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The modelling of optical fields within cavities of GaAs-based oxide-confined edge-emitting diode
lasers is analysed treating the 1.3-µm InGaAs/GaAs quantum-well laser as an example of a typical
device. Usability of two different optical approaches is compared. While in the first approach,
based on the scalar wave simplification, optical fields within laser resonators are found to be
composed of the TE modes, an alternative, more precise vectorial approach leads to the hybrid
modes: EH and HE. Advantages and disadvantages of both methods are discussed and their validity
limits in determination of mode intensities are compared. Simplified scalar approaches have often
happened to be surprisingly exact, except for their weaker guidance occurring for higher-order
modes, narrower aperture widths and/or thinner oxidation layers, when more exact but also more
time-consuming vectorial approaches should be exclusively used.
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1. Introduction

Recently, resonators of semiconductor lasers have often been reduced to relatively
small dimensions to enable reduction of both their threshold currents and an increase
in operation temperature. To design such lasers ensuring even better performance,
an exact simulation of simultaneous interrelations between electrical, thermal, gain,
stress and optical phenomena taking place within the device volumes when in operation
is essential.

The modelling of optical field appears to be a very challenging problem since
Maxwell’s equations, treated rigorously, are not separable within the semiconductor
laser domain. Moreover, wavelengths of the propagating light within modern
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structures become often comparable with their sizes, which makes the common use of
plane waves in scalar optical models unjustified. In such a situation, it seems necessary
to employ the full vectorial theoretical model describing optical phenomena, instead
of its simplified scalar approach. However, the computational experiment shows that,
suprisingly, the scalar approach gives sometimes quite satisfactory results even beyond
limits of its confirmed validity, e.g., in some modern micro-cavity devices. Therefore,
it is necessary to examine the performance of both optical models when these are
used to simulate an operation of specified laser devices to determine cases where less
time-consuming and simpler scalar approaches may be used. In the present work,
a comparison is made of the scalar and vectorial models represented by the effective
index method and the method of lines, respectively, applied to the optical simulation
of standard GaAs-based oxide-confined edge emitting diode lasers.

2. The scalar approach – the effective index method

The effective index method is the most commonly used scalar approach to the optical
phenomena within semiconductor lasers [1–4]. The model assumes that changes of
the refractive index are relatively small and the propagating wave is the plane one.
Therefore, the electromagnetic wave may be treated as a scalar field, which may be
separated into independent functions describing the electromagnetic wave separately
along each direction. 

Let us assume here that the z-axis of the Cartesian coordinate system is parallel
to the direction of wave propagation and the p-n junction of the structure lies in
the x–z plane where x = 0 corresponds to the active-region centre (Fig. 1). Taking
advantage of the concept of the effective refractive index as well as making use of
the assumptions that the wave propagates within the charge-free medium and the time
dependence of the solution has a form of the function of type exp(iω t), the set of
Maxwell’s equations may be reduced to the Helmholtz equation [5]:

(1)

where  u = x, y, E is the electric field vector of the electromagnetic
wave, n – the position dependent complex refractive index of the laser domain, k0 –
the vacuum wave number, and Neff – the structure complex effective index. The field
distribution within the domain of the waveguide is assumed to be a product of two
functions, which is true only for a uniform, free source domain:

E(x, y) = Ex(x)Exy(x, y) (2)

The function Ex(x) is expected to approach precisely the solution in the x-direction,
whereas the second one, Exy(x, y), is only weakly x-dependent. After some
manipulations, one can get two plane wave equations:

∂x
2E ∂y

2E k0
2 n2 x y,( ) Neff

2– E+ + 0=

∂u ∂ ∂u,⁄≡
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(3)

(4)

where ni denotes the complex effective index for the region assumed to be uniform
in the x-direction. From equation (3), one can find the effective index ni for each
region, next setting ni to equation (4), one can find the structure effective index Neff
for the whole structure. The general solution of the wave equations (3) and (4) for
the uniform region may be expressed as a superposition of two waves travelling in
the opposite directions:

(5)

where u = x, y, and  (ne and nm for Eq. (3) are n and ni, respectively,
and for Eq. (4) – ni and Neff, respectively), uj stands for the position of the edge of
the region. The regions are assumed to be rectangularly shaped. Amplitudes A and B
and parameter γ  can be found using the transfer matrix method [6]. 

3. The vectorial approach – the method of  lines

Hitherto known vectorial models used to simulate optical fields in diode lasers are
relatively complex and they often need special very time-consuming calculation
algorithms. To this end, a more efficient new vectorial approach, namely the method
of  lines, was developed by R. Pregla and his group [7].

The initial set of Maxwell’s equations is expressed in the form given, for example,
by SALEH and TEICH [5]. Assuming oscillating dependence on time and on direction
of propagation of both the electric field and magnetic field vectors, one can get
the following set:

(6)

(7)

∂y
2Exy k0

2 n2 x y,( ) ni
2 y( )– Exy+ 0=

∂x
2Ex k0

2 ni
2 y( ) Neff

2– Ex+ 0=
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where, for simplicity, we take:

 , ,  

A combination of the two above equations results in: 

(8)

After discretisation of Eq. (8) in the x-direction [7], it can be solved by diagonizing
the matrix QE. This enables us to find a characteristic value of the problem, which
corresponds to the effective index value, as well as characteristic vectors which
determine the distribution of the electromagnetic field within the structure. For Eq. (8)
rewritten in the new base:

(9)

where  the matrix TE diagonizes QE. The solution to Eq. (9) has the form
of a standing wave:

(10)

Some algebraic manipulations lead to the relation between the electric and the
magnetic fields within the layer assumed to be uniform in the y-direction:

(11)

where  is the vector of the magnetic field components transformed to the base
in which the matrix QE can be diagonized. The superscript indicates the number of
the layer, and the subscript the edge of the same layer; y1 and y2 are defined as follows:

(12)

(13)

From Eq. (11) one can find the relation between the magnetic and the electric fields:

(14)

n n x y,( ),≡ E
Ez

Ex–
= H

Hx
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= η0
µ0

ε0
-----=

∂y
2E RHREE– QE

2 E–≡=
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where

(15)

The assumption of the electric field decaying on the borders of the simulated
domain yields the eigenvalue equation for the vector of the electric field between
arbitrarily chosen layers m and l:

(16)

The solution of the above equation determines the characteristic values which
correspond to the complex effective refractive index Neff and eigenvectors related
to the electric field. The equation is not trivial only if M is singular, then at least
one eigenvalue of  M is equal to zero.

4. The results

Usually, in the simulation of a laser operation, the final task is to calculate its output
power as a function of applied voltage (or supply current). This makes it necessary
to model self-consistently a complex network of interrelations between electrical,
thermal, gain and optical phenomena. All they interact with the optical model
influencing both (real and imaginary) parts of the complex refractive indices of
structure layers. But the focus of this paper is on purely optical determination of
the optical modes with the help of both scalar and vectorial approaches. Taking
additionally into account an impact of gain, thermal and electrical phenomena on
optical ones, can make it difficult to unambiguously interpret the results of analysis.
On the other hand, a purely optical comparison of scalar and vectorial modes may
enable determination of their validity limits, which is the main goal of this paper.
Therefore, details of recombination processes, carrier transport and thermal flow are
intentionally omitted here by using a constant optical gain (a step-like gain
distribution) within the active quantum wells (QW’s) of the structure. Our goal is to
calculate the cavity modes using both approaches and to compare their distributions.

Let us consider a standard design of the highly strained, stripe-geometry 1.3-µm
InGaAs/GaAs double quantum well edge emitting (Fabry–Perot) diode laser [8]. Its
layer structure is shown in Fig. 1 and details are listed in the Table. Its active region
consists of two strained In0.44Ga0.56As quantum wells separated with the GaAs barrier.
The necessary lateral confinement of the current flow and the optical field is realized
with the aid of a 0.15 µm oxidized layer.

The scalar modes are assumed to be polarized (TE polarization) whereas the vectorial
modes have been found to be hybrid ones. This means that the vectorial modes are
determined by all six components of the electromagnetic field contrary to the scalar
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modes, which are defined by three components only. Figure 2 presents intensity
profiles of three lowest-order modes for the laser structure with a 12-µm stripe width.
One can observe a distinctly better confinement of the fundamental vectorial mode
within the active region than its scalar counterpart (Fig. 2a). It becomes even more
pronounced for higher order modes, especially in the x-direction. Distinct leakage of
scalar modes brings out the lowering of the real and imaginary parts of the mode
effective refractive index since their electromagnetic fields penetrate the lateral passive
regions exhibiting lower index and high absorption. On the other hand, vectorial modes
suffer from the diffraction losses, which are not included in the scalar approach.

Fig. 1. A schematic structure of the edge-emitting diode laser and the coordinate system applied in
the analysis.

T a b l e. Construction details of the highly strained, double quantum-well edge-emitting diode laser [8].
The gain within the active region corresponds to the carrier concentration equal to 3×1018 cm–3.
The values of refractive indices and gain coefficients have been taken from [9, 10]. 

Material
Thickness 
[nm]

Doping concentration 
[cm–3]

Real refractive 
index

Optical gain 
coefficient [cm–1]

p-GaAs 500 1019 3.453 –226.379
p-Al0.98Ga0.02As/Al2O3 150 1019 3.453/1.75 –226.379/0
p-Al0.4Ga0.6As 300 4×1017 3.239 –64.9326
p-GaAs 100 1016 3.481 –58.374
In0.44Ga0.56As 7 0 3.533 1171.78
GaAs 20 0 3.482 0
In0.44Ga0.56As 7 0 3.533 1171.78
n-GaAs 100 5×1016 3.481 –59.0466
n-Al0.4Ga0.6As 1500 1018 3.237 –75.0228
n-GaAs 5000 1018 3.478 –75.0228

Emitted wavelength 1.23 µm
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Next important difference, which is more pronounced for higher order modes, is
connected with different values of intensity maxima within the active region. For
a uniform region, the scalar solution is given by the sum of exponential functions, as

Fig. 2. Intensity profiles of the three lowest order modes calculated with the scalar (solid lines) and
the vectorial (dashed lines) approaches for the highly strained 1.3-µm InGaAs/GaAs double
quantum-well edge-emitting (Fabry–Perot) diode laser [8], with the stripe active region defined by
a 12 µm aperture width. The left column of the figures depicts profiles of the mode intensities along
the x-direction within the active region, whereas the right one presents the analogous profiles
along the y-axis on the symmetry plane. The figures correspond to: HE00 and TE00 modes (a), EH00 and
TE01 modes (b), HE01 and TE02 modes (c). Profiles of the refractive index along the x- (within oxide
layer) and the y-axis are additionally shown.
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if the region were infinite. Hence, the intensity oscillations of scalar modes exhibit
a constant amplitude (cf. Fig. 2c). Besides the differences in the intensity distributions
of the modes in the y-direction express the essential difference between the models.
The scalar approach separates the solution for x- and y-directions. Hence, the mode
intensity profile in the y-direction remains completely independent of the x-directional
solution. The non-separated solution of the vectorial approach predicts the shift of
the higher-order modes towards the p-contact (Fig. 2c), since those modes are weaker
confined by the oxidation, and finally the high refractive index of the broad p-contact
layer may even attract the modes, as considered below.

Figure 3 presents the difference in the mode intensity profile along the x-direction
between the results of the scalar and the vectorial optical models for a narrow stripe
width of 4 µm. Compared to Fig. 2a, the narrowing of the oxide window causes
a more pronounced penetration by the mode of the lateral passive regions placed out
of the central active region. This finally leads to the mode leakage. Both approaches
predict such a behaviour, however, vectorial model indicates the diffraction process
as the main reason for the leakage. The vectorial mode penetrating the regions out of
the active region starts to oscillate (Fig. 3), which reduces the guiding process
enhanced by the oxidations. The scalar model predicts considerably less pronounced
penetration of the lateral passive region out of the active region by the mode without
appearance of any oscillations caused by the diffraction.

Figure 4 presents an interesting process of weak guidance. Two structures with
the oxidation layer of different thicknesses are considered. Thick oxidation ensures
a stable waveguide process, whereas thin one allows the wave leaking. This time
the leakage occurs in the y-direction. As one can see, too thin an oxidation layer does

Fig. 3. Profiles of the fundamental mode intensity along x-axis calculated with the aid of the scalar
(solid lines) and the vectorial (dashed lines) approaches for the diode-laser structure [8] defined by
a 4 µm aperture width. Profile of the refractive index along x-axis within the oxide layer is additionally
shown.
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not protect a mode optical field from its migration towards the high refractive p-contact
layer. For a narrower oxidation layer, the vectorial model reveals an essential mode
leakage and its oscillations within the p-contact layer whereas the scalar one penetrates
this layer without any oscillations. This means that too narrow an oxidation layer
may lead to a considerable increase in optical losses, which is followed by an increase
in a lasing threshold.

5. Conclusions
Two approaches intended for simulation of the electromagnetic field within the cavity
of edge emitting (Fabry–Perot) diode lasers are presented. The less exact scalar
approach owes its extremely short calculation time to the plane wave assumption.
On the other hand, the vectorial models, of which the method of lines is currently the
most effective one, need usually 102–103 times longer calculation time. The comparison
of the mode profiles determined using both approaches reveals a better confinement
of vectorial modes within the active region. This is a consequence of the assumed
plane wave solution used in simplified scalar approaches which has been taken from
the infinite domain and set to the finite region. Nevertheless, profiles of the modes
determined using both approaches are usually surprisingly close, except for the weaker
guidance occurring for higher-order modes, narrower aperture widths and/or thinner
oxidation layers. The above restrictions define validity limits of simple scalar optical
approaches in modelling optical fields within cavities of standard edge-emitting diode
lasers.
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Fig. 4. Profiles of the fundamental mode intensity along y-axis calculated with the aid of the scalar
(solid lines) and the vectorial (dashed lines) approaches for the structure [8] defined by a 12 µm
aperture width in the oxide layer of 0.05 µm (a) and 0.3 µm (b) thickness. Profile of the refractive index
along the y-axis is additionally shown.
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