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Abstract

Nearest neighboktNN) graphs are widely used
in machine learning and data mining applica-
tions, and our aim is to better understand what
they reveal about the cluster structure of the un-
known underlying distribution of points. More-
over, is it possible to identify spurious structures
that might arise due to sampling variability?

Ouir first contribution is a statistical analysis that
reveals how certain subgraphs ofa\N graph
form a consistent estimator of the cluster tree of
the underlying distribution of points. Our sec-
ond and perhaps most important contribution is
the following finite sample guarantee. We care-
fully work out the tradeoff between aggressive
and conservative pruning and are able to guar-
antee the removal of all spurious cluster struc-
tures at all levels of the tree while at the same
time guaranteeing the recovery of salient clus-
ters. This is the first such finite sample result in
the context of clustering.

Figure 1.A density f (black line) and its cluster tree (dashed).
The CCs of 3 level sets are shown in lighter color at the battom

of k-NN graphs. LetG,, be ak-NN graph over am-
sample from a distributioft with densityf. Previous work
(Maier et al, 2009 has shown that the connected compo-
nents (CC) of a given level set ¢gf can be approximated
by the CCs of some subgraph 6%,, provided the level
set satisfies certain boundary conditions. However it re-
mained unclear whether or when all level setsfahight
satisfy these conditions, in other words, whether the CCs
of any level set can be recovered. We show under mild as-
sumptions ory that CCs of any level set can be recovered
by subgraphs of7,, for n sufficiently large. Interestingly,
1 ducti these subgraphs are obtained in a rather simple way: just
- Introduction remove points from the graph in decreasing order of their
In this work, we consider the nearest neighbbsNN)  %-NN radius (distance to theth nearest neighbor), and we
graph where each sample point is linked to its nearespbtain a nested hierarchy of subgraphs which approximates
neighbors. These graphs are widely used in machine learDe cluster treeof 7, i.e. the nested hierarchy formed by
ing and data mining applications, and interestingly therelh€ level sets of (see Figure., also Sectior2.1).

is still much to understand about their expressiveness. Iy, second. and perhaps more important contribution is
particular we would like to better understand what such g providing the first concrete approach in the context of
graph on a finite sample of points might reveal about the;|stering that guarantees the pruning of all spurious-clus
cluster structure of the underlying distribution of points ey structures at any tree level. We carefully work out the
More importantly we are interested in whether one canyadeoff between pruning “aggressively” (and potentially
|dept|fy_ spurious st_ructures that are artifacts of sangplin removing important clusters) and pruning “conservatively
variability, i.e. spurious structures that are not repnése  (yith the risk of keeping spurious clusters) and derive tun-
tive of the true cluster structure of the distribution. ing settings that require no knowledge of the underlying
Our first contribution is in exposing more of the richnessdistribution beyond an upper bound gn We can thus
o guarantee in a finite sample setting that (a) all clusters re-
Appearing inProceedings of thes*" International Conference maining at any level of the pruned tree correspond to CCs
on Machine LearningBellevue, WA, USA, 2011. Copyright 2011 of some level set of, i.e. all spurious clusters are pruned
by the author(s)/owner(s). away, and (b) salient clusters are still discovered, wHeze t


http://arxiv.org/abs/1105.0540v2

Pruning nearest neighbor cluster trees

degree ofsaliencydepends on the sample size We can  ious levels of the empirical cluster tree.
show furthermore that the pruned tree remains a consiste
estimator of the underlying cluster tree, i.e. the CCs of an

level set of f are recovered for sufficiently large. In- L . :
terestingly, the pruning procedure is not tied to thaiN finite sample results are given for a wide range of va_Iu_es of
’ k, namely forlog n < k < n'/©(d In both cases the finite

method, but is based on a simple intuition that can be apéam le results establish natural separation conditions un
plied to other cluster tree methods (see Sec8pn P P

der which the CCs of level sets are recovered (see Theorem
Our results rely on a central “connectedness” lemma (Sect). The result of Chaudhuri & Dasgupte2010 however

tion 5.2) that identifies which CCs of remain connected allows the possibility that some empirical clusters aré jus
in the empirical tree. This is done by analizing the way inartifacts of sampling variability. We provide a simple prun

E:haudhuri & Dasgupta2010 provides finite sample re-
sults for a particular setting df ~ logn. In contrast our

which £-NN radii vary along a path in a dense region. ing procedure that ensures that clusters discovered empiri
cally at any level correspond to true clusters at some level
1.1. Related work or the underlying cluster tree. Note that this can be triv-

. . . ially guaranteed by returning a single cluster at all levels
Recovering the cluster tree of the underlying density issy \ye additionally guarantee that the algorithm discovers

a clean formalism of hierarchical clustering proposed inggjient modes of the density, where the saliency depends
1981 by J. A. HartiganHartigan 198]). Hartigan showed empirical quantities (see Theoré@n
in the same seminal paper that the single-linkage algorithm

is a consistent estimator of the cluster tree for densities oA recent archived papeR(naldo et al. 2010 also treats

R. ForR?% d > 1 itis known that the empirical cluster the problem of false clusters in cluster tree estimation, bu

tree of a consistent density estimate is a consistent estim#e result is not algorithmic as they only consider the clus-
tor of the underlying cluster tree (see e.gVong & Lane ter tree of an empirical density estimate, and do not provide
1983), unfortunately there is no known algorithm for com- @ way to compute this cluster tree.

puting this empirical tree. Nonetheless, the idea has led (§1,ore exist many pruning heuristics in the literature which
the development of interesting heuristics based on first eSypically consist of removingmall clusters Maier et al,

timat?ng de_nsity, t_hen_ appr_oxima_ting the cluster tree ef th 2009 Stueltze & Nugen201Q using some form of thresh-
density estimate in high dimensiowfng & Lane 1983 ging. The difficulty with these approaches is in how to

Stueltze & Nugent2010. definesmallwithout making strong assumptions on the un-

Many other related work such asRifollet & Vert, known underlying distribution, or on the tree level being
2009 Singhetal. 2009 Maier etal, 2009 pruned (levels correspond to different resolutions ortelus
Rinaldo & Wasserman201Q consider the task of re- sizes). Moreover, even the assumption that spurious clus-
covering the CCs of a single level set, the closest to théers must be small does not necessarily hold. Consider for
present work being\aier et al, 2009 which uses &-NN example a cluster made up of two large regions connected
graph for level set estimation. As previously discussedPy a thin bridge of low mass; the two large regions can eas-
level set estimation however never led to a consistenly appear as two separate clusters in a finite sample. Some
estimator of the cluster tree, since these results typicall more sophisticated methods such &sugltze & Nugent
impose technical requirements on the level set being recov2009 do not rely on cluster size for pruning, instead they
ered but do not work out how or when these requirementgeturn confidence values for the empirical clusters based

might be satisfied by all level sets of a distribution. on various notions of cluster stability; unfortunatelyythe
o ) do not provide finite sample guarantees. Our pruning guar-
Arecent insightful paper d€haudhuri & Dasgupté2010  5ntees the removal of all spurious clusters, large and small

presents the first provably consistent algorithm for estima (see Figure2); we make no assumption on the shape of
ing the cluster tree. At each level of the empirical clus- | sters beyond a smoothness assumption on the density:

ter tree, they retain only those samples whbgeN radii ~ we provide a simple tuning parameter whose setting re-
are below a scale parameterwhich indexes the level; quires just an upper bound on the density.

CCs at this level are then discovered by building ran

neighborhood graph on the retained samples. This is simi- .. )

lar to an earlier generalization of single-linkageWishart 2. Preliminaries

(1969 _Which however was giyen Withou_t a convergenceass me the finite datasé — (X
anaIyS|_s. Thek-NN trge studied here differs in that, at o a distribution” overR®
an equivalent levet, points are connected to the subset of

their k-nearest neighbors retained at that level. One pracWVe start with some simple definitions relatedtdIN oper-
tical appeal of our method is its simplicity: we need only ations. All balls, unless otherwise specified, denote dose
remove points from an initidi-NN graph to obtain the var-  balls inR<.

i, is drawn i.i.d.
with density functionf.
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Definition 1 (k-NN radii). For z € X, letry ,,(z) denote ﬁ R
the radius of the smallest ball centeredaatontainingk

points fromX \ {z}. Also, letr;(x) denote the radius of
the smallest ball centered atof F-massk/n.

Definition 2 (k-NN and mutualk-NN graphs) The k-
NN graph is that whose vertices are the pointsXinand
where X; is connected taX; iff X; € B(Xj,0r,(X;))
or X; € B(X;,0ri(X;)) for somed > 0. The mu-
tual £-NN graph is that whereX; is connected toX; iff
X, € .B()(j7 Hrk(Xj)) ande S B(X“ Grk(Xl))

Figure 2.Pruning at work: it reconnects CCs independent of size.
2.1. Cluster tree The dashed lines are reconnection edges from pruning. Shown

o d; are two levels of thé&-NN tree of a 500-sample from the 2-modes
Definition 3 (Connectedness)We sayA C R“ is con- mixture0.5 ([0, 0], I2) +0.5N'([1, 4], I ). Herek — 12,0 = 1,

nected if for every, 2’ € A there exists acontinuous-1 = p/\/% whereF = 2.73 is the maximumf,, value. From left
functionP : [0,1] — A whereP(0) = z and P(1) = 2. toright, level\ = 0.9 has 72 points, and level = 1.3 has 33.
P is called a path inA betweenr andz’.

The cluster tree of will be denoted{G()\)},.,, where  would have kept them connected are missing at leviel
G()) are the CCs of the level sét: : f(x) > A\}. Notice the empirical tree. These key points hagievalues lower
that{G(\)},., forms a (infinite) tree hierarchy where for thanA, but probably not much lower. By looking down to
any two componentd, A’, eitherAN A’ = () oroneisa alower level neai we find that4,,, A/, are connected and

descendant of the other, i&C A’ or A’ C A. thus detect the situation. Notice that this intuition is not
tied to thek-NN cluster tree but can be applied to any other
3. Algorithm cluster tree procedure. All that is required is that all p®in

from A (as discussed above) be connected at some level in
Definition 4 (k-NN density estimate)Define the density the tree close to.
estimate at: € R? as :

folz) = k B k Algorithm 1 PruneG,,(\)
T nevol (B(w, e (2))) nvgrd (x) Given: tuning parameter> 0, same for all levels.
: . . Gn(A) < Gn(N).
whereu, is the volume of the unit ball iR<. if A > ¢then N
Connect componentd ,,, A;, of G,(\) if they are part of
Let G,, be thek-NN or mutualk-NN graph. For\ > 0 the same component 6f,, (A — €).
defineG,,(\) as the subgraph df,, containing only ver- else

tices in{X; : f,(X;) > A} and corresponding edges. The Connect allGn (A).

CCs 0f {G\(\)},, form a tree: letd,, and A/, be two end if

such CCs, eithed,, N A/, = () or one is a descendant of

the other, i.e. 4, is a subgraph ofd, or vice versa. To Itis not hard to see that the CCs of the pruned subgraphs

simplify notation, we let the sefG,(\)},., denote the {én()\)} still form a tree. We will hence denote the
empirical cluster tree before pruning. A>0

pruned empirical tree b{én()\)}A .
>0
Pruning

The pruning procedure (Algorithri) consists of simple 4. Results Overview
lookups: it reconnects CCs at levelf they are part of the
same CC at level — € where the tuning parametér> 0

controls how aggressively we prune. We show its behavigt 1y 55 >0 s <F
on a finite sample in Figur2 (1) ' SUPrepa (@) < F

We make the following assumptions on the dengity

T . . . (A.2) f is Hoelder-continuous, i.e. there exidtsa > 0
The intuition behind the procedure is the following. Sup- such that for alls, 2’ € R,

poseA,, Al C X are disconnected at some levein the
empirical tree before pruning. However, they ought to be |f(z) — f(a')] < Lz —2/||".

connected, i.e. their vertices belong to the sameACéat

the highest level where they are all contained in the underTheoreml below is a finite sample result that establishes
lying cluster tree. Then, key sample points frointhat  conditions under which samples from a connected subset
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of R? remain connected in the empirical cluster tree, andror any A C R?, let A,, denote the smallest component

samples from two disconnected subset®6éfremain dis-
connected even after pruning. Essentially, f@ufficiently
large, points from connected subsegtgemain connected
below some level. Also, providédis not too large, disjoint

subsetsd and A’ which are separated by a large enough

region of low density (relative ta, & andé), remain dis-
connected above some level.

We require the following two definitions.

Definition 5 (Envelope ofA ¢ R9). Let A c R¢ and for
r>0,define:Ay, ={y: 3z € A,y € B(x,r)}.
Definition 6 ((¢, 7)-separated sets ¥, A’ ¢ R? are (e, r)-
separated if there exists a separating Sesuch that every
path inR? betweend and A’ intersectsS, and

5 < i — €.
S fl@)< dnf flz)—e
Theorem 1. Supposef satisfies (A.1) and (A.2). Le&t,
be thek-NN or mutualk-NN graph. Lety > 0 and define
e = 11F+/In(2n/6)/k. There exisC andC’ = C'(F)

such that, for

C (max {1, ﬁ/@})ddln(n/d)

2(a+d)/(3a+d)
<k < (FyIn(n/o))

n20¢/(30¢+d) (1)
the following holds with probability at least— 36 simul-
taneously for subsets of R%.

(@) Let A be a connected subset &, and let A =
infaca f(x) > 2¢e;. All points in A N X belong to
the same CC aof7,, (A — 2¢).

(b) LetA and A’ be two disjoints subsets Bf', and define
A = infyecauar f(x). Recall thate > 0 is the tuning
parameter. Supposé and A’ are (e, r)-separated for
€ = 6ey + 2¢andr = ¢ (4k/vgn)/?. ThenA N X
and A’ N X are disconnected i@n(/\ — 2¢).

Theoreml above, although written in terms 6f,, applies
also toG,, by just settinge = 0. The theorem implies
consistency of both pruned and unprurietIN trees un-

of {(N;n()\)}A . containingA N X. Fix A > 0. We have
>
lim, o P (VA, A" € G()), A, is disjoint fromA!) = 1.

Proof. Let A andA’ be separate components@f\). The
assumptions ensure that all paths betwdeand A’ tra-
verse a compact sétsatisfying\ — max,cgs f(x) = es >

0 (see Lemma 14 ofGhaudhuri & Dasgupte2010). Let
€ = b6ex, + 2¢ andr = g (4k/vdn)\)1/d. By uniform conti-
nuity of f, there existsV; such that fom > Ny, r is small
enough so thah — max,cs,, f(x) > es/2. Also, there
existsNy, > N7 such that fom > Na, € < €g/2, in other
wordssup,cg,, f(z) <A —e

SinceG,, () is finite, there existéV such that fom > N,
all pairsA, A’ have a suitablée, r)-separating set. Thus
by Theoremt, for n > N, with probability at least — 30,
VA, A" € G(\), AnX andA’ N X are fully contained in

G, (X — 2¢;,) and are disjoint. They are thus disjoint at any
higher level, sa4,, and A}, are also disjoint.

The above holds for afl > 0, so the statement follows.1

While Theoreml establishes that a connected sete-
mains connected below some level, it does not guarantee
against parts ofl becoming disconnected at higher levels,
creating spurious clusters. Note that the removal of spuri-
ous clusters can be trivially guaranteed by just letting the
parameteg very large, but the ability of the algorithm to
discover true clusters is necessarily affected. We are-inte
ested in how to set in order to guarantee the removal of
spurious clusters while still recovering important ones.

Theoren? guarantees that, by settia@s () (recalleg

from Theorent), separate CCs of the empirical cluster tree
correspond to actual clusters of the (unknown) underlying
distribution, i.e. all spurious clusters are removed. Tdte s
ting of € only requires an upper-boutdon the densityf 1.

Note that, under such a setting, consistency is maintained
per Corollaryl, and in light of Theoreni (b), we can ex-
pect that interesting clusters are discovered. In pagticul
the following salient modes of are discovered.

Definition 7 ((e, r)-salient mode) An (e, r)-salient mode

der mild additional conditions. Some such conditions ardS & 1€af nodeA of the cluster treg{G(A)} ., which has

illustrated in the corollary below. A nice practical aspeft

an ancestord, O A (possiblyA itself) satisfying:

the pruning procedure is that consistency is obtained for a

wide range of settings afandk as functions of.

Corollary 1 (Consistency) Suppose thaf satisfies (A.1)
and (A.2) and that, in additionF is supported on a com-
pact set, and for any > 0, there are finitely many compo-
nentsinG(\). Assume that, as — oo, ¢ = é(n) — 0 and
k/logn — 0 while k = k(n) satisfies {).

() Ay is the ancestor of a single leaf ¢iG/(\)}, .,
namelyA.

(i) Agislarge: 3z € Ay, B(z,r(x)) C Ag.

'We might just usemax;c(,) f(X;) in practice, which in
light of Lemmal can be a good surrogate fbr(see Figures).
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Theoren? follows from lemmas and7 below. These two
lemmas also depend on the events described by lerimas
2 and4 which happen with a combined probability of at
leastl — 36.

——k-NN ——k-NN
—o—Mutual k—-NN —o—Mutual k-NN

Avg num of modes
Avg num of modes
w

5.1. Maintaining Separation

In this section we establish conditions under which points
~ \/% 7 52 f wo 0 70 s from two disconnected subsets&f remain disconnected

€ . .. .
afmple size n. in the empirical tree, even after pruning.

Figure 3.(LEFT). Number of modes (leaves of the empirical tree) The following is an important lemma which establishes the
as we increasé from 0. The trees are built on 500-samples (re- estimation error off,, relative tof on the sampl&X. In-

sults are averaged over ten such 500-samples) from the &snodterestingly, although of independent interest, we could no
mixture 327, 0.2V/(2v/de:, Ia), d = 7. Herek = (logn)"®,  find this sort of finite sample statement in the literature on

0 = 1, andF is the maximumyf,, value over the 10 samples. The k-NN2, at least not under our assumptions. The proof, pre-

mutualk-NN tree being more sparse is rather brittle and requires . o o
more pruning. (RIGHT) We fi¥ — F/4v/F, k — (log ), as sented as supplement in the appendix, is a bit involved and

starts with some intuition from an asymptotic analysis of

we increasen. Results are averaged over 10 n-samples for eac . .
n, andF' is again the may,, value over the 10 samples for each ?Devroye & Wagner1977 combined with a form of the

n. The k-NN tree quickly asymptotes at 5 modes. The mutual Chernoff bound found inAngluin & Valiant, 1979.
k-NN being more brittle, we're underpruning for> 500, i.e.¢ ~ Lemma 1. Suppos¢ satisfies (A.1) and (A.2). There exists

is too small; thus for these settings we would require largey C = C(F) suchthatfors > 0, fore = 11F+/In(2n/6)/k
obtain the correct number of modes. and

) o 1211In(2n/6)
(iif) Ay is sufficiently separated from other components
at its level: let A = infyc4, f(x); Ar and <k<C (F\/ln(2n/§)

)2(a+d)/(3a+d)
n
({z : f(x) > A} \ Ag) are (e, r)-separated.

20/ (3a+d)

we have with probability at leastl — § that

Notice that, under the assumptions of Corolldryevery — SUPx,ex [fn(Xi) — f(Xi)| <e.

mode off is (e, r)-salient for sufficiently largé and1/e. The next lemma bounds, . (X;) in terms ofr; (X,), and

Theorem 2 (Pruning guarantees).eté > 0. Under the hence, in terms of the density &t. The proof is provided
assumptions of Theoreithe following holds with proba-  as supplement in the appendix.

bility at leastl — 3. Lemma 2. Suppose’ satisfies (A.1) and (A.2). FiX > 0

andletly = {x: f(x) > A}
(&) Suppose the tuning parametér> 3¢,. Consider

two disjoint CCsA,, and 4; at the same level in (a) Let »r = 1(\/2L)Y/®. We havevz,a’ € R

{én()\)}A . LetV be the union of vertices ol,, |z —a'|| <2r = |f(x)— f(a’)] < A/2. Ifin
>0 +1 H !

and A;,, and define\ = inf,cy f(x). The vertices of g?((j;t)lonx € Ly, itfollows that f(z)/2 < f(a') <

A,, and those ofd!, are in separate CCs df ().
b) Supposé < 27 (@F3)y,(2L0) =4/ \(d+a)/ @y We have
(b) Lete = 6e, + 2¢ andr = §(4k/vdn)\)1/d. There (b) Supp N «(2L)

exists al — 1 map from thg set qfeir)-salient modes Vi € Ly, 1 () < min 4 2%/, ( 2%k )1/d |
to the leaves of the empirical tre[eGn(/\)} . vanf(z)
A>0
For ¢ > 0, if in additionk > 1921n(2n/¢), we have
The behavior of both thé-NN and mutualt-NN tree, as with probability at leastl — 4 that for all X; € XN L,

guaranteed in TheoreR) is illustrated in Figure.
2730 (X)) < rin (X3) < 2870 (X5).

5. Analysis The main separation lemma is next. It says that iand
A’ are separated by a sufficiently large low density region,

Theoreml follows from lemmas3 and6 below. These two ; . .
then they remain separated in the empirical tree.

lemmas depend on the events described by lemm&s
and4 Wh|Ch happen W|th a Combined pI’Obablllty Of at |eaSt 2There are however many asymptotic ana|ysds_N'N meth-
1 — 306 for a confidence parametér> 0. ods such as¥evroye & Wagner1977).
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Lemma 3 (Separation) Supposef satisfies (A.1) and
(A.2). LetG, be thek-NN or mutualk-NN graph. De-
finee, = 11F/In(2n/0)/k, and let§ > 0. There exists
C = C(F) such that, for

1921n(2n/0) < k
In(n/d)

the following holds with probability at least— 24 simul-
taneously for any two disjoint subsets A’ of R,

<C (F )2(a+d)/(3a+d) n2a/(3a+d)7

LetA = infycaua f(x). If Aand A" are (e, r)-separated
for ¢ = 6ey, +2¢ andr = & (4k/van))'/?, thenANX and
A’ N X are disconnected i, (A — 2¢;, — €) and therefore
in G,(A— 2e).

Proof. Applying Lemmal, it's immediate that, with prob-
ability at leastl — ¢, all points of anyA U A’ N X are in
G, () — €) and lower levels, and no point frosy., N X
is in G,,(\ — 5ex, — 2€) or higher levels. Thus any path
betweend and A’ in G,,(\ — 2¢;, — €) must have an edge
through the center € S of a ball B(xz,r) C S4,. This
edge must therefore have length greater thanWe just
need to show that no such edge exist&in A — 2¢;, — €).

Let V' be the set of points (vertices) @, (A — 2¢; —€). By
Lemmal, minx,cv f(X;) > A—3¢,—€. Giventhe density
assumption or¥, A > 6¢;, + 2€ sominy, ey f(X;) > /2
andV C L., . Now, given the range of, Lemmaz2 holds
for the level sel., . It follows that with probability at least
1—4 (uniform over any such choice df, A’ since the event
is a function ofZ,, ),

2
max 7y, (X;) < 23/4 max re(X;) < —T
X, eV X, €V 0

Thus, edge lengths i@¥,, (A — 2¢;, — €) are at mosgr. O

5.1.1. DENTIFYING MODES

Lemma 5 (Modes) Supposef satisfies (A.1) and (A.2).
Let G,, be thek-NN or mutualk-NN graph. Lets > 0.
There exisC andC’ = C’(F) such that, for

CdlIn(n/é)

<k<c (Fymmm)

the following holds with probability at least — 36. Let

e = 6ep +2¢andr = & (4k/van))"/?. There exists a
1 — 1 map from the set df, )-salient modes to the leaves
of the empirical tree{ én(/\)}

(3a+d)
n2a/(3a+d)

A>0

Proof. First, with probability at least — ¢, for any (e, r)-
salient moded, there are samples X from the containing
setAy (as defined in Definitio). To arrive at this we ap-
ply Lemma4 for the clas<C of all possible ballsB € R?,
(for this classSc (2n) < (2n)4+1). We have with probabil-
ity at leastl — ¢ that for all B, F,,(B) > 0 whenever

CdIn(n/d) - 4(d—i— 1)log(2n) + log(4/9)

n

F(B) >

where C' is appropriately chosen to satisfy the last in-
equality. Now, from the definition ofd;, there ex-
ists  such thatB(z,ri(xz)) C Ak, while we have
F(B(z,rg(x))) = k/n > Cdln(n/d)/n, implying that
Fn(Ar) > Fp(B(z,ri(x))) > 1/n.

As a consequence of the above argument, there is a finite
numberm of (e, r)-salient modes since each contributes
some points to the final sampk. We can therefore ar-
range them a$ A’} | so that fori < j, we have); < );
where); = mfmeAT f( ). An injective map can now be
constructed |terat|vely as follows.

Starting with: = 1, we have by Lemma that, with
probability at leastl — 25, A% N X is disconnected in

én()\i — 2¢;,) from all Ai,j > 4. LetU be the union of
those CCs of+,, (\; — 2¢,) containing points fromd} NX.

As a corollary to Lemma, we can guarantee in Lemma We've already established that contains no point from
5 that certain salient modes are recovered by the empiricany A7, j > . Fori > 1, U also contains no point from

cluster tree. For this to happen, we require in Def|n|t|onanyA7 j < i. This is because, again by Lemm,aélj 2D, ¢

7 (ii) that an (e, r)-salient moded is contained in a suffi-

is disconnected mi;’ (A\; — 2¢;) from Al N X, therefore

ciently large setl;, so that we sample points near the mode. jisconnected fron since all CCs i/ remain connected

We start with the following VC lemma establishing condi- at lower levels.

tions under which subsets Bf' contain samples frorX.
Lemma 4 (Lemma 5.1 of Bousquet et al.2004). Sup-
poseC is a class of subsets &“. LetSc(2n) denote the
2n-shatter coefficient of. Let 7, denote the empirical
distribution overn samples drawn i.i.d fron¥. For§ > 0,
with probability at leastl — ¢,

F(A) = Fu(4)
F(4)

)+ log4/é

< 2\/log8c(2n
n

sup
AecC

Now, sincé/ is disconnected from all
k,_] # i, we can just mapd® to any leaf rooted in/,
A’ being the unique image of such a leaf. O

5.2. Maintaining Connectedness

In this section we show that sample points from a connected
subsetA of R¢ remain connected in the empirical cluster
tree before pruning (therefore also after pruning).

Similar to (Chaudhuri & Dasgupta2010, for any two
points z,2’ € A N X we uncover a path irG,, near



Pruning nearest neighbor cluster trees

a pathP in A that connects the two. The path @4,

following procedure. Lef® be a path inA between: and

(the dashed path depicted below) consists of a sequencé. Definer = min {1,6/v/2}.

1 = x,%9,...,7; = x' of sample points from balls cen-
tered on the pathP in A (the solid path depicted below).
The intuition is thatP is a high density route near which
we can find enough sample points to conneandz’.

The balls centered off must be chosen sufficiently small
and consecutively close so that consecutive terms, ;4
are adjacent in@,. In (Chaudhuri & Dasgupta2010,

Starting ati 1 (21 x), setw;n, = 2
if [|z; —2|| < Omin{ry,(z;),rn(z")}, and
we're done, otherwise:

Lety; be the pointinPNB (z;, 727 ry, ()
farthest along the patR from x, i.e. P~1(y;) is
highest in the set. Define the half-ball

H(y:) = {z: ||z =yl < 727" (@0),
(z —vi) - (zi —yi) > O}

Pickz;41 in H(y;) N X, and continue.

points are adjacent (at any particular level) whenever theyrhe rest of the argument will proceed inductively as fol-
are less than some scale@part; one can therefore choose lows. First, assume that € A, and thaty; exists. This

balls of the same radiusr) and consecutively(r) close.

is necessarily the case fof, y;. Assumer; 1 # 2'. We

In our particular case, no single scale determines adjgcencwill show thatz; ,; exists, is also im .., and is adjacent to
Adjacency is determined by the various nearest-neighbog; in G,,. It will follow that y;.; must exist (if the process

radii and this creates a multiscale effect that complicategloes not end) and is distinct from, .

..,yi. We'll then

the analysis. One way to handle (and effectively get rid of)argue that the process must also end.

this multiscale effect is to choose balls ¢hof the same

radiusr corresponding to the smallest possible nearest

neighbor radius iidx,, (restricted taAdnX). However, in or-

der to get samples in such small balls one would need rath
large sample size, so the idea results in weak bounds. Scl
We instead use an inductive argument which keeps track

the various scales, the intuition being that nearest-reigh
radii have to change slowly along the pdtHrom x to 2.

Lemma 6 (ConnectednessSupposef satisfies (A.1) and
(A.2). LetG,, be thek-NN or mutualk-NN graph. Define
€x = 11F\/In(2n/0)/k and leté > 0. There exisC and
C’ = C'(F) such that, for

C (max{l, ﬁ/@})ddln(n/&

)2(o¢+d)/(3a+d)

<k<cC (F In(n/0) p2e/Gatd)

the following holds with probability at leagt— 36 simul-
taneously for all connected subsetf R,

LetA =inf,ca f(z) > 2¢;. All points inA N X belong to
the same CC of7,, (A — 2¢y), therefore ofG,, (A — 2¢g).

Proof. First, letC' andC’ be large enough for lemmds
and2 to hold. Definer = 1 (¢, /2L)"/*. By Lemma2 (a),

we have thaff (z) > A — ¢, /2 foranyz € Ay,.. Applying

Lemmal, it follows that with probability at least — §

(uniform over choices ofl), all points ofA,,. N X are in

Gn(\ — 2¢). We will show thatA N X is connected in
G, (X — 2¢;) possibly through points il . \ A.

In particular, anyr, 2’ € AN X are connected through a

sequencegz;},.,,z; € Ay, N X built according to the

To see that:; 1, exists (under the aforementioned assump-
tions), we apply Lemmat for the classC of all possi-

Hle half-balls H(y) centered aty € R? (for this class

2n) < (2n)2?*1). We have with probability at least

ok — d thatfor all H (y), 7. (H (y)) > 0 whenever

) > Cod;n(%) > ~

(8d + 4)log(2n) + 4 log(%)

3

FH

whereCy is appropriately chosen to satisfy the last inequal-
ity. We next showF (H (y;)) satisfies the first inequality.

We first apply Lemm& on L., D A., (this inclusion
was established earlier). We have with probability at least
1 — ¢ (uniform over allA) that forz, € Ay, rpn(2;) <
23/dy) (2;) < r. Thus, for allz € H(y;),
|z —zi|| <2- 7'279/617’;67"(:01-)
<2.727%d <o,

)

implying by the same Lemmniathatf(z) > f(x;)/2. Now,
from Lemmal, f,(z;) < f(z;) + ex < 2f(x;). We can
thus write

F(H(y:)) > ivol (Blys, 727 i (22)) ) ()
= 792720 yol (B(x;, T (:))) f(3)
> 79272 5ol (B(zi, i (24))) fo(2i)
_ 7_¢12721E > M

n n

, forC > 2%C,.

Therefore there is a point;+1 in H(y;) N X. In addition
Zi+1 € Ay, since itis withinr of y; € A.
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Next we establish that there is an edge betweeandz; ;|

in G,,. To this end we relatey, ,, (z;+1) to 7y (z;) by first
relatingry (z;41) to ri(z;). Remember that for € A,

we havery(z) < r so that for anyz’ € B(z,ri(z))

we havef(z)/2 < f(z') < 2f(z). Also recall that
we always havé|z; — z;11]] < 2r (see ), implying
f(ziz1) < 2f(z;). We then have

1 k

Sf(@i) <

Udr,‘f(:vi) '3

- < wvgrd(@is1) - 2f (zis1)

< vdrg(diprl) ~Af (i),

Proof. Let A\, = mingcy fn(z) be the level in the
empirical tree containing4,,, A’,. By Lemma 1,

sup,ex |fn(z) — f(z)] < € sSOX, < X+ €. Thus,
we must have\ > 2¢, since otherwise,,, < ¢ implying

G, (\,) must have a single connected component.

Now suppose points il were in the same componehbf
G(\). By Lemmas, all of AN X is connected irf7,, (A —
2¢;) and at lower levels. By the last argument—e < A—
2¢y, so the pruning procedure reconnedisandA4/,. O

where for the first two inequalities we used the fact thc'zlt’A‘CknOV\lledgememS

both balls B(x;, ri(z;)) and B(x;+1,rk(x;+1)) have the
same mass/n. It follows that
T (Tig1) > 273 g (@i41) > 2799y ()

> 27Ydpy (),

®)

implying 27947y, (z;) < min {ry (), 7k (2ig1)}-
We then get
i — zira|* = Nz — will® + llwien — il

= (@i —yi) - (Ti1 — wi)

< i = will® + llwigr — wil®

< 272 . min {r,in(:vi), r,%7n(xi+1)}

< 6% min {r,%n(xz), T}%,n(xz#l)} ,
meaninge; andx;, 1 are adjacent iid7,,.
Finally we argue tha;,; must exist. By 8) above we
have

|irr — yill < 727184y (i) < 727N 0 (2i41),

in other words the balB (z;41, 7297y, (z:41)) con-
tainsy; € P inits interior. It follows by continuity ofP
that there is a poing; 11 in this ball further along the path
from x; thany;. Thus, recursively all;’s must be dis-
tinct, implying that allz;'s must be distinct. Since all;’s
belong to the finite samplX the process must eventually
terminate. O

5.2.1. RRUNING OF SPURIOUSBRANCHES

As a corollary to Lemm& we can guarantee in Lemn7a

We thank Sanjoy Dasgupta for interesting discussions
which helped improve presentation.
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Appendix
A. Proof of Lemma 1

Lemmal follows as a corollary to Lemm@below.

We'll often make use of the following form of the Chernoff
bound.

Lemma 8 ((Angluin & Valiant, 1979). Let N ~
Bin(n, p). Thenforallo < ¢ <1,
P (N > (14 t)np) < exp (—t*np/3),
P(N < (1—t)np) < exp (—t°np/3) .

Lemma 9. Suppose the density functigrsatisfies:

(@) f is uniformly continuous oR?. In other wordsye >
0, dc, s.t. for all balls B wherevol (B) < ¢. we have

sup, wep |f(2) = f(2')] <€/2.

(b) HF! SUPgcRrd f((E) =F

Fix0 <e< F,letn > 2,andk < n. If k/ne < ¢./4then

Proof. We’'ll be using the short-hand notatidsy, ,, (x) =
B(z, 1.5 (z)) for readability in what follows.

ek

P -
<;u€p |f(X 12057

i) = fu(X0)] > e) < 2nexp (_

We start with the simple bound:

P ((sup 170X = £ > o)

<SPEX; €X, fu(Xy) > f(Xi) +e
P(3X; € X, fu(Xi) < f(Xi) —¢)

—P (HXi € X, vol (Byn(X:)) <
P <ELXZ S X, f(Xl) > €, vol (Bk,n(XJ) > W

We handle 4) and 6) by first fixing < and conditioning on
X; = x. We start with 4):

) i@, ©)

k

n(f(Xi) +e)
k
< n/z]P’ (Vol (Brn(z)) < n(f(z) +€)

P (ELXZ S X, vol (Bkn(Xz)) <

where the inner probability is over the choice &f \
{X; =z} for i fixed. In what follows we use the nota-
tion F,_; to denote the empirical distribution ovet \
{Xl = ,T}

Assumevol (By »(z)) < k/n(f(z) +€) < k/ne < ce.
Then by the uniform continuity assumption ¢rwe have

k
F (Ben(@) < (f@) +¢/2) sy
e k c\k
(- sgeea) <0185

Now let B(z) be the ball centered at with F-mass
(1 —¢€/4F) (k/n). Since by the aboveF (By ,(z)) <

F (B(x)), we also have thaF,, (B .(z)) < F, (B(z)).

This implies that

In other words, let = ¢/(4F — ¢), applying the Chernoff
bound of Lemma, we have

P (vol (Bgn(z)) < k/n(f(z) + ¢€))
< P (F (B(z)) > (1 + t) (B(x)))
<exp (—t*(n— 1)F (B(x)) /3) < exp (—

Combine with ) to complete the bound od,

’k/96F?) .

We now turn to boundings). We proceed as before by
fixing ¢ and integrating oveX,; = x wheref(x) > ¢, that
is

k
P <3XZ- € X, f(X;) > ¢, vol (Byn(X;)) > hA 6))
k
: n/m,f(z)>ep <V01(Bk"”(x)) - m) dF(z),

where again the probability is over the choice Xf\
{X; = z}. Now, we can no longer infer how mucghde-
viates within By, ,,(z) from just the event in question (as
we did for the other direction). The trick (inspired by
(Devroye & Wagnerl977) is to consider a related ball.

Let B(z) be the ball centered atof volumek/n(f(x) —
3e/4). Then

vol (Bkyn(I)) > m > vol (B(I))
— Fn.1(Bx)) < ]:Lj < g
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Sincevol (B(z)) < 4k/e < c., we have by the uniform Proof. Let X; € X, and fixX; = = € A suchthat(z) <
continuity of f that 2-3/dr \We automatically have

k(f(2) — €/2) (H—)S %Vol(B(x,rk(x)))f(x) < F(B(a,ri(2)))

n(f(x )—36/4) 4F
< 2vol (B(z,r,(x x).
(1+4F)]__n71(3(x)). < (B(z,r(2))) f(z)

F(B(x)) >

We similarly have

we thus have fot = ¢/(4F + ¢€), and using Lemma that

f(B(I,QS/drk(I))) > vol( 2,28/ %y (z)) ) %

k
P (wl(Bnte) > 75— > 8ol (B rs(a))) 1
<P (%, (B@) < (1 - F (B() B
< exp (~17(n ~ ) (B(a)) =27 (Blend@) =2,

< exp (—€°k/120F?) . Again, similarly
Combine with 7) to complete the bound o), ko - ~3/d
. _ - T 32]:( (x,rp(z))) < F (B(:v, 2 rk(:v)))
The final result is proved by then combining the bounds on 1 i
(4) and 6). O < 57 (Blz,mi(@)) = o
n
Proof of Lemmd. For any0 < e < 1, letc. = Thus by Lemma3,

042~ (e/2L)"* so that whenever for ballB, vol (B) <

P(rpn 23/d <
ce, the radiusr of B is less thani (e/2L)1/a. Thus, (Tk" (z) > Tk(x)) -

sup, yep | f(x) = f(2')] < L(2r)* < €/2. Now, for the 3/d k_1 3/d
settings of andk in the lemma statement, we have P (B(x’2 T’“(x))) < n = 2f (B(I’2 rk(x)))
d/a <exp|—(n—1)F B:v,23/dr T 12) <exp(—k/12),
b<eeranalt <o ()" o, p (=0 = DF (B, 2/4ry())) /12) < exp (/1)
2L and

so we can apply Lemm@ito get
P (Tkn(:zr) < 273/‘17’;6(:17)) <

P (]-'nl (B(:c, 2_3/drk(x))) >Z>oF (B(:z:, 2_3/d7’k(17))))

< exp (—(n -1)F (B(:v, 2_3/drk(x))) /3) <exp(—k/192).

Conclude by integrating these probabilities over possible
values ofX; =z € A. O

P ( sup |

X, eX

Xi) = fu(X3) > e) < 2nexp (_

< 0.

2k
12012

B. Proof of Lemma 2

Proof of Lemm&. Part (a) follows directly from the
Holder assumption oifi. For part (b), notice that
sup vdrg(:c)/\ < inf F(B(z,rr(z))) = k
zeL ) zeLy n

Lemma2 follows as a corollary to Lemm&0 below.
Lemma 10. Consider a subsett of R? such that there

existsr, satisfying

Ve A, o - <2 = Lf(x) < f(@) < 2f(z).

so thatsup,,. ., rx(z) < 2-3/dy for the setting ofc. Now

AssumeX; € X N A. We have using part (a) again we have for alle £,

flx k
(rk n(Xi) = 2%/ (X5) | (X)) < 273/d7°) vari () - % < F(B(z, k() = w
<exp (—k/12), sory(z) < (2k/vgnf(z))/2.
( (X)) <2730 (X5) | (X5) < 273/017") Finally, the probabilistic statement is obtained by apmuiyi
LemmalOand a union-bound ovéX N L. O

<exp(—k/192).



