
ar
X

iv
:1

10
2.

32
99

v1
  [

he
p-

ph
] 

 1
6 

Fe
b 

20
11

Implications of the recent high statistics determination of the pion electromagnetic
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The recently evaluated two-pion contribution to the muon g − 2 and the phase of the pion elec-
tromagnetic form factor in the elastic region, known from ππ scattering by Fermi-Watson theorem,
are exploited by analytic techniques for finding correlations between the coefficients of the Taylor
expansion at t = 0 and the values of the form factor at several points in the spacelike region. We
do not use specific parametrizations and the results are fully independent of the unknown phase
in the inelastic region. Using for instance, from recent determinations, 〈r2π〉 = (0.435 ± 0.005) fm2

and F (−1.6GeV2) = 0.243+0.022

−0.014 , we obtain the allowed ranges 3.75GeV−4 . c . 3.98GeV−4 and

9.91GeV−6 . d . 10.46GeV−6 for the curvature and the next Taylor coefficient, with a strong
correlation between them. We also predict a large region in the complex plane where the form
factor can not have zeros.

PACS numbers: 11.55.Fv, 13.40.Gp, 25.80.Dj

I. INTRODUCTION

The pion electromagnetic form factor F (t), defined by
the matrix element

〈π+(p′)|Jelm
µ |π+(p)〉 = (p+ p′)µF (t) (1)

where q = p−p′ and t = q2, plays a central role in strong
interaction dynamics. From general principles of Quan-
tum Field Theory, it follows that F (t) is normalized to
F (0) = 1 and is a real analytic function in the t-plane cut
along the real axis from the unitarity threshold t+ = 4M2

π

to infinity. At low energies its properties are described by
chiral perturbation theory (ChPT), the low energy effec-
tive theory of the strong interactions [1, 2], calculations
of the pion form factor being available in ChPT up to two
loops [3]-[6]. Lattice gauge theory has recently become
another useful tool for the calculation of the form fac-
tor at low energies [7]. On the other hand, perturbative
QCD predicts the behaviour at large momenta along the
spacelike axis, where Q2 ≡ −t > 0. The leading order
(LO) asymptotic term is [8]-[11]

F (−Q2) ∼ 16πF 2
παs(Q

2)

Q2
, Q2 → ∞, (2)

where Fπ is the pion decay constant and αs(Q
2) =

4π/[9 ln(Q2/Λ2)] is the running strong coupling to one
loop. NLO corrections to (2) were calculated by various
groups [12]-[16]. As discussed, for instance in [17]-[20],
the transition to the perturbative QCD regime seems to
occur quite slowly in this case.

∗Electronic address: anant@cts.iisc.ernet.in

The experimental information available on the pion
form factor is very rich. This quantity was measured
at spacelike values Q2 > 0 with increasing precison
from electron-pion scattering and pion electroproduction
from nucleons [21]-[25]. On the timelike cut, where the
form factor is complex, the Fermi-Watson theorem im-
plies that in the elastic region its phase is equal to the
phase-shift of the P -wave of the ππ amplitude, calculated
recently with precision using Roy equations and fixed-t
dispersion relations [26–28]. The modulus has been mea-
sured from the cross section of e+e− → π+π− by several
groups in the past [30]-[38], and more recently to high ac-
curacy by BABAR [39] and KLOE [40, 41] collaborations.
These data have been used for an accurate accurate eval-
uation the two-pion contribution to the muon anomalous
magnetic moment [42, 43].

The constraints imposed on the pion form factor by
analyticity and unitarity have been exploited in many
works (the list [44]-[67] covers only partly a very rich
literature). Different analytic representations, either as
standard dispersion relations [17], phase (Omnès-type)
[18, 48, 51, 53, 54, 65] or modulus [53] representa-
tions, as well as expansions based on conformal map-
pings [18, 48, 52] or Padé-type approximants [64], have
been constructed in order to correlate the low- and high-
energy properties of the form factor. A special interest
raised the issue of the zeros of the form factor, investi-
gated by means of dispersive sum-rules [18, 45–47, 53] or
by the more powerful techniques of analytic optimization
theory [44, 49]. In [61–63, 66] similar functional-analytic
techniques were applied for deriving bounds on the ex-
pansion coefficients at t = 0, from an weighted integral of
the modulus squared along the cut, known from unitarity
and dispersion relations for a related QCD correlator.

In the present paper we address the same problem, i.e.
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to find constraints on the coefficients appearing in the
Taylor expansion

F (t) = 1 +
1

6
〈r2π〉t+ ct2 + dt3 + · · · (3)

from a well defined input on the timelike axis, and also
include information coming from high precision experi-
ments that measure the form factor in the spacelike re-
gion. We also consider the problem of the zeros, and
obtain a region in the complex t-plane where zeros are
excluded. The main reason of revisiting the problem is
the recent high statistics measurement of the modulus
|F (t)| on the unitarity cut by BABAR [39] and KLOE
[40, 41] experiments. As we will show, this information
leads to stringent constraints, of a remarkable level for a
prediction independent of any specific parametrization.
We apply a technique discussed in [61, 68], which

makes use of information on both the phase and mod-
ulus, and was shown recently [69, 70] to place stringent
bounds on the the Kπ weak form factors. As first input
we use the Fermi-Watson theorem, according to which
one has, modulo π,

Arg[F (t+ iǫ)] = δ11(t), t+ < t < tin (4)

where δ11(t) is the phase-shift of the P -wave of ππ elastic
scattering and tin the first inelastic threshold. As dis-
cussed previously [18, 48], inelasticity in the case of the
pion vector form factor is negligible below the opening of
πω channel, so we take tin = (Mπ + Mω)

2. Below this
energy, the phase δ11(t) is known with precision from Roy
equations and fixed-t dispersion relations for ππ scatter-
ing [26–28].
We also include information on the modulus, generi-

cally expressed by an integral relation

1

π

∫

∞

tin

dtρ(t)|F (t)|2 ≤ I (5)

where ρ(t) is a positive definite weight in the region of
integration and I is a known quantity. Actually, (5) does
not fully account for the present information on |F (t)|:
indeed, except a small region near the threshold t+ =
4M2

π, the modulus is measured also below the inelastic
threshold tin, i.e, |F (t)| is measured more or less point-
wise, at every t, not only in averaged form as in (5). In
principle, the accurate knowledge of the phase and mod-
ulus on a region on the unitarity cut is sufficient to pin
down the form factor everywhere due to analyticity. In
practice, however, due to the well-known“instability” of
analytic continuation, the uncertainties, however small,
lead to solutions which are very different at points outside
the original data interval. Therefore, we do not proceed
by constructing parametrizations of the form factor on
the timelike axis, but consider instead the global class
of functions compatible with the adopted input, and de-
rive constraints on various quantities of interest from this
class of functions. As we shall see, even the input (5)
leads to quite strong constraints on the properties of the

form factor near t = 0 and in the complex plane. Thus
the chosen method is fully justified by the results that
have been obtained.
A further open point is the choice of the weight ρ(t) in

(5). In principle, a large class of positive weights, lead-
ing to a convergent integral for |F (t)| compatible with the
asymptotic behaviour (2), can be adopted. The optimal
procedure is to vary ρ(t) over a suitable admissible class
and take the best result. This approach will be investi-
gated in a future work. In the present paper we make
the particular choice that corresponds to the two-pion
contribution to the muon g−2, when the weight ρ(t) has
the form

ρ(t) =
α2M2

µ

12π

(t− t+)
3/2

t7/2
K(t),

K(t) =

∫ 1

0

du
(1− u)u2

1− u+M2
µu

2/t
, (6)

and the right hand side of (5) is the two-pion contribution
to the muon anomaly in the range t > tin,

I = âππµ . (7)

The practical motivation of this particular choice is that
an accurate evaluation of the two-pion contribution to
the muon anomaly, taking into account the correlations
between different points, is available from the refs. [42,
43]. As a result, this choice guarantees a very precise
input. We must emphasize that, once the input (4)-(7)
is adopted, the treatment is optimal and no information
is lost. A posteriori, it turns out that the results given
by this choice are quite stringent.
In addition to the above input from the timelike axis,

we include the values of F (t) measured experimentally
at some spacelike points

F (tn) = fn ± δfn, tn < 0, n = 1, ...., N, (8)

where we use the most recent high precision experimen-
tal information from Huber et al [24, 25]. Thus we will
be employing as input Eqs. (4)-(8) in order to obtain
correlations between the coefficients of the Taylor expan-
sion (3). We will investigate also the issue of the possible
zeros of the form factor, deriving regions where zeros are
forbidden.
In Sec. II we briefly review the mathematical method

and in Sec. III the experimental information that goes
into our computation. In Sec. IV, we present our re-
sults for the parameters (c, d) and compare them with
results available in the literature. In Sec. V we derive
regions where zeros are excluded along the real axis and
in the complex t-plane, and in Sec. VI we present some
discussions and our conclusions.

II. BASIC FORMULAE

For solving the problem we follow a mathematical
method presented in [61, 68]. We first define the Omnès
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function

O(t) = exp

(

t

π

∫

∞

t+

dt′
δ(t′)

t′(t′ − t)

)

, (9)

where δ(t) = δ11(t) for t ≤ tin, and is an arbitrary func-
tion, sufficiently smooth (i.e. Lipschitz continuous) for
t > tin. As shown in [68], the results do not depend
on the choice of the function δ(t) for t > tin. A crucial
remark is that the function h(t) defined by

F (t) = O(t)h(t) (10)

is analytic in the t-plane cut only for t > tin. The in-
equality (5), written in terms of h(t) as

1

π

∫

∞

tin

dt ρ(t)|O(t)|2|h(t)|2 = âππµ , (11)

can be expressed in a canonical form, if we perform the
conformal transformation

z̃(t) =

√
tin −

√
tin − t√

tin +
√
tin − t

, (12)

which maps the complex t-plane cut for t > tin onto the
unit disk |z| < 1 in the z-plane defined by z ≡ z̃(t), and
define a function g(z) analytic in |z| < 1 by

g(z) = w(z)ω(z)F (t̃(z)) [O(t̃(z))]−1. (13)

In this relation t̃(z) is the inverse of z = z̃(t), for z̃(t) as
defined in (12), and the last two factors give the function
h(t̃(z)) defined in (10), which is analytic in |z| < 1. Fi-
nally, w(z) and ω(z) are outer functions, i.e. functions
analytic and without zeros in |z| < 1, defined in terms

of their modulus on the boundary, related to
√

ρ(t) and
|O(t)|, respectively. Equivalent integral representations
of the outer functions in terms of their modulus can be
written either in the z or t variables. In particular, we
use

w(z) = exp

[

1

2π

∫ 2π

0

dθ
ζ + z

ζ − z
ln |w(ζ)|

]

, ζ = exp(iθ),

(14)
where

|w(ζ)|2 = ρ(t̃(ζ))

∣

∣

∣

∣

dt̃(ζ)

dζ

∣

∣

∣

∣

, (15)

and

ω(z) = exp

(

√

tin − t̃(z)

π

∫

∞

tin

ln |O(t′)| dt′√
t′ − tin(t′ − t̃(z))

)

.

(16)
Then (11) can be written as

1

2π

∫ 2π

0

dθ|g(ζ)|2 = âππµ . (17)

From (12) it follows that the origin t = 0 of the t-plane is
mapped onto the origin z = 0 of the z-plane. Therefore,
from (13) it follows that each coefficients gk ∈ R of the
expansion

g(z) = g0 + g1z + g2z
2 + g3z

3 + . . . (18)

is expressed in terms of the coefficients of order lower or
equal to k, of the Taylor expansion (3). Moreover, the
values F (tn) of the form factor at a set of real points
tn < 0, n = 1, 2, ..., N , lead to the values

g(zn) = w(zn)ω(zn)F (tn) [O(tn)]
−1, zn = z̃(tn).

(19)
Then the L2 norm condition (17) implies the determi-
nantal inequality (for a proof and older references see
[68]):

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ī ξ̄1 ξ̄2 · · · ξ̄N

ξ̄1
z2K1

1− z21

(z1z2)
K

1− z1z2
· · · (z1zN)K

1− z1zN

ξ̄2
(z1z2)

K

1− z1z2

(z2)
2K

1− z22
· · · (z2zN)K

1− z2zN
...

...
...

...
...

ξ̄N
(z1zN)K

1− z1zN

(z2zN)K

1− z2zN
· · · z2KN

1− z2N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ 0, (20)

where K ≥ 1 is an arbitrary integer and

Ī = âππµ −
K−1
∑

k=0

g2k, ξ̄n = g(zn)−
K−1
∑

k=0

gkz
k
n. (21)

The same relation (20) holds if we replace âππµ by an
upper bound of this quantity and the equality sign in
(17) by the ≤ sign. Moreover, as shown in [68], the results
depend in a monotonic way on the value of the r.h.s. of
(17), becoming weaker when this value is increased.
The extension to the case of complex points tn, which

enters in pairs since F (t∗) = F ∗(t), is straightforward
and will be discussed in Sec. V.

III. EXPERIMENTAL INPUT

We take
√
tin = 0.917 GeV, which corresponds to the

first important inelastic threshold, due to the ωπ pair.
The choice of a lower value of tin is legitimate in the
present formalism, and we will work also with

√
tin =

0.8 GeV, which will allow us to compare the constraining
power of the input conditions (4) and (5).
Very precise parametrizations of the phase-shift δ11 are

given in [26, 28]. We use as phenomenological input the
phase parametrized as [28]

cot δ11(t) =

√
t

2k3π
(M2

ρ−t)

(

2M3
π

M2
ρ

√
t
+B0 +B1

√
t−√

t0 − t√
t+

√
t0 − t

)

,

(22)
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TABLE I: π+π− contribution to the muon anomaly for en-
ergies above

√
tin.
√
tin âππ

µ

0.800 GeV 95.2261 × 10−10

0.917 GeV 22.1698 × 10−10

where kπ =
√

t/4−M2
π and

√
t0 = 1.05 GeV, Mρ = 773.6± 0.9 MeV,

B0 = 1.055± 0.011, B1 = 0.15± 0.05. (23)

The function δ11 obtained from (22) is practically identical
with the phase-shift obtained in [26] from Roy equations
for

√
t ≤ 0.8 GeV. The uncertainty is very small and we

have checked that the results are practically insensitive
to the variation of the phase-shift within the errors.

Above tin we use in (9) a smooth phase δ(t), which ap-
proaches asymptotically π. As shown in [68], the depen-
dence on δ(t) of the functions O and ω, defined in (9) and
(16) respectively, exactly compensate each other, leading
to results fully independent of the unknown phase in the
inelastic region.

The two-pion contribution to muon anomaly was eval-
uated to great precision in [42, 43]. The most recent eval-
uation [43], based on all the available experimental data,
gives for the total π+π− contribution to muon anomaly
the value aππµ = (507.80 ± 1.22 ± 2.50 ± 0.56) × 10−10.
In our method we need the specific contribution âππµ of

the energies from
√
tin to infinity. The values given be-

low1 are based on the BABAR data [39], whose spectrum
extends up to 3 GeV.

For the interval 0.917 - 3 GeV the two-pion contribu-
tion is (21.7291± 0.240747)× 10−10. Increasing the cen-
tral value by the error, and adding an estimate of about
0.2 × 10−10 for the interval from 3 GeV to ∞, gives the
close upper bound âππµ ≤ 22.1698 × 10−10 for the two-
pion contribution from 0.917 GeV to ∞. As mentioned
above, if we use in (17), instead of the exact value of
âππµ an upper bound on this quantity, the results are still
valid, but are weaker. In order to obtain results which
are in the same time unbiased and stringent, we need a
conservative and accurate estimate of âππµ .

For the interval 0.8 - 3 GeV the two-pion contribution
in [43] is (94.2541 ± 0.772021) × 10−10. Increasing as
before the central value by the error, and adding 0.2 ×
10−10 for the interval from 3 GeV to ∞, we obtain âππµ ≤
95.2261 × 10−10 for the two-pion contribution from 0.8
GeV to ∞. The final numbers for the two choices of tin
are compiled in Table I.

1 We are grateful to Bogdan Malaescu for providing us these num-

bers.

TABLE II: Spacelike data from [24, 25].

t Value[GeV2] F (t)

t1 −1.60 0.243 ± 0.012+0.019

−0.008

t2 −2.45 0.167 ± 0.010+0.013

−0.007

Finally, we use additional spacelike data coming from
[24, 25], which are collected for completeness in Table
II, where the first error is statistical and the second is
systematical.

IV. ALLOWED DOMAIN IN THE c− d PLANE

In this section, we present the constraints on the coeffi-
cients c and d entering the Taylor expansion (3) using the
formalism devloped in Sec. II. We list in Table III the
various quantities required in the basic inequality (20),
for two choices of tin. We implemented the normalization
F (0) = 1, but kept arbitrary the charge radius 〈r2π〉 and
the spacelike values F1 and F2. Using the input from
Tables I and III, one obtains easily from (20) a convex
quadratic condition for the coefficients c and d, repre-
sented as the interior of an ellipse in the c− d plane.
We consider first the constraints obtained without any

information at spacelike points, when the determinant
(20) has only one element, Ī, and the condition (20) be-
comes

g20 + g21 + g22 + g23 + . . . ≤ âππµ . (24)

The quantities gi are calculated for tin = (0.8 GeV)2 us-
ing the first line of Table I and the first column of Table
III, and for tin = (0.917 GeV)2 using the quantities writ-
ten in the second line of Table I and the second column
of Table III.
In order to investigate the influence of the choice of

the threshold tin, we show in Fig.1 the domains obtained
with the two values of tin considered in Tables I and III.
For convenience, we take 〈r2π〉 = 0.43 fm2 [19, 20, 27,
54]. The figure shows that the ellipse corresponding to
tin = (0.917 GeV)2 is smaller and lies fully inside that of
the ellipse with tin = (0.8 GeV)2, proving that the best
results are obtained by exploiting the known phase along
the whole elasticity region. Therefore, in what follows we
shall adopt the choice tin = (0.917 GeV)2.
A precise estimate 〈r2π〉 = (0.435± 0.005) fm2 is given

in [27]. In Fig.2 we present the domains described by
(20) for tin = (0.917 GeV)2 and two values of the charge
radius 〈r2π〉 = 0.43 fm2 and 〈r2π〉 = 0.44 fm2 resulting from
this estimate. The allowed domain is quite sensitive to
the variation of 〈r2π〉, being shifted towards the upper
right end if 〈r2π〉 is increased. To account for the uncer-
tainty of the charge radius, we take as allowed domain
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TABLE III: Tabulation of the quantities entering as input in (20) for obtaining the constraints on the c, d coefficients, for two
choices of tin. The numbers zn ≡ z̃(tn) are obtained using (12) and tn given in Table II. The numerical coefficients include the
information on the phase below tin and the normalization F (0) = 1, while the charge radius 〈r2π〉 (expressed in fm2) and the
values Fn ≡ F (tn) are left arbitrary.

Quantity tin = (0.8 GeV)2 tin = (0.917 GeV)2

g0 0.2284 × 10−4 0.1238 × 10−4

g1 (0.2503〈r2π〉 − 0.0414) × 10−3 (0.1783〈r2π〉 − 0.0431) × 10−3

g2 (0.1497c − 0.9547〈r2π〉 − 0.1160) × 10−3 (0.1401c − 0.9773〈r2π〉 − 0.0985) × 10−3

g3 (−0.8704c + 0.3833d + 0.3879〈r2π〉 − 0.7260) × 10−3 (−1.0481c + 0.4712d + 0.3589〈r2π〉 − 0.9154) × 10−3

z1 -0.3033 -0.2603

z2 -0.3745 -0.3285

g(z1) F1 × 0.3051 × 10−4 F1 × 0.2066 × 10−4

g(z2) F2 × 0.3984 × 10−4 F2 × 0.2210 × 10−4

the union of the two ellipses in Fig.2, which leads to the
ranges

3.48 GeV−4 . c . 3.98 GeV−4,

9.36 GeV−6 . d . 10.46 GeV−6, (25)

with a strong correlation between the values of c and d.

3 3.2 3.4 3.6 3.8 4

c [GeV
-4

]

8.5

9

9.5

10

10.5

d 
[G

eV
-6

]

tin = (0.8 GeV)
2

tin = (0.917 GeV)
2

<rπ
2
> = 0.43 fm

2

FIG. 1: Comparison of the c− d domain obtained with tin =
(0.917 GeV)2 and tin = (0.8 GeV)2 for 〈r2π〉 = 0.43 fm2.

We implement now the value at a point on the space-
like axis, using the input given in Table II. In this case
the determinant in (20) has two rows and two columns.
We choose the input at the spacelike point t1 given in
Table II and account for the errors by varying F1 inside
the error bars. In Fig. 3 we present the allowed do-
main in the c− d plane obtained for 〈r2π〉 = 0.43 fm2 and
three values of F1: the central value 0.243 given in Ta-
ble II, and the extreme values 0.265 (0.228) obtained by
adding (subtracting) the corresponding errors added in
quadrature. The additional information on the spacelike
axis improves in a dramatic way the constraints on the
c and d coefficients. The small ellipses are entirely in-
cluded in the larger ellipse obtained without information
on the spacelike axis, which confirms the consistency of

3.5 3.6 3.7 3.8 3.9 4

c [GeV
-4

]

9.5

10

10.5

d 
[G

eV
-6

]

<rπ
2
> = 0.43 fm

2

<rπ2> = 0.44 fm
2

FIG. 2: Allowed domain in the c − d plane obtained with
tin = (0.917 GeV)2, for 〈r2π〉 = 0.43 fm2 and 〈r2π〉 = 0.44 fm2.

the various pieces of the input information. Varying F1

inside the error bars, we obtain the allowed domain of
the c and d parameters at the present level of knowledge
as the union of the three small ellipses in Fig. 3. This
gives, for 〈r2π〉 = (0.435± 0.005) fm2, the allowed ranges

3.75 GeV−4 . c . 3.98 GeV−4,

9.91 GeV−6 . d . 10.45 GeV−6, (26)

with a strong correlation between the two coefficients.
The comparison with (25) shows that the information at
the spacelike point improves the lower bounds on both c
and d, a feature seen actually from Fig. 3.
Similar results are obtained using as input the second

Huber datum t2 in Table II. Note that the formalism al-
lows the simultaneous inclusion of several spacelike points
in the determinant (20). In practice, however, as dis-
cussed in [62, 63], when more points are included the
results become extremely sensitive to the values used as
input, and the numerical instabilities are difficult to con-
trol. So, we keep as input only one spacelike point, which
is sufficient to produce the quite narrow ranges reported
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3.5 3.6 3.7 3.8 3.9

c [GeV
-4

]

9.5

10

d 
[G

eV
-6

]

no spacelike datum
F(t1) (cent)

F(t1) (max)

F(t1) (min)

<rπ
2
> = 0.43 fm

2

FIG. 3: Allowed domain in the c − d plane calculated with
tin = (0.917 GeV)2 and 〈r2π〉 = 0.43 fm2, for three values of
F (t1) at the spacelike point t1 = −1.6 GeV2 (central value
in Table II and the extreme values obtained from the error
intervals. Also shown is the large ellipse when no spacelike
datum is included.)

in (26).

It is of interest to compare our predictions with previ-
ous determinations available in the literature. First, the
range of c given in (26) considerably improves the bounds
obtained with similar techniques in [61–63, 66]. This im-
provement is due mainly to the very accurate information
available now on the modulus, expressed in the values in
Table I. Calculations based on ChPT by Colangelo et al

[4] give c = (3.2 ± 0.5 ± 0.9) GeV−4, while Bijnens and
Talavera [6] obtain c = (4.49 ± 0.28) GeV−4 to 2-loop
accuracy (see also ref. [3]), and Guo et al [65] predict
c = (4.00±0.50)GeV−4. Other predictions, based on an-
alyticity are c = (3.79± 0.04) GeV−4 in [54], c = (3.84±
0.02) GeV−4 in [19, 20], while a more recent description
of the pion form factor [64] by means of Padé approx-
imants leads to c = (3.30 ± 0.03stat ± 0.33syst) GeV−4.
Finally the, most recent lattice determination [7] reads
c = 3.22(17)(36) GeV−4. Of course, a detailed compari-
son with our predictions requires also the relevant charge
radius, since these parameters are strongly correlated.
However, the remarkable fact is that the bounds (26)
are already comparable in precision with the predictions
based on specific parametrizations.

As concern the next parameter d, a fit of the ALEPH
data [56] on the hadronic τ decay rate with a Gounaris-
Sakurai formula [57] (equivalent to the Padé version of
the one-loop CHPT) gives d = 9.80GeV−6. Similar val-
ues with d = 9.70GeV−6 were also obtained in [58] by
usual dispersion relations. In the two-loop considerations
of [59] d was treated as a free parameter. Furthermore,
a discussion of d in the literature is given in [66]. The
method of unitarity bounds [61, 66] led in the past to
weaker bounds, due to the less precise information on
the modulus on the timelike axis. The present work con-
siderably improves this type of predictions. It may also
be noted that there do not appear to be any estimates

for d from the lattice.

V. DOMAIN WHERE ZEROS ARE EXCLUDED

As we discussed in the Introduction (see also [70]), the
formalism developed in Sec.II allows one to find rigor-
ously the domain where the form factor can not have
zeros. The method amounts to testing the consistency
of the assumption that a zero is present with the other
pieces of the input. Let us assume first that F (t) van-
ishes at some real point t0. From (13) it follows that
g(z0) = 0, where z0 = z̃(t0). We therefore include this
value in the determinant (20) and test the validity of the
inequality: if it is satisfied, a zero is possible, if it is vio-
lated, the zero is forbidden. In particular, if we use only
the information on the normalization F (0) = 1 and the
charge radius, with no input on the spacelike axis, we
obtain from (20) and (21) the following condition

∣

∣

∣

∣

∣

∣

∣

âππµ −g20−g21 −g0−g1z0

−g0−g1z0
z40

1− z20

∣

∣

∣

∣

∣

∣

∣

< 0, (27)

for the points z0 such that the form factor cannot vanish
at t0 = t̃(z0). Here g0 and g1 are expressed cf. Table III
in terms of the charge radius.
If we include in addition the value at a point z1 = z̃(t1),

the condition reads
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

âππµ −g20−g21 −g0−g1z0 ξ̄1

−g0−g1z0
z40

1− z20

(z0z1)
2

1− z0z1

ξ̄1
(z0z1)

2

1− z0z1

(z1)
4

1− z21

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< 0, (28)

with ξ̄1 = g(z1)− g0 − g1z1.

FIG. 4: Comparison of the domains without zeros obtained
from (29) using tin = (0.8 GeV)2 (smaller domain) and tin =
(0.917 GeV)2 (bigger domain), for 〈r2π〉 = 0.43 fm2.
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With the values given in Tables I and III for tin =
(0.917 GeV)2 and 〈r2π〉 = 0.43 fm2, the inequality (27)
implies that simple zeros are excluded from the inter-
val −1.93 GeV2 ≤ t0 ≤ 0.83 GeV2 of the real axis. If
we impose the additional constraint at a spacelike point
t1 = −1.6 GeV2, the interval for the excluded zeros is
much bigger. The left end of the range is actually quite
sensitive to the input value F1 = F (t1). Using the cen-
tral value F1 = 0.243 given in Table II, we find from
(28) that the form factor cannot have simple zeros in
the range −5.56 GeV2 ≤ t0 ≤ 0.84 GeV2. By vary-
ing F1 inside the error interval given in Table II (with
errors added in quadrature), we find that zeros are ex-
cluded from the range −12.67 GeV2 ≤ t0 ≤ 0.84 GeV2

for F1 = 0.265 at the upper limit of the error inter-
val, while for the lower limit F1 = 0.228 the range is
−4.46 GeV2 ≤ t0 ≤ 0.84 GeV2.

FIG. 5: Domain without zeros obtained from (29) using
tin = (0.917 GeV)2, for two values of the pion charge radius,
〈r2π〉 = 0.43 fm2 (smaller domain) and 〈r2π〉 = 0.44 fm2 (bigger
domain).

FIG. 6: Domain without zeros obtained with tin =
(0.917 GeV)2 and 〈r2π〉 = 0.43 fm2, using in addition the cen-
tral experimental value F (t1) = 0.243 at the spacelike point
t1 = −1.6 GeV2.

We now turn to the study of complex zeros. The for-

FIG. 7: Comparison of the domains with no zeros obtained
with tin = (0.917 GeV)2 and 〈r2π〉 = 0.43 fm2, for the spacelike
input F1 = 0.265 (bigger domain) and F1 = 0.228 (smaller
domain).

malism presented in Sec. II can be easily adapted to in-
clude complex values of the form factor outside the real
axis. Since the form factor is real analytic, its zeros occur
in complex conjugate pairs, i.e. if F (t0) = 0, then also
F (t∗0) = 0 (a double zero occurs as t0 approaches the real
axis). One can show that the determinant condition (27)
for the domain without zeros is generalized to

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

âππµ −g20−g21 −g0−g1z0 −g0−g1z
∗

0

−g0−g1z
∗

0

(z0z
∗

0)
2

1− |z0|2
(z∗0)

4

1− (z∗0)
2

−g0−g1z0
z40

1− z20

(z0z
∗

0)
2

1− |z0|2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< 0. (29)

The determinant is real since the corresponding matrix
is hermitian. The 4 × 4 determinant that includes in
addition a value at a spacelike point t1 can be easily
written down.
We first apply the inequality (29) to illustrate the de-

pendence of the domain without zeros on the value of tin
used in the calculations. As seen from Fig.4, the larger
value tin = (0.917 GeV)2 leads to a domain that extends
to high values of |t| in all the directions of the complex
plane, which shows that, like in the case of the c− d do-
main, the best results are obtained if the phase condition
(4) is used along the whole range of validity.
The dependence of the domain on the variation of 〈r2π〉

is shown in Fig.5. As expected, for a larger charge radius,
〈r2π〉 = 0.44 fm2, the zeros are excluded from a bigger
complex domain around the timelike axis, while the left
end of the domain, around the spacelike axis, is almost
insensitive to the slope at t = 0.
The effect of an additional input at a spacelike point

is illustrated in Fig.6, where we show the domain in
the complex plane where zeros are excluded, using t1 =
−1.6GeV2 and the value F (t1) = 0.243 (the central ex-
perimental value given in [24, 25]). By comparing Fig.6
with the large domain in Fig.4, on can see that the knowl-
edge of the form factor at a spacelike point excludes zeros
in a larger domain near the spacelike axis, while it has a
smaller influence on the right part of the domain. This
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feature is present also in Fig.7, which shows the sensitiv-
ity of the domain to the input value of F (t1). As is seen
in the figure, the larger value F (t1) = 0.265 obtained
from the upper limit of the error bar, excludes the zeros
in a domain extending to considerably larger values along
the spacelike axis.
The results on the zeros reported in the literature

[18, 44–46, 49] are rather controversial. The best results
for the regions free of zeros were obtained in [44, 49], by
a method related to ours. However, since the experimen-
tal information at that time was poor, the authors were
forced to make some ad-hoc assumptions, especially on
the modulus on the timelike axis. At present the precise
measurement of the modulus gives a solid basis to our
results.
The issue of zeros is of relevance for the analytic rep-

resentation of the form factor using phase (Omnès)- or
modulus-type representations, which require the knowl-
edge of the zeros. Such representations were extensively
studied in the past [18, 48, 51, 53, 54, 65], and often
are based on the assumption that zeros are absent. Our
results, which show that the zeros are excluded from
a rather large region at low energies, give support to
such representations, and confirm also theoretical expec-
tations based on ChPT or more general physical argu-
ments [18].

VI. DISCUSSIONS AND CONCLUSION

The experimental information available at present
on the pion electromagnetic form factor is very rich.
The recent high statistics measurements of the modulus
by BABAR and KLOE collaborations [39–41], supple-
mented by the phase in the elastic region known with
accuracy from the P -wave of ππ scattering [26–28], are
expected to considerably constrain the behaviour on the
timelike axis. The values of the form factor on the space-
like axis are also measured with increasing precison. The-
oretically, predictions on the pion form factor at low en-
ergies are available from ChPT and lattice QCD, while
perturbative QCD predicts the behaviour at high ener-
gies along the spacelike axis. The transition to the per-
turbative regime is known to be an open problem that
deserves further study in the case of the pion form fac-
tor.
Analyticity is the ideal tool for connecting the low- and

high-energy regimes for physical quantities like the pion
form factor. The full treatment of the present rich experi-
mental and theoretical input, which might overconstrain
the system, is a challenge for the future investigations
based on analyticity. In the present work we do not per-
form such a complete analysis, but exploit only in part
the present information on the modulus on the unitarity
cut. However, even in this limited frame we obtain quite
stringent conclusions on the low energy properties of the
form factor.
The conditions used as input in our approach are ex-

pressed by the phase condition (4) and the integral of
the modulus squared (5), which we further restricted by
choosing the weight ρ(t) as the kernel relevant for the
two-pion contribution to the muon anomaly, cf. (6) and
(7). A more general class of suitable weights will be in-
vestigated in a future work. Once the input is chosen, it
is exploited in an optimal way by a mathematical formal-
ism presented in Sec. II, leading to strong correlations
between the coefficients of the Taylor expansion (3) at
t = 0 and the values of the form factor on the spacelike
axis.

Our basic results are contained in Eqs. (20) and (21),
where the input quantities are defined in Tables I-III.
The numerical coefficients in Table III depend on the
normalization F (0) = 1 and the phase of the form factor
below the inelastic threshold tin, being vary stable with
respect to small variations of the phase. Moreover, as
emphasized in Sec. II, the results are independent on
the unknown phase of the form factor above the inelastic
threshold tin. In Table III, the charge radius 〈r2π〉, the
higher-order Taylor coefficients c and d, and the values
of the form factor at several spacelike points are kept free,
so the formalism can be easily applied for finding model
independent correlations between the values of the form
factor at different points and for testing the consistency
of input values known from different sources.

In Sec. IV we derived stringent constraints on the
allowed values of the higher-order coefficients c and d
of the Taylor expansion (3). The best results are ob-
tained with tin = (0.917 GeV)2, which corresponds to
the physical inelastic threshold produced by the ωπ chan-
nel. The charge radius and an additional information
at a spacelike point were used as input. In (25) and
(26) and in Figs.1 - Fig. 3 we illustrated the results for
〈r2π〉 in the range (0.43− 0.44) fm2 and F (−1.6 GeV2) =
0.243 ± 0.012+0.019

−0.008 [24, 25]. As noted above, the al-
lowed ranges are already comparable in precision with
other determinations in the literature based on specific
parametrizations.

In Sec. V we showed that the same formalism leads
to an analytic description for the regions of the complex
plane where the zeros of the form factor are forbidden.
Our results are contained in Eqs. (27)-(29) and are il-
lustrated in Figs. (4) - (7), for the same input 〈r2π〉 and
F (t1). We obtain a rather large domain where zeros are
excluded, which gives support to Omnès-type representa-
tions, which often assume the absence of the zeros. Our
results also confirm theoretical expectations on the ab-
sence of zeros at low energy, based on ChPT or general
physical arguments [18]. We note that by our method we
can find rigorously the domains free of zeros, but we can
say nothing about the remaining domains, where zeros
may be present or absent. Alternative methods, based
on modulus representations [18, 45, 53], can rule out in
principle the zeros from the whole complex plane pro-
vided they are absent. However, these methods are very
sensitive to the input and led to controversial results in
the past. An update of such analyses using the recent
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precise determination of the modulus would be of much
interest.
We finally note that the mathematical formalism ap-

plied in this paper may be useful also for finding an an-
alytic parametrization of the form factor suitable for fit-
ting the rich amount of experimental data. Namely, the
representation of F (t) that results from (13) involves the
known functions w(z), which accounts for the weight ρ(t),
ω(z) and O(t), which implement the phase below tin, and
the arbitrary function g(z), analytic in the t-plane cut
for t > tin, or equivalently in the unit disc |z| < 1 of
the z-plane defined by the conformal mapping (12). The

expansion (18) is convergent in |z| < 1, and moreover the
coefficients satisfy the inequality (24), which is very use-
ful in order to control the higher orders of the expansion
and the truncation error.
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