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Abstract

We consider a quadratic functional regression model in which a scalar response depends on a
functional predictor; the common functional linear model is a special case. We wish to test
the significance of the nonlinear term in the model. We develop a testing method which is
based on projecting the observations onto a suitably chosen finite dimensional space using
functional principal component analysis. The asymptotic behavior of our testing procedure
is established. A simulation study shows that the testing procedure has good size and power
with finite sample sizes. We then apply our test to a data set provided by Tecator, which
consists of near-infrared absorbance spectra and fat content of meat.

Keywords: Absorption spectra; Asymptotics; Functional data analysis; Polynomial regression;
Prediction; Principal component analysis.

1 Introduction and results

In a predictive model, it may be more natural and appropriate for certain quantities to be
represented as trajectories rather than a single number (Kirkpatrick and Heckman, 1989).
For example, a young animal’s size may be considered as a function of time, giving a growth
trajectory. A model to predict a certain response from growth trajectories is useful to animal
breeders because they may be able to produce more valuable animals by changing their growth
patterns (Fitzhugh, 1976). Müller and Zhang (2005) used egg-laying trajectories from Mediter-
ranean fruit flies to predict a female fly’s remaining lifetime. Frank and Friedman (1993) and
Wold (1993) provide an early discussion on the applications of principal components to ana-
lyze curves in chemistry. Yao and Müller (2010) and Borggaard and Thodberg (1992) used
absorbance trajectories to predict the fat content of meat samples. The absorbance at any
particular wavelength is a measurement related to the proportion of light that passes through
a meat sample. A representative sample of 15 of the 240 absorbance trajectories are pictured
in Figure 1.

In functional regression, special attention has been given to functional linear models (Car-
dot et al., 2003; Shen and Faraway, 2004; Cai and Hall, 2006; Hall and Horowitz, 2007).
However, it is pointed out in Yao and Müller (2010) that this model imposes a constraint on
the regression relationship that may not be appropriate in some scenarios. Yao and Müller
(2010) generalized this to a functional polynomial model, which has greater flexibility. In
functional polynomial regression, as in standard polynomial regression, one must balance the
costs and benefits of using more parameters in the model. In this paper, we will develop a
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Figure 1: Absorbance trajectories from 15 samples of finely chopped pure meat.

test to determine if a quadratic term is justified in the model or if a functional linear model
adequately describes the regression relationship.

The functional quadratic model in which a scalar response, Yn, is paired with a functional
predictor, Xn(t), is defined as

Yn = µ+

∫ 1

0

k(t)Xc
n(t) dt+

∫ 1

0

∫ 1

0

h(s, t)Xc
n(s)Xc

n(t) dt ds+ εn, (1.1)

where Xc
n(t) = Xn(t) − E (Xn(t)) is the centered predictor process. If h(s, t) = 0, then

µ = E(Yn) and (1.1) reduces to the functional linear model

Yn = µ+

∫ 1

0

k(t)Xc
n(t) dt+ εn. (1.2)

Cardot and Sarda (2011) and Mas and Pumo (2011) point out in their survey papers that
since we can choose a function in (1.2), the functional linear model can be used in a large
variety of applications. The functional linear model provides a very simple relation between
Xn(t) and Yn, so it is important to check if the more involved quadratic model (1.1) provides
a real improvement. In other words, one should test whether the quadratic term is really
needed. To test the significance of the quadratic term in (1.1), we test the null hypothesis,

H0 : h(s, t) = 0, (1.3)

against the alternative
HA : h(s, t) 6= 0.
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To reduce the dimensionality and avoid overfitting in our functional regression model, we will
project the predictor process onto a suitably chosen finite dimensional space. The space is
spanned by the eigenfunctions of C(t, s) = E(Xn(t)− µX(t))(Xn(s)− µX(s)), the covariance
function of the predictor process, where µX(t) = EXn(t). We will denote the eigenfunctions
and associated eigenvalues by {(vi(t), λi), 1 ≤ i ≤ ∞}. We can and will assume that λi is
the ith largest eigenvalue and that the eigenfunctions are orthonormal. It is clear that we can
assume that h is symmetric, and we also impose the condition that the kernels are in L2:

h(s, t) = h(t, s) and

∫ 1

0

∫ 1

0

h2(s, t)dtds <∞, (1.4)

∫ 1

0

k2(t)dt <∞. (1.5)

Thus we have the expansions

h(s, t) =
∞∑
i=1

∞∑
j=1

ai,jvj(s)vi(t)

=
∞∑
i=1

ai,ivi(s)vi(t) +
∞∑
i=1

∞∑
j=i+1

ai,j (vj(s)vi(t) + vi(s)vj(t))

(1.6)

and

k(t) =
∞∑
i=1

bivi(t). (1.7)

By projecting onto the space spanned by {v1, . . . , vp} and using (1.6) and (1.7), we can
write the model (1.1) as

Yn = µ+

p∑
i=1

bi〈Xc
n, vi〉+

p∑
i=1

p∑
j=i

(2− 1{i = j})ai,j〈Xc
n, vi〉〈Xc

n, vj〉+ ε∗n, (1.8)

where

ε∗n = εn+
∞∑

i=p+1

bi〈Xc
n, vi〉+

∞∑
i=p+1

∞∑
j=i

(2−1{i = j})ai,j〈Xc
n, vi〉〈Xc

n, vj〉+
p∑

i=1

∞∑
j=p+1

2ai,j〈Xc
n, vi〉〈Xc

n, vj〉.

We note that (1.8) is written as a standard linear model, but the error term, ε∗n, and the
design points, {〈Xc

n, vi〉, 1 ≤ i ≤ p}, are dependent.
Unfortunately, we cannot use (1.8) directly for statistical inference since vi(t) and µX(t)

are unknown. We estimate µX(t) and C(t, s) with the corresponding empiricals

X̄(t) =
1

N

N∑
n=1

Xn(t)

and

Ĉ(t, s) =
1

N

N∑
n=1

(
Xn(t)− X̄(t)

) (
Xn(s)− X̄(s)

)
.

3



The eigenvalues and the corresponding eigenfunctions of Ĉ(t, s) are denoted by λ̂1 ≥ λ̂2 ≥ . . .
and v̂1, v̂2, . . . . Eigenfunctions corresponding to unique eigenvalues are uniquely determined
up to signs. For this reason, we cannot expect more than to have ĉiv̂i(t) be close to vi(t),
where the ĉi’s are random signs. We replace equation (1.8) with

Yn = µ+

p∑
i=1

bi〈Xn−X̄, ĉiv̂i〉+
p∑

i=1

p∑
j=i

(2−1{i = j})ai,j〈Xn−X̄, ĉiv̂i〉〈Xn−X̄, ĉj v̂j〉+ε∗∗n , (1.9)

where

ε∗∗n =ε∗n +

p∑
i=1

bi〈Xc
n, vi − ĉiv̂i〉+

p∑
i=1

bi〈X̄ − µX , ĉiv̂i〉

−
p∑

i=1

p∑
j=i

(2− 1{i = j})ai,j
(
〈Xn − X̄, ĉiv̂i〉〈Xn − X̄, ĉj v̂j〉 − 〈Xc

n, vi〉〈Xc
n, vj〉

)
.

We can write (1.9) in the concise form

Y = Ẑ

Ã

B̃
µ

+ ε∗∗, (1.10)

where

Y =
(
Y1, Y2, . . . , YN

)T
, Ã = vech

(
{ĉiĉjai,j (2− 1{i = j}) , 1 ≤ i ≤ j ≤ p}T

)
,

B̃ =
(
ĉ1b1, ĉ2b2, . . . , ĉpbp

)T
, ε∗∗ =

(
ε∗∗1 , ε

∗∗
2 , . . . , ε

∗∗
N

)T
,

and

Ẑ =


D̂T

1 F̂T
1 1

D̂T
2 F̂T

2 1
...

...
...

D̂T
N F̂T

N 1


with

D̂n = vech
(
{〈v̂i, Xn − X̄〉〈v̂j, Xn − X̄〉, 1 ≤ i ≤ j ≤ p}T

)
,

F̂n =
(
〈Xn − X̄, v̂1〉, 〈Xn − X̄, v̂2〉, . . . , 〈Xn − X̄, v̂p〉

)T
.

The half-vectorization, vech(·), stacks the columns of the lower triangular portion of the
matrix under each other. Although we write our model in the form of a general linear model,
it is important to note that it is not a classical linear model. First, ε∗∗ is correlated with Ẑ
because ε∗∗ contains additional error terms which come from projecting onto a p-dimensional
space. Another important difference between (1.10) and a classical linear model is that the
parameters to be estimated, Ã and B̃, are random; they depend on the random signs, ĉi. We
estimate Ã, B̃, and µ using the least squares estimator:Â

B̂
µ̂

 =
(
ẐT Ẑ

)−1
ẐTY. (1.11)
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To represent elements of Â and B̂, we will use the notation that Â = vech({âi,j(2 − 1{i =

j}), 1 ≤ i ≤ j ≤ p}T ) and B̂ =
(
b̂1, b̂2, . . . , b̂p

)T
.

We expect, under H0, that Â will be close to zero since Ã is zero. If H0 is not correct, we
expect the magnitude of Â to be relatively large. This suggests that a testing procedure could
be based on Â. Due to the random signs coming from the estimation of the eigenfunctions, Â
will not be asymptotically normal. However, if the random signs are “taken out,” asymptotic
normality can be established. Hence our test statistic will be a quadratic form of Â with some
random weight matrices. Let

Ĝ =
1

N

N∑
n=1

D̂nD̂
T
n ,

M̂ =
1

N

N∑
n=1

D̂n,

and

τ̂ 2 =
1

N

N∑
n=1

ε̂2n,

where

ε̂n = Yn − µ̂−
p∑

i=1

b̂i〈Xn − X̄, v̂i〉 −
p∑

i=1

p∑
j=i

(2− 1{i = j})âi,j〈Xn − X̄, v̂i〉〈Xn − X̄, v̂j〉

are the residuals under H0. We reject the null hypothesis if

UN =
N

τ̂ 2
ÂT (Ĝ− M̂M̂T )Â

is large. The main result of this paper is the asymptotic distribution of UN under the null
hypothesis. First, we discuss the assumptions needed to establish asymptotics for UN :

Assumption 1.1. {Xn(t), n ≥ 1} is a sequence of independent, identically distributed Gaus-
sian processes.

Assumption 1.2.

E

(∫ 1

0

X2
n(t) dt

)4

<∞.

Assumption 1.3. {εn} is a sequence of independent, identically distributed random variables
satisfying Eεn = 0 and Eε4n <∞,

and

Assumption 1.4. the sequences {εn} and {Xn(t)} are independent.

The last condition is standard in functional data analysis. It implies that the eigenfunctions
v1, v2, . . . , vp are unique up to a sign.
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Assumption 1.5.
λ1 > λ2 > · · · > λp+1.

Theorem 1.1. If H0, (1.5) and Assumptions 1.1–1.5 are satisfied, then

UN
D−→ χ2(r),

where r = p(p+ 1)/2 is the dimension of the vector Â.

The proof of Theorem 1.1 is given in Section 4.

Remark 1.1. By the Karhunen-Loève expansion, every centered, square integrable process,
Xc

n(t), can be written as

Xc
n(t) =

∞∑
`=1

ξn,`ϕ`(t),

where ϕ` are orthonormal functions. Assumption 1.1 can be replaced with the requirement that
ξn,1, ξn,2, . . ., ξn,p are independent with Eξ3n,` = 0 and Eξn,` = 0 for all 1 ≤ ` ≤ p.

Our last result provides a simple condition for the consistency of the test based on UN .
Let A = vech({ai,j(2 − 1{i = j}), 1 ≤ i ≤ j ≤ p}T ), i.e. the first r = p(p + 1)/2 coefficients
in the expansion of h in (1.6).

Theorem 1.2. If (1.4), (1.5), Assumptions 1.1–1.5 are satisfied and A 6= 0, then we have
that

UN
P−→∞.

The condition A 6= 0 means that h is not the 0 function in the space spanned by the
functions vi(t)vj(s), 1 ≤ i, j ≤ p.

2 A simulation study

In this section, we investigate the empirical size and power of the testing procedure for finite
sample sizes. Seeking to obtain a test of size α = .01, .05, or .10, a rejection region was chosen
according to the limiting distribution of the test statistic. Since the limiting distribution is
χ2(r), the rejection region is (∆,∞), where P (χ2(r) > ∆) = α. Simulated data was then used
to compute the outcome of the test statistic. Iterating this procedure 5,000 times, we kept
track of the proportion of times that the outcome fell in the predetermined rejection region.
When simulations are done under H0, this gives us the empirical size of the test, which we
expect to be close to the nominal size, α, for large sample sizes. When simulations are done
under the alternative, HA, the proportion gives us the empirical power of the test.

In our first simulation study, the εn’s were generated according to the distribution of
independent standard normals. We generated the Xn(t)’s according to the distribution of
independent standard Brownian motions. Then, using k(t) = 1 and h(s, t) = c, we obtained
Yn according to (1.1). Thus the power of the test is a function of the parameter c. In particular,
when c = 0, the null hypothesis is true. The resulting empirical size and power are given in
Table 1.
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The distribution of our test statistic has been shown to converge to a χ2(r). Thus we
expect the empirical and nominal size to be close for samples of size N = 200 and even closer
when N = 500, as observed in Table 1. Since our testing procedure depends on the choice of
how many principal components to keep, results are given in Table 1 for p = 1, 2, and 3. One
possible method of selecting p is to follow the advice of Ramsay and Silverman (2005) and
choose p so that approximately 85% of the variance within a sample is described by the first
p principal components.

Although Theorem 1.1 is proven under the assumption that Xn(t) is a Gaussian process,
the result of Theorem 1.1 holds under relaxed conditions as discussed in Remark 1.1. We will
now investigate the empirical size and power of our test when Xn(t) is not a Gaussian pro-
cess. We generate the εn’s according to a uniform distribution on (−0.5, 0.5). The predictors,
Xn(t), are generated according to Xn(t) = (T1,n + T2,nt+ T3,n(2t2 − 1) + T4,n(4t3 − 3t)) /4,
where {Ti,n, 1 ≤ i ≤ 4, 1 ≤ n} are iid random variables having a t-distribution with 5 degrees
of freedom. The polynomials in the definition of Xn(t) are the orthogonal Chebyshev polyno-
mials. The resulting empirical size and power are given in Table 2. We see from Table 2 that
our testing procedure is robust against non-Gaussian observations. Comparing Tables 1 and
2, we see that the value of the test statistics tends to be larger if the Xn’s are not normally
distributed for small N . The overrejection fades as N gets larger so in case of non-Gaussian
Xn’s, larger sample sizes are needed. This also explains the somewhat better power of the
procedure in the case of non-Gaussian errors.

3 Application to spectral data

In this section we apply our test to the data set collected by Tecator and available at
http://lib.stat.cmu.edu/datasets/tecator. Tecator used 240 samples of finely chopped pure
meat with different fat contents. For each sample of meat, a 100 channel spectrum of ab-
sorbances was recorded using a Tecator Infratec food and feed analyzer. These absorbances
can be thought of as a discrete approximation to the continuous record, Xn(t). Also, for each
sample of meat, the fat content, Yn was measured by analytic chemistry.

The absorbance curve measured from the nth meat sample is given by Xn(t) = log10 (I0/I),
where t is the wavelength of the light, I0 is the intensity of the light before passing through the
meat sample, and I is the intensity of the light after it passes through the meat sample. The
Tecator Infratec food and feed analyzer measured absorbance at 100 different wavelengths
between 850 and 1050 nanometers. This gives the values of Xn(t) on a discrete grid from
which we can use cubic splines to interpolate the values anywhere within the interval. A
representative sample of 15 of the 240 absorbance trajectories are pictured in Figure 1.

Yao and Müller (2010) proposed using a functional quadratic model to predict the fat
content, Yn, of a meat sample based on its absorbance spectrum, Xn(t). We are interested in
determining whether the quadratic term in (1.1) is needed by testing its significance for this
data set. From the data, we calculate U240. The p-value is then P (χ2(r) > U240). The test
statistic and hence the p-value are influenced by the number of principal components that we
choose to keep. If we select p according to the advice of Ramsay and Silverman (2005), we will
keep only p = 1 principal component because this explains more than 85% of the variation
between absorbance curves in the sample. Table 3 gives p-values obtained using p = 1, 2,
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and 3 principal components, which strongly supports that the quadratic regression provides
a better model for the Tecator data.

Table 1: Empirical power of test (in %) based on 5,000 simulations using iid Brownian motions
for Xn(t) and iid standard normals for εn.

c
α = .01

N = 200 N = 500
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0.0 1.02 1.37 1.95 1.10 1.30 1.15
0.2 10.81 6.87 6.52 30.35 20.35 12.85
0.4 49.51 37.24 29.76 91.90 84.25 74.35
0.6 86.68 77.74 70.19 100.00 99.70 98.75
0.8 98.50 96.05 92.98 100.00 100.00 100.00
1.0 99.94 99.57 99.05 100.00 100.00 100.00

c
α = .05

N = 200 N = 500
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0.0 5.15 6.00 7.44 5.60 5.75 6.05
0.2 25.90 19.17 18.02 53.05 40.00 31.35
0.4 72.10 60.31 50.38 97.90 93.70 88.55
0.6 95.21 90.43 85.77 100.00 99.90 99.60
0.8 99.60 98.90 97.60 100.00 100.00 100.00
1.0 99.99 99.87 99.84 100.00 100.00 100.00

c
α = .10

N = 200 N = 500
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0.0 10.27 11.18 13.35 10.60 11.05 11.55
0.2 36.60 29.50 27.03 65.00 52.45 43.75
0.4 80.89 71.08 62.27 99.30 96.60 93.10
0.6 97.60 94.77 90.91 100.00 99.95 99.75
0.8 99.85 99.47 98.57 100.00 100.00 100.00
1.0 99.99 99.95 99.91 100.00 100.00 100.00
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Table 2: Empirical power of test (in %) based on 5,000 simulations using non-Gaussian Xn(t)
and non-normal εn.

c
α = .01

N = 200 N = 500
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0.0 2.40 1.20 1.85 1.75 1.45 1.35
0.2 57.70 46.75 37.50 93.75 90.30 82.55
0.4 96.90 95.55 91.20 100.00 100.00 100.00
0.6 99.90 100.00 99.70 100.00 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00 100.00
1.0 100.00 100.00 100.00 100.00 100.00 100.00

c
α = .05

N = 200 N = 500
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0.0 8.00 5.75 8.15 7.20 5.45 6.10
0.2 74.50 64.55 56.45 98.55 96.30 92.00
0.4 99.40 98.35 96.55 100.00 100.00 100.00
0.6 99.95 100.00 99.85 100.00 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00 100.00
1.0 100.00 100.00 100.00 100.00 100.00 100.00

c
α = .10

N = 200 N = 500
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0.0 13.60 12.15 14.60 13.60 10.35 11.50
0.2 82.30 74.25 65.55 98.90 97.70 95.25
0.4 99.65 99.10 97.95 100.00 100.00 100.00
0.6 99.95 100.00 99.90 100.00 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00 100.00
1.0 100.00 100.00 100.00 100.00 100.00 100.00
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Table 3: p-values (in %) obtained by applying our testing procedure to the Tecator data set
with p = 1, 2, and 3 principal components.

p 1 2 3
p-value 1.25 13.15 0.00

4 Proof of Theorem 1.1

Proof of Theorem 1.1. We have from (1.10) and (1.11) thatÂ

B̂
µ̂

 =
(
ẐT Ẑ

)−1
ẐT

Ẑ

Ã

B̃
µ

+ ε∗∗


=

Ã

B̃
µ

+
(
ẐT Ẑ

)−1
ẐTε∗∗.

(4.1)

We also note that, under the null hypothesis, ai,j = 0 for all i and j and therefore ε∗n and ε∗∗n
of (1.8) and (1.9) reduce to

ε∗n = εn +
∞∑

i=p+1

bi〈Xc
n, vi〉

and

ε∗∗n = ε∗n +

p∑
i=1

bi〈Xc
n, vi − ĉiv̂i〉+

p∑
i=1

bi〈X̄ − µX , ĉiv̂i〉.

To obtain the limiting distribution of
√
NÂ, we need to consider the vector

√
N
(
ẐT Ẑ

)−1
ẐTε∗∗.

We will show in Lemmas 6.2–6.7 that
(

ẐT Ẑ

N

)
−


ζGζ 0r×p M

0p×r Λ 0p×1

MT 01×p 1


 = oP (1) , (4.2)

where ζ is an unobservable matrix of random signs, Λ = diag(λ1, λ2, . . . , λp), M = E (Dn),
and G = E

(
DnD

T
n

)
, where

Dn = vech
(
{〈vi, Xc

n〉〈vj, Xc
n〉, 1 ≤ i ≤ j ≤ p}T

)
.

We see from (4.2) that the vector
√
N
(
ẐT Ẑ

)−1
ẐTε∗∗ has the same limiting distribution as

1√
N

N∑
n=1

ε∗∗n


ζ
(
G−MMT

)−1
ζ 0r×p −ζ

(
G−MMT

)−1
ζM

0p×r Λ−1 0p×1

−MT
(
G−MMT

)−1
01×p 1 + MT

(
G−MMT

)−1
M


D̂n

F̂n

1

 . (4.3)
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Since we are only interested in
√
NÂ we need only consider the first r = p(p+ 1)/2 elements

of the vector in (4.3). In Lemma 6.8 we show that these are given by

1√
N

N∑
n=1

ε∗∗n

(
ζ
(
G−MMT

)−1
ζ 0r×p −ζ

(
G−MMT

)−1
ζM

)D̂n

F̂n

1


=

1√
N

N∑
n=1

ε∗∗n

(
ζ
(
G−MMT

)−1
ζD̂n − ζ

(
G−MMT

)−1
ζM

)
=

1√
N

N∑
n=1

ε∗∗n ζ
(
G−MMT

)−1
ζ
(
D̂n −M

)
.

Then, in Lemma 6.9 we prove that

1√
N

N∑
n=1

ε∗∗n
(
G−MMT

)−1
ζ
(
D̂n −M

)
D−→ N

(
0, τ 2

(
G−MMT

)−1)
,

where τ 2 = var (ε∗1). Finally, in Lemmas 6.10 and 6.11, we show that τ̂ 2 − τ 2 = oP (1). As

a consequence of (4.2), we see that
(
Ĝ− M̂M̂T

)
− ζ

(
G−MMT

)
ζ = oP (1). Since ζ is a

diagonal matrix of signs, ζζ = I, completing the proof of Theorem 1.1.

5 Proof of Theorem 1.2

We provide only an outline of the proof since it follows the arguments used in the proof of
Theorem 1.1. However, the arguments are simple since instead of obtaining an asymptotic
limit distribution we only establish the weak law

ÂT (Ĝ− M̂M̂T )Â
P−→ AT (G−MMT )A, (5.1)

where A = vech
(
{ai,j (2− 1{i = j}) , 1 ≤ i ≤ j ≤ p}T

)
is like the vector Ã except without

the random signs.
First we note that according to Lemma 6.1, the estimation of v1, . . . , vp by v̂1, . . . , v̂p causes

only the introduction of the random signs ĉ1, . . . , ĉp. As in the proof of Theorem 1.1 one can
verify that

Â− ζA P−→ 0.

Lemmas 6.2 and 6.6 hold under H0 as well as under HA. This gives

Ĝ− ζGζ = oP (1)

and
M̂M̂T − ζMMTζ = oP (1),

completing the proof of (5.1).
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6 Technical lemmas

Throughout the proofs in this section we will use ‖ · ‖1 to be the 1-norm and ‖ · ‖2 to be
2-norm on the unit interval, square, cube, or hypercube. The null hypothesis, H0, is assumed
throughout this section. We will make frequent use of the following lemma, which is established
in Dauxois et al. (1982) and Bosq (2000).

Lemma 6.1. If Assumptions 1.1, 1.2, and 1.5 hold, then

‖ĉiv̂i(t)− vi(t)‖ = OP

(
N−1/2

)
for each 1 ≤ i ≤ p.

Lemma 6.2. If Assumptions 1.1, 1.2, and 1.5 hold, then there is a non-random matrix G
such that (

Ĝ− ζGζ
)

= oP (1) ,

where Ĝ = N−1
∑N

n=1 D̂nD̂
T
n and ζ = diag

(
vech({ĉiĉj, 1 ≤ i ≤ j ≤ p}T )

)
.

Proof. By the Karhunen-Loéve expansion we have

Xc
n(t) =

∞∑
`=1

λ
1/2
` ξ

(n)
` v`(t). (6.1)

Therefore an element of DnD
T
n is of the form

√
λiλjλkλ`ξ

(n)
i ξ

(n)
j ξ

(n)
k ξ

(n)
` . Hence using the

strong law of large numbers we conclude

1

N

N∑
n=1

DnD
T
n

a.s.−→ G,

where G = E
(
DnD

T
n

)
. Thus it suffices to show that

1

N

N∑
n=1

(
ζD̂nD̂

T
nζ −DnD

T
n

)
= oP (1) . (6.2)

Expressing (6.2) elementwise, we obtain

1

N

N∑
n=1

(
〈Xn − X̄, ĉiv̂i〉〈Xn − X̄, ĉj v̂j〉〈Xn − X̄, ĉkv̂k〉〈Xn − X̄, ĉ`v̂`〉

− 〈Xc
n, vi〉〈Xc

n, vj〉〈Xc
n, vk〉〈Xc

n, v`〉
)

= oP (1) .

(6.3)

In order to prove (6.3), it is enough to show that

1

N

N∑
n=1

(
〈Xc

n, ĉiv̂i〉〈Xc
n, ĉj v̂j〉〈Xc

n, ĉkv̂k〉〈Xc
n, ĉ`v̂`〉

− 〈Xc
n, vi〉〈Xc

n, vj〉〈Xc
n, vk〉〈Xc

n, v`〉
)

= oP (1)

(6.4)
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and
1

N

N∑
n=1

(
〈Xn − X̄, ĉiv̂i〉〈Xn − X̄, ĉj v̂j〉〈Xn − X̄, ĉkv̂k〉〈Xn − X̄, ĉ`v̂`〉

− 〈Xc
n, ĉiv̂i〉〈Xc

n, ĉj v̂j〉〈Xc
n, ĉkv̂k〉〈Xc

n, ĉ`v̂`〉
)

= oP (1) .

(6.5)

We only establish (6.4), since the proof of (6.5) is essentially the same. Using Hölder’s
inequality, we obtain∣∣∣∣∣

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
1

N

N∑
n=1

Xc
n(s)Xc

n(t)Xc
n(u)Xc

n(w)

)

× (ĉiv̂i(s)ĉj v̂j(t)ĉkv̂k(u)ĉ`v̂`(w)− vi(s)vj(t)vk(u)v`(w)) ds dt du dw

∣∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Xc
n(s)Xc

n(t)Xc
n(u)Xc

n(w)

∣∣∣∣∣
∣∣∣∣∣
2

× ||ĉiv̂i(s)ĉj v̂j(t)ĉkv̂k(u)ĉ`v̂`(w)− vi(s)vj(t)vk(u)v`(w)||2 .

By the law of large numbers in Hilbert spaces (cf. (Bosq, 2000)), we have that∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Xc
n(s)Xc

n(t)Xc
n(u)Xc

n(w)

∣∣∣∣∣
∣∣∣∣∣
2

= OP (1) ,

so it remains only to show that

||ĉiv̂i(s)ĉj v̂j(t)ĉkv̂k(u)ĉ`v̂`(w)− vi(s)vj(t)vk(u)v`(w)||2 = oP (1) .

Using Minkowski’s inequality, Fubini’s Theorem, the fact that ‖v̂i‖2 = ‖vi‖2 = 1, and then
Lemma 6.1, we obtain

||ĉiv̂i(s)ĉj v̂j(t)ĉkv̂k(u)ĉ`v̂`(w)− vi(s)vj(t)vk(u)v`(w)||2
≤ ||(ĉiv̂i(s)− vi(s)) ĉj v̂j(t)ĉkv̂k(u)ĉ`v̂`(w)||2

+ ||vi(s)ĉj v̂j(t)ĉkv̂k(u) (ĉ`v̂`(w)− v`(w))||2
+ ||vi(s)ĉj v̂j(t) (ĉkv̂k(u)− vk(u)) v`(w)||2
+ ||vi(s) (ĉj v̂j(t)− vj(t)) vk(u)v`(w)||2

= ||ĉiv̂i − vi||2 + ||ĉj v̂j − vj||2 + ||ĉkv̂k − vk||2 + ||ĉ`v̂` − v`||2
= OP

(
N−1/2

)
.

Hence (6.4) is proven which also completes the proof of Lemma 6.2.

Lemma 6.3. If Assumptions 1.1, 1.2, and 1.5 hold, then

1

N

N∑
n=1

F̂nD̂
T
n = oP (1) .
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Proof. We see from (6.1) that an element of FnD
T
n can be written in the form

√
λiλjλkξ

(n)
i ξ

(n)
j ξ

(n)
k ,

where Fn =
(
〈Xc

n, v1〉, 〈Xc
n, v2〉, . . . , 〈Xc

n, vp〉
)T

. We observe that Eξ
(n)
i ξ

(n)
j ξ

(n)
k = 0, so us-

ing the central limit theorem, we have

1

N

N∑
n=1

FnD
T
n = OP

(
N−1/2

)
.

Repeating the arguments in the proof (6.3), one can verify that

1

N

N∑
n=1

(
〈Xn − X̄, ĉiv̂i〉〈Xn − X̄, ĉj v̂j〉〈Xn − X̄, ĉkv̂k〉 (6.6)

− 〈Xc
n, vi〉〈Xc

n, vj〉〈Xc
n, vk〉

)
= oP (1) .

Since random signs do not affect convergence to zero, the proof is complete.

Lemma 6.4. If Assumptions 1.1, 1.2, and 1.5 hold, then

1

N

N∑
n=1

F̂nF̂
T
n −Λ = oP (1) ,

where Λ = diag(λ1, λ2, . . . , λp).

Proof. By (6.1), an element of FnF
T
n is of the form

√
λiλjξ

(n)
i ξ

(n)
j . Since Eξ

(n)
i ξ

(n)
j = 1{i = j},

according to the law of large numbers we have

1

N

N∑
n=1

FnF
T
n −Λ = oP (1) .

Thus it suffices to demonstrate that

1

N

N∑
n=1

(
〈Xn − X̄, v̂i〉〈Xn − X̄, v̂j〉 − 〈Xc

n, vi〉〈Xc
n, vj〉

)
= oP (1) . (6.7)

Since random signs do not affect convergence to zero, multiplying v̂i by ĉi and v̂j by ĉj will
not affect convergence when i 6= j. If i = j, then ĉiĉj = ĉ2i = 1. Therefore, it suffices to show
that

1

N

N∑
n=1

(
〈Xn − X̄, ĉiv̂i〉〈Xn − X̄, ĉj v̂j〉 − 〈Xc

n, vi〉〈Xc
n, vj〉

)
= oP (1) . (6.8)

One can show (6.8) in exactly the same way we established (6.3) in the proof of Lemma 6.2.
This completes the proof.

Lemma 6.5. If Assumptions 1.1, 1.2, and 1.5 hold, then

1

N

N∑
n=1

F̂n = oP (1) .

14



Proof. Using (6.1), an element of Fn has the form
√
λiξ

(n)
i , so the law of large numbers

implies that

1

N

N∑
n=1

Fn = oP (1) .

The proof will be completed by establishing that

1

N

N∑
n=1

(
Fn − F̂n

)
= oP (1) . (6.9)

We express (6.9) componentwise and obtain

1

N

N∑
n=1

(
〈Xc

n, vi〉 − 〈Xn − X̄, v̂i〉
)

= oP (1) . (6.10)

Since random signs do not affect convergence to zero, it suffices to show that

1

N

N∑
n=1

(
〈Xc

n, vi〉 − 〈Xn − X̄, ĉiv̂i〉
)

= oP (1) . (6.11)

We will establish (6.11) in two steps. We will show that

1

N

N∑
n=1

(〈Xc
n, vi〉 − 〈Xc

n, ĉiv̂i〉) = oP (1) . (6.12)

Then, we will establish that

1

N

N∑
n=1

(
〈Xc

n, ĉiv̂i〉 − 〈Xn − X̄, ĉiv̂i〉
)

= oP (1) . (6.13)

Using the central limit theorem in Hilbert spaces with Lemma 6.1 we conclude∣∣∣∣∣ 1

N

N∑
n=1

(〈Xc
n, vi〉 − 〈Xc

n, ĉiv̂i〉)

∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Xc
n(t) (vi − ĉiv̂i)

∣∣∣∣∣
∣∣∣∣∣
1

≤

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Xc
n(t)

∣∣∣∣∣
∣∣∣∣∣
2

||vi − ĉiv̂i||2

= OP

(
N−1

)
,

and by the same arguments we have∣∣∣∣∣ 1

N

N∑
n=1

(
〈Xc

n, ĉiv̂i〉 − 〈Xn − X̄, ĉiv̂i〉
)∣∣∣∣∣ =

∣∣〈µX − X̄, ĉiv̂i〉
∣∣

≤
∣∣∣∣(µX(t)− X̄(t)

)
ĉiv̂i(t)

∣∣∣∣
1

≤
∣∣∣∣µX(t)− X̄(t)

∣∣∣∣
2

= oP (1) .
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Lemma 6.6. If Assumptions 1.1, 1.2, and 1.5 hold, then

M̂−M = oP (1) .

where M̂ = N−1
∑N

n=1 D̂n and M = E (Dn).

Proof. An arbitrary element of D̂n is of the form

1

N

N∑
n=1

〈Xn − X̄, v̂i〉〈Xn − X̄, v̂j〉.

Since this is exactly the same as the form of an arbitrary element of F̂nF̂
T
n , Lemma 6.6 follows

from the proof of Lemma 6.4. Note in particular that when i 6= j, the sum converges to zero
and is unaffected by signs, and when i = j, the signs cancel each other out. For this reason,
ζM = M, rendering it unnecessary to multiply M by ζ in the statement of the lemma.

Lemma 6.7. If Assumptions 1.1, 1.2, and 1.5 hold, then
(

ẐT Ẑ

N

)
−


ζGζ 0r×p M

0p×r Λ 0p×1

MT 01×p 1


 = oP (1) .

Proof. This follows immediately from Lemmas 6.2–6.6.

We will now use Lemma 6.7 to separate our estimate, Â, of Ã from the estimates of the
other parameters in (1.11).

Lemma 6.8. If Assumptions 1.1–1.5 hold, then

ζ
√
NÂ−N−1/2

N∑
n=1

ε∗∗n
(
G−MMT

)−1
ζ
(
D̂n −M

)
= oP (1) .

Proof. Let

C =


ζGζ 0r×p M

0p×r Λ 0p×1

MT 01×p 1

 .

Using the fact that ζM = M, one can verify via matrix multiplication that

C−1 =


ζ
(
G−MMT

)−1
ζ 0r×p −ζ

(
G−MMT

)−1
ζM

0p×r Λ−1 0p×1

−MT
(
G−MMT

)−1
01×p 1 + MT

(
G−MMT

)−1
M

 .
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Since N−1/2ẐTε∗∗ is bounded in probability, by (4.1) and Lemma 6.7 we have

√
N

 Â

B̂− B̃
µ̂− µ

−C−1N−1/2ẐTε∗∗ = oP (1) . (6.14)

We observe that C−1N−1/2ẐTε∗∗ can be expressed as

N−1/2
N∑

n=1

ε∗∗n


ζ
(
G−MMT

)−1
ζ 0r×p −ζ

(
G−MMT

)−1
ζM

0p×r Λ−1 0p×1

−MT
(
G−MMT

)−1
01×p 1 + MT

(
G−MMT

)−1
M


D̂n

F̂n

1

 . (6.15)

Notice that the first r = p(p+ 1)/2 elements of the vector in (6.15) are given by

N−1/2
N∑

n=1

ε∗∗n

(
ζ
(
G−MMT

)−1
ζ 0r×p −ζ

(
G−MMT

)−1
ζM

)D̂n

F̂n

1


= N−1/2

N∑
n=1

ε∗∗n

(
ζ
(
G−MMT

)−1
ζD̂n − ζ

(
G−MMT

)−1
ζM

)
= N−1/2

N∑
n=1

ε∗∗n ζ
(
G−MMT

)−1
ζ
(
D̂n −M

)
.

Therefore
√
NÂ−N−1/2

N∑
n=1

ε∗∗n ζ
(
G−MMT

)−1
ζ
(
D̂n −M

)
= oP (1) . (6.16)

The result is now obtained by multiplying (6.16) on the left by ζ.

Lemma 6.9. If Assumptions 1.1–1.5 hold, then

N−1/2
N∑

n=1

ε∗∗n
(
G−MMT

)−1
ζ
(
D̂n −M

)
D−→ N

(
0, τ 2

(
G−MMT

)−1)
,

where

τ 2 = σ2 +
∞∑

i=p+1

b2iλi

and σ2 = var εn.

Proof. We prove this lemma in three steps. First we establish that

N−1/2
N∑

n=1

ε∗∗n

((
ζD̂n −M

)
− (Dn −M)

)
= oP (1) . (6.17)
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In the second step we prove that

N−1/2
N∑

n=1

(Dn −M)

(
ε∗∗n − ε∗n −

p∑
i=1

bi〈X̄ − µX , ĉiv̂i〉

)
= oP (1) (6.18)

and

N−1/2
N∑

n=1

(Dn −M) 〈X̄ − µX , ĉiv̂i〉 = oP (1) . (6.19)

Combining (6.17), (6.18), and (6.19) we obtain immediately that

N−1/2
N∑

n=1

(
G−MMT

)−1 (
ε∗∗n

(
ζD̂n −M

)
− ε∗n (Dn −M)

)
= oP (1) .

Therefore, the lemma will be established by the third step:

N−1/2
N∑

n=1

(
G−MMT

)−1
ε∗n (Dn −M)

D−→ N
(

0, τ 2
(
G−MMT

)−1)
. (6.20)

We will now proceed to prove (6.17). The left side of (6.17) can be expressed elementwise
as

N−1/2
N∑

n=1

ε∗∗n
(
〈Xn − X̄, ĉiv̂i〉〈Xn − X̄, ĉj v̂j〉 − 〈Xc

n, vi〉〈Xc
n, vj〉

)
= oP (1) , (6.21)

so it is sufficient to show that

N−1/2
N∑

n=1

ε∗∗n (〈Xc
n, ĉiv̂i〉〈Xc

n, ĉj v̂j〉 − 〈Xc
n, vi〉〈Xc

n, vj〉) = OP

(
N−1/2

)
(6.22)

and

N−1/2
N∑

n=1

ε∗∗n
(
〈Xn − X̄, ĉiv̂i〉〈Xn − X̄, ĉj v̂j〉 − 〈Xc

n, ĉiv̂i〉〈Xc
n, ĉj v̂j〉

)
= oP (1) . (6.23)

The left side of (6.22) is

N−1/2
N∑

n=1

ε∗∗n 〈Xc
n, ĉiv̂i〉 (〈Xc

n, ĉj v̂j〉 − 〈Xc
n, vj〉) +N−1/2

N∑
n=1

ε∗∗n 〈Xc
n, vj〉 (〈Xc

n, ĉiv̂i〉 − 〈Xc
n, vi〉) .

It follows from Assumptions 1.1–1.4 that both sets of random functions {εnXc
n(t)Xc

n(s), 1 ≤
n ≤ N} and {Xc

n(u)Xc
n(t)Xc

n(s), 1 ≤ n ≤ N} are independent and identically distributed with
zero mean so by the central limit theorem in Hilbert spaces we have∣∣∣∣∣∣∣∣N−1/2 N∑

n=1

εnX
c
n(t)Xc

n(s)

∣∣∣∣∣∣∣∣
2

= OP (1) and

∣∣∣∣∣∣∣∣N−1/2 N∑
n=1

Xc
n(u)Xc

n(t)Xc
n(s)

∣∣∣∣∣∣∣∣
2

= OP (1) .

(6.24)
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Next we write that

N−1/2
N∑

n=1

ε∗∗n 〈Xc
n, ĉiv̂i〉 (〈Xc

n, ĉj v̂j〉 − 〈Xc
n, vj〉) = δ1 + δ2 + δ3 + δ4,

where, by (6.24), Lemma 6.1 and repeated applications of the Cauchy-Schwarz inequality, we
have

|δ1| =

∣∣∣∣∣N−1/2
N∑

n=1

εn〈Xc
n, ĉiv̂i〉 (〈Xc

n, ĉj v̂j〉 − 〈Xc
n, vj〉)

∣∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

εnX
c
n(t)Xc

n(s)ĉiv̂i(t) (ĉj v̂j(s)− vj(s))

∣∣∣∣∣
∣∣∣∣∣
1

≤

∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

εnX
c
n(t)Xc

n(s)

∣∣∣∣∣
∣∣∣∣∣
2

||ĉj v̂j(s)− vj(s)||2

= OP

(
N−1/2

)
,

|δ2| =

∣∣∣∣∣N−1/2
N∑

n=1

∞∑
k=p+1

bk〈Xc
n, vk〉〈Xc

n, ĉiv̂i〉 (〈Xc
n, ĉj v̂j〉 − 〈Xc

n, vj〉)

∣∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

Xc
n(u)Xc

n(t)Xc
n(s)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=p+1

bkvk(u)

∣∣∣∣∣
∣∣∣∣∣
2

||ĉj v̂j(s)− vj(s)||2

= OP

(
N−1/2

)
,

|δ3| =

∣∣∣∣∣N−1/2
N∑

n=1

p∑
k=1

bk〈Xc
n, vk − ĉkv̂k〉〈Xc

n, ĉiv̂i〉 (〈Xc
n, ĉj v̂j〉 − 〈Xc

n, vj〉)

∣∣∣∣∣
≤

p∑
k=1

|bk|

∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

Xc
n(t)Xc

n(s)Xc
n(w)

∣∣∣∣∣
∣∣∣∣∣
2

||vk(w)− ĉkv̂k(w)||2 ||ĉj v̂j(s)− vj(s)||2

= OP

(
N−1

)
,

and

|δ4| =

∣∣∣∣∣N−1/2
N∑

n=1

p∑
k=1

bk〈X̄ − µX , ĉkv̂k〉〈Xc
n, ĉiv̂i〉 (〈Xc

n, ĉj v̂j〉 − 〈Xc
n, vj〉)

∣∣∣∣∣
≤

∣∣∣∣∣
p∑

k=1

bk〈X̄ − µX , ĉkv̂k〉

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

Xc
n(t)Xc

n(s)

∣∣∣∣∣
∣∣∣∣∣
2

||ĉj v̂j(s)− vj(s)||2

= OP

(
N−1/2

)
.

Similarly,

N−1/2
N∑

n=1

ε∗∗n 〈Xc
n, vj〉 (〈Xc

n, ĉiv̂i〉 − 〈Xc
n, vi〉) = oP (1) ,

and therefore (6.22) is proven.
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We now establish (6.23). The left side of (6.23) is equal to

N−1/2
N∑

n=1

ε∗∗n 〈Xn − X̄, ĉiv̂i〉〈µX − X̄, ĉj v̂j〉+N−1/2
N∑

n=1

ε∗∗n 〈Xc
n, ĉj v̂j〉〈µX − X̄, ĉiv̂i〉.

We write that

N−1/2
N∑

n=1

ε∗∗n 〈Xn − X̄, ĉiv̂i〉〈µX − X̄, ĉj v̂j〉 = δ5 + δ6 + δ7 + δ8,

where, by the central limit theorem in Hilbert spaces, Lemma 6.1, and the Cauchy-Schwarz
inequality, we have

|δ5| =

∣∣∣∣∣N−1/2
N∑

n=1

εn〈Xn − X̄, ĉiv̂i〉〈µX − X̄, ĉj v̂j〉

∣∣∣∣∣
≤
∣∣〈µX − X̄, ĉj v̂j〉

∣∣ ∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

εn
(
Xn(s)− X̄(s)

)∣∣∣∣∣
∣∣∣∣∣
2

= OP

(
N−1/2

)
,

|δ6| =

∣∣∣∣∣N−1/2
N∑

n=1

∞∑
k=p+1

bk〈Xc
n, vk〉〈Xn − X̄, ĉiv̂i〉〈µX − X̄, ĉj v̂j〉

∣∣∣∣∣
≤
∣∣〈µX − X̄, ĉj v̂j〉

∣∣ ∣∣∣∣∣N−1/2
N∑

n=1

∞∑
k=p+1

bk〈Xc
n, vk〉〈Xn − X̄, ĉiv̂i〉

∣∣∣∣∣
=
∣∣〈µX − X̄, ĉj v̂j〉

∣∣ ∣∣∣∣∣N−1/2
N∑

n=1

∫ 1

0

∫ 1

0

Xc
n(t)

(
Xn(s)− X̄(s)

)
v̂i(s)

∞∑
k=p+1

bkvk(t) ds dt

∣∣∣∣∣
=
∣∣〈µX − X̄, ĉj v̂j〉

∣∣ ∣∣∣∣∣N−1/2
N∑

n=1

∫ 1

0

∫ 1

0

(
Xn(t)− X̄(t)

) (
Xn(s)− X̄(s)

)
v̂i(s)

∞∑
k=p+1

bkvk(t) ds dt

∣∣∣∣∣
= N1/2

∣∣〈µX − X̄, ĉj v̂j〉
∣∣ ∣∣∣∣∣
∫ 1

0

∫ 1

0

ĉ(t, s)v̂i(s)
∞∑

k=p+1

bkvk(t) ds dt

∣∣∣∣∣
= N1/2λ̂i

∣∣〈µX − X̄, ĉj v̂j〉
∣∣ ∣∣∣∣∣
∫ 1

0

v̂i(t)
∞∑

k=p+1

bkvk(t) dt

∣∣∣∣∣
= N1/2λ̂i

∣∣〈µX − X̄, ĉj v̂j〉
∣∣ ∣∣∣∣∣
∫ 1

0

∞∑
k=p+1

bkvk(t) (v̂i(t)− ĉivi(t)) dt

∣∣∣∣∣
≤ N1/2λ̂i

∣∣〈µX − X̄, ĉj v̂j〉
∣∣ ∣∣∣∣∣
∣∣∣∣∣
∞∑

k=p+1

bkvk(t)

∣∣∣∣∣
∣∣∣∣∣
2

||v̂i(t)− ĉivi(t)||2

= OP

(
N−1/2

)
,
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|δ7| =

∣∣∣∣∣N−1/2
N∑

n=1

p∑
k=1

bk〈Xc
n, vk − ĉkv̂k〉〈Xn − X̄, ĉiv̂i〉〈µX − X̄, ĉj v̂j〉

∣∣∣∣∣
≤
∣∣〈µX − X̄, ĉj v̂j〉

∣∣ ∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

p∑
k=1

bkX
c
n(t)

(
Xn(s)− X̄(s)

)∣∣∣∣∣
∣∣∣∣∣
2

||vk(t)− ĉkv̂k(t)||2

= OP

(
N−1/2

)
,

and

|δ8| =

∣∣∣∣∣N−1/2
N∑

n=1

p∑
k=1

bk〈X̄ − µX , ĉkv̂k〉〈Xn − X̄, ĉiv̂i〉〈µX − X̄, ĉj v̂j〉

∣∣∣∣∣
≤
∣∣〈µX − X̄, ĉj v̂j〉

∣∣ ∣∣∣∣∣
p∑

k=1

bk〈X̄ − µX , ĉkv̂k〉

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

(
Xn(s)− X̄(s)

)∣∣∣∣∣
∣∣∣∣∣
2

= OP

(
N−1/2

)
.

This proves (6.23), which also completes the proof of (6.21) and hence (6.17).
We proceed to the second step, which is the proof of (6.18) and (6.19). We express (6.18)

elementwise as

N−1/2
N∑

n=1

(〈Xc
n, vi〉〈Xc

n, vj〉 − λi1{i = j})

(
p∑

k=1

bk〈Xc
n, vk − ĉkv̂k〉

)
= oP (1) . (6.25)

We observe that by the central limit theorem in Hilbert spaces and Lemma 6.1 we have∣∣∣∣∣N−1/2
N∑

n=1

(
p∑

k=1

bk〈Xc
n, vk − ĉkv̂k〉

)∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

Xc
n(t)

∣∣∣∣∣
∣∣∣∣∣
2

p∑
k=1

|bk| ||vk(t)− ĉkv̂k(t)||2

= OP

(
N−1/2

)
.

Similarly, ∣∣∣∣∣N−1/2
N∑

n=1

〈Xc
n, vi〉〈Xc

n, vj〉

(
p∑

k=1

bk〈Xc
n, vk − ĉkv̂k〉

)∣∣∣∣∣
≤

p∑
k=1

|bk|

∣∣∣∣∣
∣∣∣∣∣N−1/2

N∑
n=1

Xc
n(t)Xc

n(s)Xc
n(w)

∣∣∣∣∣
∣∣∣∣∣
2

||vk(w)− ĉkv̂k(w)||2

= OP

(
N−1/2

)
.

This proves (6.25) and hence (6.18). Next, we establish (6.19). We can express (6.19) elemen-
twise as

N−1/2
N∑

n=1

(〈Xc
n, vk〉〈Xc

n, v`〉 − λk1{k = `}) 〈X̄ − µX , ĉiv̂i〉 = oP (1) . (6.26)

Using the previous arguments, one can easily verify (6.26), establishing (6.19).
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We will now finish the proof of the lemma by establishing (6.20) as the third step. Using
Assumptions 1.1, 1.3, and (1.4), we see that ε∗n has mean zero and variance given by

E (ε∗n)2 = E
(
ε21
)

+ E

(
∞∑

i=p+1

∞∑
j=p+1

bibj〈Xc
n, vi〉〈Xc

n, vj〉

)

= σ2 +
∞∑

i=p+1

b2iE
(
〈Xc

n, vi〉2
)

= σ2 +
∞∑

i=p+1

b2iλi.

= τ 2

Therefore, ε∗n (Dn −M) is an iid sequence with mean zero and variance τ 2
(
G−MMT

)
.

The central limit theorem now proves (6.20), completing the proof of the lemma.

Lemma 6.10. If Assumptions 1.2–1.5 are satisfied, thenÂ

B̂
µ̂

−
0

B̃
µ

 = OP

(
N−1/2

)
. (6.27)

In particular, we have
‖bkvk(t)− b̂kv̂k(t)‖2 = OP

(
N−1/2

)
(6.28)

and
‖âi,j v̂i(t)v̂j(s)‖2 = OP

(
N−1/2

)
, (6.29)

where âi,j and b̂i are defined by

Â = vech
(
{âi,j (2− 1{i = j}) , 1 ≤ i ≤ j ≤ p}T

)
and B̂ =

(
b̂1, b̂2, . . . , b̂p

)T
.

Proof. Lemmas 6.8 and 6.9 imply that Â = OP

(
N−1/2

)
. According to (6.14) and (6.15) we

can prove that
B̂− B̃ = OP

(
N−1/2

)
, (6.30)

by showing that

1

N

N∑
n=1

ε∗∗n Λ−1F̂n = OP

(
N−1/2

)
or equivalently that

1

N

N∑
n=1

ε∗∗n 〈Xn − X̄, v̂i〉 = OP

(
N−1/2

)
. (6.31)

We note that
1

N

N∑
n=1

ε∗∗n 〈Xn − X̄, v̂i〉 = δ9 + δ10 + δ11 + δ12,
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where, following the arguments in the proof of Lemma 6.9, one can verify that

|δ9| =

∣∣∣∣∣ 1

N

N∑
n=1

εn〈Xn − X̄, v̂i〉

∣∣∣∣∣OP

(
N−1/2

)
,

|δ10| =

∣∣∣∣∣ 1

N

N∑
n=1

∞∑
k=p+1

bk〈Xc
n, vk〉〈Xn − X̄, v̂i〉

∣∣∣∣∣ = OP

(
N−1/2

)
,

|δ11| =

∣∣∣∣∣ 1

N

N∑
n=1

p∑
k=1

bk〈Xc
n, vk − ĉkv̂k〉〈Xn − X̄, v̂i〉

∣∣∣∣∣ = OP

(
N−1/2

)
,

and

|δ12| =

∣∣∣∣∣ 1

N

N∑
n=1

p∑
k=1

bk〈X̄ − µX , ĉkv̂k〉〈Xn − X̄, v̂i〉

∣∣∣∣∣ = OP

(
N−1/2

)
.

This proves (6.31) and hence (6.30).
To complete the justification of (6.27), we need to show that

µ̂− µ = OP

(
N−1/2

)
. (6.32)

Due to (6.14) and (6.15), (6.32) will be established by proving that

1

N

N∑
n=1

ε∗∗n

(
−MT

(
G−MMT

)−1
D̂n + 1 + MT

(
G−MMT

)−1
M
)

= OP

(
N−1/2

)
. (6.33)

To prove (6.33), it is sufficient to show

1

N

N∑
n=1

ε∗∗n D̂n = OP

(
N−1/2

)
(6.34)

and
1

N

N∑
n=1

ε∗∗n = OP

(
N−1/2

)
. (6.35)

Due to Lemma 6.9, (6.35) implies (6.34), so we prove only (6.35). We write that

1

N

N∑
n=1

ε∗∗n = δ13 + δ14 + δ15 + δ16,

where, by the central limit theorem in Hilbert spaces and Lemma 6.1, we have

|δ13| =

∣∣∣∣∣ 1

N

N∑
n=1

εn

∣∣∣∣∣ = OP

(
N−1/2

)
,

|δ14| =

∣∣∣∣∣ 1

N

N∑
n=1

∞∑
k=p+1

bk〈Xc
n, vk〉

∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Xc
n(t)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=p+1

bkvk(t)

∣∣∣∣∣
∣∣∣∣∣
2

= OP

(
N−1/2

)
,
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|δ15| =

∣∣∣∣∣ 1

N

N∑
n=1

p∑
k=1

bk〈Xc
n, vk − ĉkv̂k(t)〉

∣∣∣∣∣ = OP

(
N−1

)
,

and

|δ16| =

∣∣∣∣∣ 1

N

N∑
n=1

p∑
k=1

bk〈X̄ − µX , ĉkv̂k〉

∣∣∣∣∣ = OP

(
N−1/2

)
.

This proves (6.35), which establishes (6.32) and completes the proof of (6.27).
Using (6.27) and Lemma 6.1, we will now show (6.28) and (6.29). We conclude from (6.27)

that
b̂i − ĉibi = OP

(
N−1/2

)
and âi,j = OP

(
N−1/2

)
.

Now, Lemma 6.1 yields that

‖bkvk(t)− b̂kv̂k(t)‖2 ≤ ‖bk(vk(t)− ĉkv̂k(t))‖2 + ‖(bkĉk − b̂k)v̂k(t)‖2
≤ |bk|‖vk(t)− ĉkv̂k(t)‖2 + |bkĉk − b̂k|
= OP

(
N−1/2

)
.

Similarly,
‖âi,j v̂i(t)v̂j(s)‖2 = OP

(
N−1/2

)
.

This proves (6.28) and (6.29) and completes the proof of the lemma.

Lemma 6.11. If Assumptions 1.1–1.5 are satisfied, then

τ̂ 2 − τ 2 = OP

(
N−1/2

)
.

Proof. Since
1

N

N∑
n=1

ε∗2n − τ 2
a.s.−→ 0,

it is enough to show that

1

N

N∑
n=1

(
ε̂2n − ε∗2n

)
= OP

(
N−1/2

)
. (6.36)

Since

1

N

N∑
n=1

(
ε̂2n − ε∗2n

)
=

1

N

N∑
n=1

(ε̂n − ε∗n) (ε̂n + ε∗n) =
1

N

N∑
n=1

(ε̂n − ε∗n) ε̂n +
1

N

N∑
n=1

(ε̂n − ε∗n) ε∗n,

(6.36) follows from ∣∣∣∣∣ 1

N

N∑
n=1

(ε̂n − ε∗n) ε∗n

∣∣∣∣∣ = OP

(
N−1/2

)
(6.37)

and ∣∣∣∣∣ 1

N

N∑
n=1

(ε̂n − ε∗n) ε̂n

∣∣∣∣∣ = OP

(
N−1/2

)
. (6.38)
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We decompose (6.37) as

1

N

N∑
n=1

(ε̂n − ε∗n) ε∗n = η1 + η2 + η3,

where

η1 =
1

N

N∑
n=1

ε∗n (µ− µ̂) ,

η2 =
1

N

N∑
n=1

ε∗n

p∑
i=1

(
bi〈Xc

n, vi〉 − b̂i〈Xn − X̄, v̂i〉
)
,

η3 =
1

N

N∑
n=1

ε∗n

p∑
i=1

p∑
j=i

(2− 1{i = j})
(
ai,j〈Xc

n, vi〉〈Xc
n, vj〉 − âi,j〈Xn − X̄, v̂i〉〈Xn − X̄, v̂j〉

)
.

It is clear that η1 = OP (N−1). We also see that η2 = η2,1 + η2,2 + η2,3 + η2,4, where

η2,1 =
1

N

N∑
n=1

Yn

p∑
i=1

(
bi〈Xc

n, vi〉 − b̂i〈Xn − X̄, v̂i〉
)
,

η2,2 = − 1

N

N∑
n=1

µ

p∑
i=1

(
bi〈Xc

n, vi〉 − b̂i〈Xn − X̄, v̂i〉
)
,

η2,3 = − 1

N

N∑
n=1

p∑
`=1

b`〈Xc
n, v`〉

p∑
i=1

(
bi〈Xc

n, vi〉 − b̂i〈Xn − X̄, v̂i〉
)
,

η2,4 = − 1

N

N∑
n=1

p∑
`=1

p∑
k=`

(2− 1{k = `})a`,k〈Xc
n, v`〉〈Xc

n, vk〉
p∑

i=1

(
bi〈Xc

n, vi〉 − b̂i〈Xn − X̄, v̂i〉
)
.
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Applying (6.28) and the central limit theorem in Hilbert spaces we obtain that

|η2,1| =

∣∣∣∣∣ 1

N

N∑
n=1

Yn

p∑
i=1

(
bi〈Xc

n, vi〉 − b̂i〈Xn − X̄, v̂i〉
)∣∣∣∣∣

≤
p∑

i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Yn

(
biX

c
n(t)vi(t)− b̂i

(
Xn(t)− X̄(t)

)
v̂i(t)

)∣∣∣∣∣
∣∣∣∣∣
1

≤
p∑

i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

YnXn(t)
(
bivi(t)− b̂iv̂i(t)

)∣∣∣∣∣
∣∣∣∣∣
1

+

p∑
i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Yn

(
biµX(t)vi(t)− b̂iX̄(t)v̂i(t)

)∣∣∣∣∣
∣∣∣∣∣
1

≤
p∑

i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

YnXn(t)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣bivi(t)− b̂iv̂i(t)∣∣∣∣∣∣
2

+

p∑
i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

YnX̄(t)
(
b̂iv̂i(t)− bivi(t)

)∣∣∣∣∣
∣∣∣∣∣
1

+

p∑
i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Ynbivi(t)
(
X̄(t)− µX(t)

)∣∣∣∣∣
∣∣∣∣∣
1

≤
p∑

i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

YnXn(t)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣bivi(t)− b̂iv̂i(t)∣∣∣∣∣∣
2

+

p∑
i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

YnX̄(t)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣b̂iv̂i(t)− bivi(t)∣∣∣∣∣∣
2

+

p∑
i=1

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

Ynbivi(t)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣X̄(t)− µ(t)
∣∣∣∣
2

= OP

(
N−1/2

)
.

In a like manner, one can verify that η2,i = OP

(
N−1/2

)
, i = 2, 3, 4. This proves that η2 =

OP

(
N−1/2

)
. In a similar fashion, one can show that η3 = OP

(
N−1/2

)
. This proves (6.37).

Following the previous arguments, one can establish (6.38), completing the proof of the lemma.
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