0. To get insights into the
nature of the alternatives that our test is able to detect, we now examine the asymptotic behavior

of M̂ under HA in (2.2).

Theorem 2: Suppose Assumption A.1 and A.3- A.5 hold, and p = cT � for 2d
2r�+d

< � <

(3+ 1
4b�2)

�1 and 0 < c <1; h = cT��; � 2
�
2��
4r
;min(��

2d
; 1
d
)
�
: Then under HA; and as T !1;

p
1
2

T
M̂ ! p 1p

D

1X
j=1

Z Z
j�j (u;v)j2 dW (u) dW (v)

=
1p
D

Z Z Z �

��
jF (!;u;v)� F0 (!;u;v)j2 d!dW (u) dW (v) ;

where

D = 4�

Z 1

0

k4 (z) dz

Z Z
j�0 (u1;u2)j2 dW (u1) dW (u2)

�
Z Z Z �

��
jL (!;v1;v2)j2 d!dW (v1) dW (v2) ;

and L (!;u;v) = (2�)�1
P1

j=�1
j (u;v) e
�ij!; 
j (u;v) = cov

�
eiu

0Xt ; eiv
0Xt�jjj

�
and �0 (u;v) =

cov [Zt (u) ; Zt (v)] :

The function L (!;u;v) is the generalized spectral density of the process fXtg ; which is �rst
introduced in Hong (1999) in a univariate context. It captures temporal dependence in {Xtg:
The dependence of the constant D on L (!;u;v) is due to the fact that the conditioning variable

fexp
�
iv0Xt�jjj

�
g is a time series process. This suggests that if the time series fXtg is highly

persistent, it may be more di¢ cult to detect violation of the Markov property because the

constant D will be larger.

Following reasoning analogous to Bierens (1982) and Stinchcombe and White (1998), we have

that for j > 0; �j(u;v) = 0 for all u;v 2 Rd if and only if E [Zt(u)jXt�j] = 0 a.s. for all u 2
Rd: Thus, the generalized covariance function �j(u; v) can capture various departures from the

Markov property in every conditional moment ofXt in view of the Taylor series expansion in (2.7).

Suppose E [Zt(u)jXt�j] 6= 0 at some lag j > 0: Then we have
R R

j�j (u;v)j2 dW (u) dW (v) > 0

for any weighting function W (�) that is positive, monotonically increasing and continuous, with
unbounded support on Rd: As a consequence, P [M̂ > C (T )]! 1 for any sequence of constants

fC(T ) = o(T=p1=2)g: Thus M̂ has asymptotic unit power at any given signi�cance level, whenever

E [Zt(u)jXt�j] 6= 0 at some lag j > 0:
Thus, to ensure the consistency property of M̂ , it is important to integrate u and v over the

entire domain of Rd. When numerical integration is di¢ cult, as is the case where the dimension
d is large, one can use the Monte Carlo simulation to approximate the integrals over u and v.
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This can be obtained by using a large number of random draws from the distribution W (�) and
then computing the sample average as an approximation to the related integral. Such an approx-

imation will be arbitrarily accurate provided the number of random draws is su¢ ciently large.

Alternatively, we can use a nondecreasing step function W (�): This avoid numerical integration
or Monte Carlo simulation, but the power of the test may be a¤ected. In theory, the consistency

property will not be preserved if only a �nite number of grid points of u and v are used and the

power of the test may depend on the choice of grid points for u and v:

As revealed by the Taylor series expansion in (2.7), our test, which is based on the MDS

characterization in (2.6), essentially checks departures from the Markov property in every con-

ditional moment. When M̂ rejects the Markov property, one may be further interested in what

causes the rejection. To gauge possible sources of the violation of the Markov property, we can

consider a sequence of tests based on the derivatives of the nonparametric regression residual

Zt(u) at the origin 0:

@jmj

@um1
1 � � � @umd

d

E [Zt(u)jIt�1]u=0 = E(Xm1
1t � � �X

md
dt jIt�1)� E(Xm1

1t � � �X
md
dt jXt�1) = 0;

where the order of derivatives jmj = �da=1ma; and m = (m1; :::;md)
0; and ma � 0 for all

a = 1; :::; d. For the univariate time series, the choices of m = 1; 2; 3; 4 corresponds to tests for

departures of the Markov property in the �rst fourth conditional moments respectively. For each

m; the resulting test statistic is given by:

M̂(m) =

"
T�1X
j=1

k2(j=p)(T � j)

Z ����̂(m;0)j (0;v)
���2 dW (v)� Ĉ(m)

#
=

q
D̂(m);

where �̂(m;0)j (0;v) is the sample analogue of the derivative of the generalized cross-covariance

function

�
(m;0)
j (0;v) = cov

(
dY
a=1

(iXat)
ma � E

"
dY
a=1

(iXat)
ma

�����Xt�1

#
; exp

�
iv0Xt�jjj

�)
;

the centering and scaling factors

Ĉ(m) =
T�1X
j=1

k2(j=p)
1

T � j

TX
t=jjj+1

Z ���Ẑ(m)t (0)
���2 ��� ̂t�j(v)���2 dW (v) ;
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D̂(m) = 2
T�2X
j=1

T�2X
l=1

k2(j=p)k2(l=p)

Z Z

�

������ 1

T �max(j; l)

TX
t=max(j;l)+1

���Ẑ(m)t (0)
���2  ̂t�j(v1) ̂t�j(v2)

������
2

dW (v1) dW (v2) ;

and

Ẑ
(m)
t (0) =

dY
a=1

(iXat)
ma � E

"
dY
a=1

(iXat)
majXt�1

#
:

These derivative tests may provide additional useful information on the possible sources of the

violation of the Markov property. Moreover, some economic theories only have implications

for the Markov property in certain moments and our derivative tests are suitable to test these

implications. For example, Hall (1978) shows that a rational expectation model of consumption

can be characterized by the Euler equation that E [u0 (Ct+1) jIt] = u0 (Ct) ; where u0(Ct) is the

marginal utility of consumption Ct. This can be viewed as the Markov property in mean. The

derivative test M̂ (1) can be used to test this implication.

On the other hand, Theorem 2 implies that the M̂ test can check departure from the Markov

property at any lag order j > 0; as long as the sample size T is su¢ ciently large. This is achieved

because M̂ includes an increasing number of lags as the sample size T !1: Usually, the use of a

large number of lags would lead to the loss of a large number of degrees of freedom. Fortunately

this is not the case with the M̂ test, thanks to the downward weighting of k2(�) for higher order
lags.

5. FINITE SAMPLE PERFORMANCE

Theorem 1 provides the asymptotic null distribution of M̂: Consequently, one can imple-

ment our test for H0 by comparing M̂ with a N(0; 1) critical value. However, like many other

nonparametric tests in the literature, its size in �nite samples may di¤er signi�cantly from the

asymptotic signi�cance level. Our analysis suggests that the asymptotic theory may not work

well even for relatively large samples, because the asymptotically negligible higher order terms

in M̂ are close in order of magnitude to the dominant U -statistic; which determines the limit

distribution of M̂: In particular, the �rst stage smoothed nonparametric regression estimation for

'(ujXt�1) may have substantial adverse e¤ect on the size of M̂ in �nite samples. Our simulation

study shows that M̂ displays severer underrejection under H0: On the other hand, we examine
the �nite sample performance of an infeasible M̂ test by replacing the estimated generalized

residual Ẑt(u) by the true generalized residual. We �nd that the size of the infeasible test is

reasonable. This experiment suggests that the underrejection of M̂ is mainly due to the impact

of the �rst stage nonparametric estimation of CCF, which has a rather slow convergence rate.

Similar problems are also documented by Skaug and Tjøstheim (1993, 1996), Fan et al. (2006)

and Hong and White (2005) in other contexts.
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To overcome this problem, we use Paparoditis and Politis� (2000) smoothed nonparamet-

ric conditional density bootstrap procedure to more accurately approximate the �nite-sample

null distribution of M̂:7 The basic idea is to use a smoothed nonparametric transition density

estimator (under H0) to generate bootstrap samples. Speci�cally, it involves the following steps:

� Step (i) To obtain a bootstrap sample X b � fXb
tgTt=1, draw Xb

1 from the smoothed uncon-

ditional kernel density

ĝ (x) =
1

T

TX
s=2

Kh (x�Xs�1)

and fXb
tgTt=2 from the smoothed conditional kernel density

ĝ(xjXt�1) =
1
T

PT
s=2Kh (x�Xs)Kh (Xt�1 �Xs�1)
1
T

PT
s=2Kh (Xt�1 �Xs�1)

; (5.1)

where K(�) and h are the same as those used in M̂ ; 8

� Step (ii) Compute a bootstrap statistic M̂ b in the same way as M̂; with X b replacing

X =fXtgTt=1. The same K(�) and h are used in M̂ and M̂ b;

� Step (iii) Repeat steps (i) and (ii) B times to obtain B bootstrap test statistics fM̂ b
l gBl=1;

� Step (iv) Compute the bootstrap p-value pb � B�1PB
l=1 1(M̂

b
l > M̂): To obtain accurate

bootstrap p-values, B must be su¢ ciently large.

We emphasize that the same kernel K(�); the same bandwidth h should be used in ĝ(xjXt�1);

M̂ and M̂ b: This helps obtain a better size for our test in �nite samples. Because the nonpara-

metric transition density estimator ĝ(xjXt�1) in (5.1), is consistent for the true transition density

of the process fXtg under H0; the bootstrap distribution of a test statistic based on the bootstrap
sample will mimic the distribution of the test based on the original sample (Paparoditis and Poli-

tis 2000, and Horowitz 2003). Smoothed nonparametric bootstraps have been used to improve

�nite sample performance in hypothesis testing. For example, Su and White (2007a, 2007b)

apply Paparoditis and Politis�(2000) procedure in testing for conditional independence. Amaro

de Matos and Fernandes (2007) use Horowitz�s (2003) Markov conditional bootstrap procedure

in testing for the Markov property. Paparoditis and Politis�(2000) procedure is very similar to

Horowitz�s (2003), except that Paparoditis and Politis (2000) generate bootstrap samples from

ĝ(xjXt�1) and Horowitz (2003) generates bootstrap samples from ĝ(xjXb
t�1): These two proce-

dures can be applied to our test. We expect that the latter is more computationally expensive

since bootstrap observations have to be generated sequentially.

7For the application of the bootstrap in econometrics, see (e.g.) Horowitz (2001).
8Bootstrap samples can be generated by applying the inverse-distribution method to a �ne grid of points.
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To examine the sizes of our test under H0; we consider two Markov DGPs:

DGP S.1 [AR(1)]: Xt = 0:5Xt�1 + "t;

DGP S.2 [ARCH(1)]:

(
Xt = h

1
2
t "t

ht = 0:1 + 0:1X
2
t�1;

where "t � i:i:d:N (0; 1) :

To examine the power of our test with the smoothed bootstrap procedure, we consider the

following non-Markovian DGPs:

DGP P.1 [MA(1)]: Xt = "t + 0:5"t�1;

DGP P.2 [GARCH(1,1)]:

(
Xt = h

1
2
t "t

ht = 0:1 + 0:1X
2
t�1 + 0:8ht�1;

DGP P.3 [Markov Regime-Switching]: Xt =

(
0:7Xt�1 + "t; if St = 0;

�0:3Xt�1 + "t; if St = 1;

DGP P.4 [Markov Regime-Switching ARCH]:

8><>: Xt =

( p
ht"t; if St = 0;

3
p
ht"t; if St = 1;

ht = 0:1 + 0:3X
2
t�1;

where "t � i:i:d:N (0; 1) ; and in DGP P.3 and P.4, St is a latent state variable that follows a two-

state Markov chain with transition probabilities P (St = 1jSt�1 = 0) = P (St = 0jSt�1 = 1) = 0:9:
DGP P.3 and P.4 are Markov Regime-Switching model and Markov Regime-Switching ARCH

model proposed by Hamilton (1989) and Hamilton and Susmel (1994) respectively. They can

capture the state-dependent behaviors in time series. The introduction of the latent state variable

St changes the Markov property of AR and ARCH processes. The knowledge of Xt�1 is not

su¢ cient to summarize all relevant informations in It�1 that is useful to predict the future
behavior of the time series process. The departure from the Markov property comes from the

conditional mean in DGP P.1 and P.3 and from the conditional variance in DGP P.2 and P.4.

Throughout, we consider two sample sizes: T = 100; 250. For each DGP, we �rst generate

T + 100 observations and then discard the �rst 100 to mitigate the impact of the initial values.

To examine the bootstrap sizes and powers of the tests, we generate 500 realizations of the

random sample fXtgTt=1, using the GAUSS Windows version random number generator: We use

B = 100 bootstrap iterations for each simulation iteration. To reduce computational costs in the

simulation study, we generate u and v from a N (0; 1) distribution, with each u and v having

30 symmetric grid points in R respectively:9 We use the Bartlett kernel in (2.14), which has

bounded support and is computationally e¢ cient. Our simulation experience suggests that the

9We �rst generate 15 grid points u0;v0 from N(0; 1) and obtain u = [u00,�u00]0 and v = [v0; �v00]0 to ensure
symmetry. Preliminary experiments with di¤erent numbers of grid points show that simulation results are not
very sensitive to the choice of numbers. Concerned with the computational cost in the simulation study, we are
satis�ed with current results with 30 grid points.
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choices of W (�) and k (�) have little impact on both the size and power of the tests.10 Like Hong
(1999), we use a data-driven p̂ via a plug-in method that minimizes the asymptotic integrated

mean squared error of the generalized spectral density estimator F̂ (!;x;y), with the Bartlett

kernel k (�) used in some preliminary generalized spectral estimators. To examine the sensitivity
of the choice of the preliminary bandwidth �p on the size and power of the tests, we consider �p

in the range of 5 to 20. Following Robinson (1991) and Su and White (2007a), we use a fourth

order kernel K (u) = 1
2
(3� u2)� (u) ; where � (u) is the N(0,1) density. For simplicity, we choose

h = ŜXT
� 1
5 ; where ŜX is the sample standard deviation of fXtgTt=1:

Tables 1 reports the bootstrap sizes and powers of M̂ at the 10% and 5% nominal signi�cance

levels under DGPs S.1-2 and P.1-4. The test has reasonable sizes under both DGPs S.1 and S.2

for sample size T = 100, at both the 10% and 5% levels. Under DGP S.1 (AR(1)), M̂ tends

to overreject a little but the overrejection is not excessive. Under DGP S.2 (ARCH(1)), the

empirical levels are very close to the nominal levels, especially at the 5% level. The sizes of

M̂ are not very sensitive to the choice of the preliminary lag order �p: The smoothed bootstrap

procedure has reasonable sizes in small samples.11

Under DGPs P.1-4, Xt is not Markov and our test has reasonable power to detect them. The

rejection rates are around 20% at the 5% level when T = 100 and reach 40% when T = 250 under

DGPs P.1, 3 and 4 (MA(1), Markov chain regime-switching and Markov chain regime-switching

ARCH(1)). Under DGP P.2 (GARCH(1,1)), the rejection rate is a bit smaller but still reaches

15% at the 5% level when T = 250; and increases with the sample size T .

In summary, the test with the smoothed bootstrap procedure delivers reasonable size and

omnibus power against various non-Markov alternatives in small samples.

6. DO FINANCIAL TIME SERIES FOLLOW MARKOV PROCESSES?

As documented by Hong and Li (2005), such popular spot interest rates continuous-time

models as Vasicek (1977), Cox, Ingersoll and Ross (1985), Chan, Karolyi, Longsta¤ and Sanders

(1992), Ait-Sahalia (1996) and Ahn and Gao (1999) are all strongly rejected with real interest

rate data. They cannot capture the full dynamics of the spot interest rate processes. Although

some works are still going on to add the richness of model speci�cation in terms of jumps and

functional forms, the models remain to be a Markov process. In fact, the �rm rejection of a

continuous-time model could be due to the violation of the Markov property, as speculated by

Hong and Li (2005). If this is indeed the case, then one should not attempt to look for �exible

functional forms within the class of Markov models. On the other hand, as discussed earlier,

an important conclusion of the asymmetric information microstructure models (e.g., Easley and

10We have tried the Parzen kernel for k (�) ; obtaining similar results (not reported here).
11We have tried Horowitz�s (2003) Markov conditional bootstrap. The results, not reported here, are rather

similar but it takes much longer computational time.
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O�Hara (1987,1992)) is that the asset price sequence does not follow a Markov process. It is

interesting to check whether real stock prices are consistent with such a conjecture.

We apply our tests to three important �nancial time series: stock prices, interest rates and

foreign exchange rates. We use S&P500, 7-day Eurodollar rate and Japanese Yen, obtained from

Datastream. Two sample periods are considered: January 1, 1988 to December 31, 2006 for a

total of 4,427 daily observations, and January 1, 1998 to December 31, 2006 for a total of 2,263

observations. To remove the time trend and nonstationarity, we consider S&P500 value-weighted

returns, 7-day Eurodollar rate changes and Japanese Yen returns. Figures 1-6 provides the time

series plots and Table 2 reports the test statistics and bootstrap p-values for preliminary lag

orders �p from 10 to 20. The bootstrap p�values, based on B = 500 bootstrap iterations, are

computed as described in Section 5. For both the sample periods, the test statistics are quite

robust to the choice of �p and have essentially zero bootstrap p-values, revealing strong evidence

against the Markov property for S&P500 returns, 7-day Eurodollar rate changes and Japanese

Yen returns. The full sample from 1988 yields larger statistics values than the subsample from

1998, which con�rms the monotonic power of the new test.

These results cast some new thoughts on �nancial modelling. Although popular stochastic

di¤erential equation models exhibit mathematical elegance and tractability, they may not be an

adequate representation of the dynamics of the underlying process, due to the Markov assump-

tion. Other modelling schemes, which allow for the non-Markov assumption, may be needed to

better capture the dynamics of �nancial time series processes.

7. CONCLUSION

The Markov property is one of most fundamental properties in stochastic processes. Without

justi�cation, this property has been taken for granted in many economic and �nancial models,

especially in continuous-time �nance models. We propose a conditional characteristic function

based test for the Markov property in a spectral framework. The use of the conditional character-

istic function, which is consistently estimated nonparametrically, allows us to check departures

from the Markov property in all conditional moments and the frequency domain approach, which

checks many lags in a pairwise manner, provides a nice solution to tackling the di¢ culty of the

curse of dimensionality associated with testing for the Markov property. To overcome the adverse

impact of the �rst stage nonparametric estimation of the conditional characteristic function, we

use the smoothed nonparametric transition density-based bootstrap procedure, which provides

reasonable sizes and powers for the proposed test in �nite samples. We apply our test to three

important �nancial time series. Our results suggest that the Markov assumption may not be

suitable for many �nancial time series.
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Table 1: Size and power of the test

T = 100 T = 250
lag 10 15 20 10 15 20

Size
DGP S.1: AR(1)

10% 13.2 12.6 12.2 13.8 12.2 12.4
5% 6.4 6.2 6.6 6.8 5.2 5.4

DGP S. 2: ARCH(1)
10% 11.2 11.0 11.8 8.4 8.4 9.6
5% 7.0 7.2 6.8 4.8 5.0 5.0

Power
DGP P.1: MA(1)

10% 32.0 30.6 25.6 59.8 50.6 46.8
5% 20.2 18.8 17.0 46.0 39.8 36.0

DGP P.2: GARCH(1,1)
10% 18.1 16.7 15.3 25.8 23.6 20.4
5% 9.4 8.3 8.1 16.0 14.0 14.8

DGP P.3: Markov Regime-Switching
10% 31.0 28.0 25.2 56.4 48.4 42.6
5% 20.6 18.2 14.8 43.0 35.8 32.0

DGP P.4: Markov Regime-Switching ARCH
10% 35.0 31.4 27.0 62.0 53.4 49.2
5% 20.6 17.4 15.6 46.2 41.0 37.2

Notes: (i) 500 iterations and 100 bootstrap iterations for each simulation
iteration;
(ii) The Bartlett kernel is used;
(iii) DGP S.1: Xt = 0.5Xt−1 + εt, where εt ∼ i.i.d.N (0, 1); DGP S.2: Xt =√

htεt, where ht = 0.1 + 0.1X2
t−1 and εt ∼ i.i.d.N (0, 1) ;

(iv) DGP P.1: Xt = εt + 0.5εt−1, where εt ∼ i.i.d.N (0, 1); DGP P.2:
Xt =

√
htεt, where ht = 0.1 + 0.1X2

t−1 + 0.8ht−1 and εt ∼ i.i.d.N (0, 1) ;

DGP P.3: Xt =

½
0.7Xt−1 + εt, if St = 0
−0.3Xt−1 + εt, if St = 1

, where P (St = 1|St−1 = 0) =

P (St = 0|St−1 = 1) = 0.9; DGP P4: Xt =

½ √
htεt, if St = 0

3
√
htεt, if St = 1

, where

ht = 0.1 + 0.3X
2
t−1, and P (St = 1|St−1 = 0) = P (St = 0|St−1 = 1) = 0.9.



Table 2 Markov test for S&P 500, interest rate and exchange rate

01/01/1998− 12/31/2006 01/01/1988− 12/31/2006

S&P 500 7-day Eurodollar rate Japanese Yen S&P 500 7-day Eurodollar rate Japanese Yen

lag Statistics p-values Statistics p-values Statistics p-values Statistics p-values Statistics p-values Statistics p-values

10 15.04 0.0000 4.38 0.0020 1.21 0.0040 28.69 0.0000 5.74 0.0000 1.90 0.0000
11 15.81 0.0000 4.40 0.0020 1.21 0.0040 30.07 0.0000 6.07 0.0000 1.90 0.0000
12 16.51 0.0000 4.42 0.0020 1.37 0.0040 31.45 0.0000 6.36 0.0000 2.00 0.0000
13 17.19 0.0000 4.43 0.0020 1.57 0.0040 32.56 0.0000 6.62 0.0000 2.30 0.0000
14 17.83 0.0000 4.44 0.0020 1.76 0.0020 33.69 0.0000 6.84 0.0000 2.58 0.0000
15 18.43 0.0000 4.44 0.0020 1.96 0.0000 34.73 0.0000 7.02 0.0000 2.84 0.0000
16 18.97 0.0000 4.44 0.0020 2.15 0.0000 35.69 0.0000 7.16 0.0000 3.08 0.0000
17 19.46 0.0000 4.44 0.0020 2.33 0.0000 36.56 0.0000 7.29 0.0000 3.31 0.0000
18 19.90 0.0000 4.44 0.0020 2.50 0.0000 37.36 0.0000 7.39 0.0000 3.52 0.0000
19 20.29 0.0000 4.43 0.0020 2.66 0.0000 38.10 0.0000 7.48 0.0000 3.73 0.0000
20 20.65 0.0000 4.42 0.0020 2.82 0.0000 38.77 0.0000 7.55 0.0000 3.92 0.0000

Notes: (i) The bootstrap p-values are calculated by the smoothed nonparametric transition density-based bootstrap procedure described in
Section 5 with 500 bootstrap iterations; (ii) The data driven lag order p̂ is computed with the preliminary lag order ranging from 10 to 20.
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