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Abstract

In the classical version of the Bayesian quickest changectieh problem proposed by Shiryaev,
there is a sequence of observations whose distributiongasaat a random time, and the goal is to
minimize the average delay in detecting the change, subjeatconstraint on the probability of false
alarm. We consider this quickest change detection problé&man additional constraint on the average
number of observations used in detecting the change, wherkawe the option to choose whether or
not to take a given observation. The objective is to seleetatservation control policy along with the
stopping time at which the change is declared, so as to nueirtfie average detection delay, subject
to constraints on both the probability of false alarm and d@kierage number of observations used. In
contrast to the single threshold test that is optimal forShe&yaev problem, the optimal algorithm for our
problem belongs to a class of randomized three-threshdidigm As in the Shiryaev test, the statistic
being thresholded is the a posteriori probability of theusoence of the change, given the observation
sequence. Towards characterizing the thresholds for thienapalgorithm, we provide an asymptotic
analysis of deterministic three-threshold policies foe ttase where the probability of false alarm is
small, the average number of observations used is largetrendhange event is rare. The asymptotic
analysis reveals that any three-threshold policy can béapgiroximated by a two-threshold policy. An
advantage of the two-threshold policy is that there existmigue pair of thresholds that achieves the
constraints on the probability of false alarm and the awenagmber of observations used. Therefore,
using our analysis, the thresholds can be set directly usiagyiven constraints. We provide extensive

simulation results that corroborate our analytical finding
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. INTRODUCTION

In the Bayesian quickest change detection problem propbgeshiryaev[[1], there is a sequence of
random variables{ X,,}, whose distribution changes at a random tifhelt is assumed that befork,
{X,.} are independent and identically distributed (i.i.d.) wibnsity f,, and afterl" they are i.i.d. with
density f1. The distribution ofl" is assumed to be known and modeled as a geometric randonblearia
The objective is to find a stopping time at which time the change is declared, such that the average
detection delay is minimized subject to a constraint on tlubability of false alarm.

In this paper we extend Shiryaev’s formulation by explicakcounting for the cost of the observations
used in the detection process. We capture the observatimadtpehrough the average number of obser-
vations used in the detection process, and allow for a dymaonitrol policy that determines whether or
not a given observation is taken. The objective is to cholesebservation control policy along with the
stopping timer, so that the average detection delay is minimized subjecbmstraints on the probability
of false alarm and the average number of observations usednibtivation for this model comes from
the consideration of the following engineering applicaso

In statistical process control, economic-statisticaltomrchart schemes are designed to detect an abrupt
change in an industrial process that can affect the qualithe output, and at the same time minimize
the average operational cost in some sensel([2], [[3], [4]. tTdwitional approach has been to use simple
algorithms from the change detection literature, such asn8hrt, EWMA and CUSUM, as control
charts, and optimize over the choice of sample size, sampiterval and control limits'[4]. The reasons
for choosing the change detection algorithms mentionedeabave been simplicity of design and ease
of implementation[[R],[[4]. However, it has been demonstatmostly through numerical results, that
Bayesian control charts, which choose the parameters addtection algorithms based on the posterior
probability that the process is out of control, perform &ethan the traditional control charts based on
Shewhart, EWMA or CUSUM,; see][3].[4].][5], and the referemteerein. But, Bayesian control rules are
not preferred due to the complexity of the rules and also duke difficulty in designing such a scheme,
e.g., choosing thresholds| [4]. The process control probgefandamentally a quickest change detection
problem, and it is therefore appropriate that the costiefficschemes for process control are developed
in this framework. In this paper, we derive a simple two-#ifw@ld Bayesian test, show conditions under
which it is approximately optimal, and obtain analyticapapximations of its performance using which
the thresholds can be set directly from the constraints.

In many monitoring applications, for example infrastruetumonitoring, environment monitoring, or
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habitat monitoring, especially of endangered speciesjedllance is only possible through the use of
inexpensive battery operated sensor nodes. This could eealthe high cost of employing a wired
sensor network or a human observer, or the infeasibilityasiifig a human intervention. For example in
habitat monitoring of certain sea-birds as reported in 6, very reason the birds chose the habitat was
because of the absence of humans and predators aroundhiesa applications the sensors are typically
deployed for long durations, possibility over months, aneé the constraint on energy, the most effective
way to save energy at the sensors is to switch the sensor éetwreand off states. An energy-efficient
quickest change detection algorithm can be employed hexectéln operate over months and trigger
other more sophisticated and costly sensors, which arelgppg®wer hungry, or more generally, trigger
a larger part of the sensor netwofK [7], when some changetectel in the process under observation.
This change could be a fault in the structures in infrastmgcimonitoring [7], arrival of the species to
the habitat[[6], etc.

There have been other formulations of the Bayesian quickesige detection problem that are relevant
to sensor networks: se€ [8]-[12]. The change detectionlpnolstudied here was earlier considered in a
more general set-up for sensor networks in [13]. But owinthhéocomplexity of the problem, the structure
of the optimal policy was studied only numerically, and fbe tsame reason, no analytical expressions
were developed for the performance.

The goal of this paper is to develop a deeper understandittteafade-off between delay, false alarm
probability, and the cost of observation or informationd da identify a control policy for data-efficient
quickest change detection that has some optimality prp@ert is easy to design. As mentioned eatrlier,
we extend Shiryaev’s quickest change detection formuiabyp applying an additional constraint on the
number of observations used in the detection process. Weaatkaize the optimal control policy for
this problem by solving a Lagrangian relaxation using dyitaprogramming. Following an approach
similar to the one in[[13], we show that tleeposterioriprobability p, of the change having happened
before timek, given all the information up to tim&, serves as a sufficient statistic for both the stopping
rule as well as the observation control law. Furthermore,sivew that the optimal control policy that
minimizes the Lagrangian cost has a three-threshold sticHowever, finding the optimal control
for the original constrained optimization problem wouldju@ge optimizing over the three thresholds
and possible randomization over such optimized threesttolel policies. To this end, we analyze the
three-threshold policy using nonlinear renewal theony,[I#5], and characterize the optimal choice of
thresholds. Specifically, we identify an asymptotic regimahich any three-threshold policy, and hence

also the optimal policy for the constrained optimizationlgem when the optimal policy is deterministic,
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can be well approximated by a two-threshold policy. The athge of this simpler two-threshold policy
is that there exists a unique pair of thresholds that achi¢ive constraints on the probability of false
alarm and the average number of observations used. Alsag vsir analytical results, the thresholds can
be set directly using the constraints.

In the following section, we set up the data-efficient qustkehange detection problem with on-
off observation control, and summarize the dynamic prognarg solution. The layout of the paper is

provided at the end of the section.

Il. PROBLEM FORMULATION AND DYNAMIC PROGRAMMING SOLUTION

As in the model for the classical Bayesian quickest changectien problem described in Sectign I,
we have a sequence of random variall&s, }, which are i.i.d. with density, before the random change
pointT", and i.i.d. with densityf; afterI". The change poinf’ is modeled as geometric with parameter

pole,for0<p<1, 0<m<l,
= PAT = k} = mo Lp—gy + (1 = mo)p(1 — p)* " Tggzy,

wherel is the indicator function, and, represents the probability of the change having happeniedee
the observations are taken. Typicalty is set to O.

In order to minimize the average number of observations ,uae@ach time instant, a decision is
made on whether to use the observation in the next time stggdbon all the available information.
Let S, € {0,1}, with S, = 1 if it is been decided to take the observation at time.e. X}, is available
for decision making, and; = 0 otherwise. ThusSj is an on-off (binary) control input based on the

information available up to timé — 1, i.e.,
Sk = pr—1(Ig-1), k=12,...
with 1 denoting the control law and defined as:
Iy = Sl,...,Sk,stl),...,X,ES’“)}.

Here,Xi(Si) representsX; if S; = 1, otherwiseX; is absent from the information vectdt. The choice
of 57 is based on the priotg.

As in the classical change detection problem, the end go&b ishoose a stopping time on the
observation sequence at which time the change is declareabtldg the stopping time by, we can

define the average detection delay (ADD) as
ADD =E [(r —D)*].
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Further, we can define the probability of false alarm (PFA) as
PFA=P(r <T).

The new performance metric for our problem is the averagebeunof observations (ANO) used in

detecting the change:

ANO=E | Sk] :
k=1
Let v = {7, no,-..,ur—1} represent a policy for cost-efficient quickest change dietecWe wish to

solve the following optimization problem:

minimize  ADD(vy),
Y

subjectto  PFAy) < «, and ANQy) < 3, 1)
wherea and S are given constraints. This problem is difficult to solveedity and hence we consider a
Lagrangian relaxation of this problem which can be solvadgislynamic programming.

The Lagrangian relaxation of the optimization problem[i i€l
R(v) = min ADD(7) + Ay PFA(7) + Ac ANO(7), ()

where Ay and \. are Lagrange multipliers. It is easy to see thah jf and A, can be found such that
the solution to[(R) achieves the PFA and ANO constraints wihality, then the solution t@](2) is also
the solution to[(ll). In general it can be argued that the Eiuio the constrained probleri] (1) can be
obtained by randomizing over solutions td (2). Due to theilids [16], it can be further argued that the
number of policies over which the randomization has to beedoifl be finite.

The solution to the optimization problem il (2) can be oledirusing dynamic programming and
following steps similar to those given in_[13]. In the followy we summarize these steps.

Let ©; denote the state of the system at tinéAfter the stopping timer it is assumed that the system
enters a terminal statg and stays there. Fdr < 7, we have©, = 0 for k < T', and©; = 1 otherwise.
Then we can write

ADD =E

T—1
ZH{szl}]

k=0
and PFA= E[H{GTZO}] .

Furthermore, leD, denote the stopping decision variable at tima.e., D, =0if k <7 andDy =1
otherwise. Then the optimization problem [d (2) can be emitas a minimization of an additive cost
over time:

R(y) = minE
Y

> 9k(Ox, D, Sk)]
k=0
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with
9k(0,d, s) = Tggury [Lp=13lga=or + Af Ljp=o}l{a=1} +Ae Lis=131fa=0}] -

Using standard arguments [18] it can be seen that this agiion problem can be solved using infinite

horizon dynamic programming with sufficient statistic {pEbktate) given by:
pk:P{@k:1’[k}:P{F§k’Ik}.

Using Bayes’ rulep, can be shown to satisfy the recursion

3O (py) if Spy1=0
Pk+1 =
M (Xpy1,pr)  if Spypr =1
where
O (py) = pr + (1 — pr)p 3)
and
®O) (p)L(X,
oW (Xps1,pi) = () L(Xi11) 4)

O (pg) L(Xpp1) + (1= 2O (py))
with L(X11) = f1(Xk+1)/fo(Xks1) being the likelihood ratio, angy = my. Note that the structure of
recursion forp; is independent of time:.
The optimal policy for the problem given inl(2) can be obtdirfeom the solution to the Bellman

equation:

J(pr) = min Ay (1= pe)ig,=1y + Lg=op [pr + B (00)a., im0y + O + B (01Dl e, 1=y )

dk75k+1
with
B (py) = 73 (py))
and

B (py) = E[J(@V) (Xp11, p1))].

It is easy to show by an induction argument (see, €.gl, [1&#) 1, BSO) and Bf,” are all non-negative
concave functions on the intervé, 1], and thatJ(1) = Bgo)(l) = Bgl)(l) = 0. Also, by Jensen’s
inequality

BV (p) < JE@D(X,p)]) = BY (), pelo,1].
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From these properties of, BSO) andBSl), it is easy to show that the optimal poliey = (7%, ug, 13, .- -, 1)
for the problem given in[{2) has the following three threshsiructure:
i i 0 if pp €]0,B*)U[C*, A¥
Sk+1 = br(pk) =
1 if pp € [B*,C*) (6)
" =inf{k >1:p, > A"}
with 0 < B* < 0* < A* < 1. The value of4*, B*, andC* depend on the choice of; and \..

Remark 1. With B* = 0 and C* = A*, the algorithm in(@) reduces to the classical Shiryaev test [1].

The optimal policy described if](6) has the following inteation. Recall thap,, is thea posteriori
probability of the change having happened before timgiven all the information up to timé. If p;
is either close to 0 or close to 1, the test has high confidehoatahe change, and therefore does not
take a new observation and relies on the priopfis large enough, we stop and declare a change.

We next characterize the solution to the constrained opétitin problem given in[{1) using the
dynamic programming solution structufd (6) that we derif@dthe Lagrangian relaxation given ihl (2).
Now, for given(A*, B*,C*), v* in (@) has some PFA and ANO performance. For a giweand 3, if
Ay and ). can be chosen such that PRA) = o and ANQ(v*) = 3, then it is clear that the solution to
(@) is also a solution td {1). In the following we refer to thiase by saying that a deterministic policy
is optimal. If no such\; and . exists, then one has to randomize over three-thresholdigslthat are
solutions to [(R), to meet the constraintsand 8 with equality. Since our objective is to find easy-to-
design data-efficient quickest change detection algosgthme restrict our attention to the characterization
of deterministic optimal policies: findingA*, B*, C*) in (@) for a givena and 3.

Towards characterizing deterministic optimal policieg, make the important observation that it is not
enough to find a three-threshold policy that meets the cainssro and 5 with equality. In Tabldll we
show the performance obtained via simulations of a threestiold policy for various values of thresholds,
which we denote by A, B, C'), and for the parameter set:= 0.01, fo ~ N(0,1), f1 ~ N (0.75,1). The
table clearly shows that multiple values of thresholds B, C) satisfy the same constraints= 103
and = 40, and one can optimize over the choice of thresholds to gebélse ADD. Thus, the dynamic
programming argument only tells us that the optimal poli®, the one that minimizes ADD subject to
constraints on PFA and ANO, can be found within the class dettthreshold policies. Further, not all
three-threshold policies are optimal solutions to the tranged optimization problem described id (1).

We will therefore denote a generic (deterministic) thieeshold policy byv(A, B,C), with the
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TABLE |
p=0.01, fo ~ N(0,1), f1 ~ N(0.75,1)

A B C ANO | PFA | ADD
0.998993| 0.182426| 0.991837| 40 1072 | 189
0.998952| 0.222700| 0.997268| 40 1072 | 88
0.998876| 0.231475| 0.997975| 40 1072 | 62
0.998708| 0.236855| 0.998341| 40 1072 | 46
0.998499| 0.239577| 0.998438| 40 107 | 42.3
0.998449| 0.240489| 0.998449| 40 1073 | 421

understanding that the policy may not be optimal. In ordepldain the optimal thresholds for given
constraints PFA « and ANO< 3, i.e. to find(A*, B*,C*) in (@), it is still necessary to obtain analytical
expressions for ADD, PFA and ANO, and to solve the optima@aproblem[(l) on the space of thresholds,
(A, B,C). To this end, in the following section, we derive analytiegproximations for ADD, PFA and
ANO in terms of (A, B, C) for any three-threshold policy(A, B, C).

In Sectior IV-A we use our analytical approximations to euderize this optimal choice of thresholds.
Specifically, observe in Tab[é | that the ADD was minimum fbe= C. We will show in Sectioh TV-A
that this is a typical choice, i.e., a two-threshold polisyoptimal among deterministic policies, unless
the ANO constrain{3 is very severe. Even when a two-threshold policy is not oatirmve will show,
in Section[IV-B via simulations, that using a two-threshaldthose cases results in marginal loss in
performance.

In Section IV-C, we provide a possible justification for thuer of the third threshold for cases where
using three thresholds is optimal. In Section 1V-D, we pdevidesign guidelines for the two-threshold
algorithm, and in Sectiob IVAE we comment on the trade-offtween ANO and ADD. Finally, we

summarize the results and comment on future work in SeEfion V

[Il. ASYMPTOTIC ANALYSIS OFv(A, B,C)

In this section we derive asymptotic approximations for ADRFA and ANO for a three-threshold
policy v(A, B,C). To that end, we first convert the recursion fgr (see [(B) and[{4)) to a form that is

amenable to asymptotic analysis.

Define, Z;, = log 122~ for k£ > 0. This new variableZ,, has a one-to-one mapping with. By defining

Pk

c=log

A B
@= 08T 1B 1—-C’

AJ
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we can write the recursiongl(3) arid (4) in termsZf

Fork > 1,
Zks1 = Zk +log L(Xj11) + |log(1 — p)| +1log (1 + pe™2*) , if Z; € [b,c) 7
and
Zyw1 = Zi + |log(1 — p)| +log (L + pe Z*) , if Zy ¢ [b,c) (8)
with

Zy =log (€% + p) + |log(1 — p)| + log (L(X1)) L z,ep.0))-

Here we have used the fact tht,, = 1if p, € [B,C), andSi,1 = 0 otherwise (sed{6)). The crossing
of thresholdsA, B, C' by py is equivalent to the crossing of thresholdsh, ¢ by Z;. Thus the stopping

time for v(A, B, C) (equivalentlyy(a, b, c) with some abuse of notation) is
T=inf{k>1:2Z; >a}.

In this section we study the asymptotic behaviorod, b, c) in terms of Z;, under various limits of
a, b, c andp. Specifically, we provide an asymptotic expression for AB®,fixed b andp, asc,a — oc.
We also provide, ag,a — oo andp — 0, asymptotic expression for PFA for fixég and for ANO with
b — —oo. Note that the limit ofc,a — oo corresponds to PFA going to zero (and ADD, ANO o),
and the limit ofp — 0 corresponds to a rare change event.

Fig.[d shows a typical evolution of(a, b, ¢), i.e., of Z; using [7) and[(B), starting at time 0. Note that
for Z;, € [b, ¢), recursion[(I7) is used, while outside that interval, reicurg{8), which only uses the prior
p, is used. As a result;, increases monotonically outsidie c).

Define,

Te=1inf{k>1:Z; > c}.

From Fig.[1 again, each timg&;, crossesh from below, it can either increase to(point 7.), and then
monotonically increase to stop at(point 7), or it can go belowb and approaclh monotonically again
from below, at which time it faces a similar set of alternasivThus the passage to thresholpossibly
involves multiple cycles of the evolution of, below b. We will show in Sectiod 1I-B that after the
change pointl’, following a finite number of cycles below, Z; grows up to cross:;, and the time
spent on the cycles belowis insignificant as compared t@ — I', asc,a — oo. In fact we show that,
asymptotically, the time to reachis equal to the time taken by the classical Shiryaev algorith move

from b to c. (Note that for the classical Shiryaev algorithm the evolubf Z;, would be based on only

@)
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0 30 r 60 T, 90 120 1

Fig. 1. Evolution ofZj, for fo ~ N(0,1), f1 ~ N(0.5,1), andp = 0.01, with thresholds: = 4.59, ¢ = 3.89, andb = —1.38,
corresponding to the, thresholdsA = 0.99, C' = 0.98 and B = 0.2, respectively. AlsaZ, = b.

When Z,, crosses: from below, it does so with an overshoot. Overshoots playgaifitant role in the
performance of many sequential algorithms (see [14], [&nf they are central to the performance of
v(a,b,c) as well. In Sectiof I-C, we show that PFA depends on the sheot(Z,. — ¢) asc — oo,
and on thresholds and a, but is not a function of the threshold. The overshoot distribution is also
used to approximate the time féf,, to move frome to a.

The number of observations taken during the detection geisethe total time spent by, between
b andec. As ¢,a — oo, Z crosses: only after change poink', with high probability. The total number
of observation taken can thus be divided in to two parts: akert beforel’, which is the fraction of
time Z;, is aboveb (and hence depends only &)y and the part consumed after In Sectior1l[-D0 we
show that, asymptotically, the average number of obsematised afteF is approximately equal to the
delay itself.

In Sectior1II-B we provide numerical results to demonstithtat under various scenarios, for limiting
as well as moderate values @fb, ¢ andp, our asymptotic expressions for ADD, PFA and ANO provide
good approximations.

In Section[IV¥ we use the asymptotic expressions for ADD, PRA ANO to argue that the optimal
three-threshold policyy*(a*, b*, ¢*) for given constraints PFA « and ANO< j3, can be well approxi-
mated by a two-threshold policy. We also provide numerical simulation results to support the claim.

We begin our analysis by first obtaining the asymptotic dvee$ distribution for(Z. — ¢) using
nonlinear renewal theory [14], [15]. As mentioned abovés thill be useful for the ADD analysis and
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will be critical to the PFA analysis. For convenience of refece, in Tablé]l, we provide a glossary of

important terms used in this paper.

TABLE 1l
GLOSSARY
Symbol Definition/Interpretation Symbol  Definition/Interpretation
ADD Average detection delay A Starting atb, first time Z;, is outsidelb, ¢)
PFA Probability of false alarm A Starting atb, first time Z;, crosses:
ANOg Average # observations used before change or crossed from below
ANO; Average # observations used after change ADD? Starting atb, time for Z;, to reachc underP;, when
{Xr} Observation sequence Zy, 1s reset tob each time it crosses from below
Di a posteriori probability of change Az) Starting atz > b, first time Zj, is outside[b, ¢)
Z log 15’;% = Zi?:l Yi + ks A(z) Starting atz > b, first time Zj, crossesc
7 (7¢) First time forp;, to crossA (C) or or crossed from below
first time for Zj, to crossa = log 72 (c) A Starting atb, first time Z;, < b with ¢ = oo
{ni} Slowly changing sequence 5\(:(:) Starting atz > b, first time Z;, < b with ¢ = oo
R(z), ¥ Asymptotic distribution and mean of overshoot | T, Time spent byZ,, below b, afterI", whent > T°
when Z,’le Y; crosses a large threshold A Starting atz > b, first time Z;, > ¢, or crosse® from
t(z,y) Time for Z;, to reachy starting atz using [8) below, or is stopped by occurrence of change
v(z,y) Time for Z;, to reachy starting atz using [7) o The fraction of timeZ,, is aboveb, when stopped byA®
also, time for Shiryaev test to reaghstarting atz | 74, ()  Starting atb, time for Z,, to reachc, when Z;, is
vy, Vo v(b, c) andv(—oo, c) reflected at (reset tob when it crosse$ from below)

In what follows, we usé&, andP, to denote, respectively, the expectation and probabilggsure when
change happens at timfe We useE., and P, to denote, respectively, the expectation and probability
measure when the entire sequeRcg, } is i.i.d. with densityfy. Also, g(z) = o(1) asx — x¢ is used

to denote thay(z) — 0 in the specified limit.

A. Asymptotic overshoot

In this section we characterize the overshoot distributibri; as it crosses asc — oo. For this
analysis, we can therefore assume that< c. Also, in analyzing the trajectory ofy, it useful to allow
for arbitrary starting poinZ, (shifting the time axis). We first combine the recursionsldi) 4nd [8) to
get:

Zi1 = Zi + Lz, 50y log L(Xp11) + [log(1 = p)| + log (1 + e 7*p) .
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By definingY;, = log L(X})+|log(1—p)| and expanding the above recursion, we can write an expressio

for Z,,:

n n—1 n
Zn = Y Yitlog(e® +p)+ > log (1+e %p) = Tz pylog L(X)
k=1 k=1 k=1
= Z Yk + M- (9)
k=1
Heren,, is used to represent all terms other than the first in the euabove:
n—1 n
M =log (e +p) + > log (14 e % p) = > Tz 4y log L(Xp). (10)
k=1 k=1

As defined in[[14]7, is aslowly changingsequence if
n_lmax{\m],...,]nn]} ni_)—poo>0, (11)
and for everye > 0, there exist:»* andd > 0 such that for allh > n*

P ik — T . 12
{1;1,1%%\77% Nl > €} < e (12)

If indeed {7, } is a slowly changing sequence, then the distributiorZpf— ¢, asc — oo, is equal to
the asymptotic distribution of the overshoot when the ramdealk >")'_, Y}, crosses a large positive

boundary. We have the following result.

Theorem 1. Let R(z) be the asymptotic distribution of the overshoot when theloam walk";'_, Vj
crosses a large positive boundary undey. Then for fixedp and b, underP;, we have the following:
1) {n,} is a slowly changing sequence.

2) R(x) is the distribution ofZ,, — c asc — oo, i.e,,

lim P[Z;, —c<z|r. > T] = R(z). (13)
CcC— 00
Proof: Whenb = —o0, Z; evolves as in the classical Shiryaev test statistic, and daisy to see
that in this case:
n—1
Ny = [log (eZ“ + p) + Zlog (1 + e_Z"p)]
k=1
n—1 k
Jo(X3)
= log |e” + 1—p)* :
g kzzop( P) gfl(Xi)
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It was shown in[[1F7] that thign,} sequence (fob = —c0), with Z; = —o0, is a slowly changing
sequence. It is easy to show th@j,} is a slowly changing sequence evenif is a random vari-
able. Also, if L, is the last timeZ, crossesb from below, then note that, aftet,, the last term
> k=1 Liz,<py log L(X},) in Q) vanishes, ang, in (I0) behaves like the,, for b = —occ. We prove the

theorem using these observations. The detailed proof engiv the appendix to this section. |

B. Delay Analysis

The PFA for~(a, b, ¢) can be shown to have the following expression and bound [17]:

1
PFA=E[l—p,]<1- A= <e 14
[1—p;] < [Tea S€ 14)

We will later show that this upper bound is tight if the gapvibetnc anda is significant enough. Using
this upper bound we can show that the ADD~df, b, ¢) is given by:

ADD = E|[(r-I)7]
= E[r-T|r>T](1+0(1)) asc,a — oo. (15)

As c¢,a — oo, the conditional delayt[r — I'|7 > I'] will be due to the sample paths in whicky,
crosses: after the change point, i.e. 7. > I'. The following lemma establishes that the conditional
delay can be written as a sum of two other conditional increaledelay terms. We need the following

definition. Lett(x,y) be the constant time taken I to move fromZ, = z to y using the recursion

@), i.e.
t(l’,y) é lnf{k >0:Zk >y, Zo=2x, 1,y ¢ [b7 C)} (16)

Lemma 1. For fixedp andb, if ¢(c,a) is bounded as:, a — oo, then asc,a — oo,
E[r = T|r >T] = (E[t — 7e|te > T+ E[re = |7 > T]) (1 4+ o(1)) a7

Proof: See the appendix to this section for the proof. |

In the following, we provide asymptotic expressions ¥jr — 7.|7. > '] andE[r. — T'|7. > T'].
1) Asymptotic expression fdt[r. — I'|7. > T'|: Let ¥ represent the Shiryaev recursion, i.e., updating
Zy. using only [T). Define

v(z,y)=inf{k >1:9(Zy_1) >y, Zy=uz}. (18)

May 17, 2011 DRAFT



14

Thus,v(z,y) is the time for the Shiryaev test to reaghstarting atz. Also, define the stopping times:
vy = V(b7 0)7 (19)

and

vy = v(—00,c). (20)

Note that,v, is the stopping time for the classical Shiryaev té€st [1] apds its modified form which
starts ath.
From Theorem 1 in[[17],

&
D(f1, fo) + [log(1 — p)|
where,D(f1, fo) is the K-L divergence betweefy and f;. Also based on the second order approximation

Elvo —Tlvg =T >

(1+0(1)) asc — oo,

for E1[vy] developed in[[17], we have obtained the following approxtiorafor E[v,]:

B c—E[nb)]+7
il = 5 7o)+ 1 log(1 = 9]

where,n(b) is the a.s. limit of the slowly changing sequengewith Z, = b under f1, (see [(ID) and
(48)), and

+o0(1) asc — oo, (21)

7= /000 zdR(z), (22)

with R(z) as in Theoreni]l. Sincg(b) is not a function of the threshold we have

E[lvo — Ty > T] = Ei[m](1 +0(1)) as ¢ — oo. (23)
Using [23) we prove the following lemma.
Lemma 2. For fixedd and p,

E[r. = T|7. > T] > E1[p](1 + 0o(1)) asc — oo.
Proof: We have for any andc,
Efr, = Dlr. > T] > E[yy — T'|vp > T

This is true because skipping observations can only leadrgef delay. The result then follows from
23). [

In the following we show thak[r. — I'|7. > I'] is also asymptotically upper bounded By|v;).

It was discussed in reference to Hig. 1 that each tiperosses from below, it faces two alternatives,

to crossc without ever coming back tb or to go belowb and cross it again from below. It was mentioned
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that the passage to the threshelds through multiple such cycles. Motivated by this we defihe t
following stopping times\ and A:

A2inf{k >1: 2, ¢ [b,c), Zo = b}, (24)
and
ASinf{k>1:Zy>c or3k st. Zy1 <bandZy > b, Zy = b}. (25)
We can writeA as a function of\ using [16):
A= A+t2),0)iz, <py + Aiz,50p = A+ 2N, b))z, <)

The significance of these stopping times is as follows. If wetthe process &ty = b andresetZ;, to b
each time it crossesfrom below then the time taken by, to move fromb to ¢ is the sum of a finite but
random number of random variables with distributionAgfsay A1, As,...,Ay. Fori=1,..., N —1,
Zp, < b,andZ,,, > c. Thus the time to reachin this case is; [Z],f:l Ak].

DefineADD® = E; [fo:l Ak]. LemmaB shows thdt; [fo:l Ak] is the dominant term in an upper

bound toE[r, — I'|7. > I'] asc,a — oo.

Lemma 3. For a fixedb and p, we have as,a — co,c < a
E[r. = T|7. > T] < ADD?® (1 + o(1)) . (26)
Proof: The proof is provided in the appendix. |

We next show thak,[v;] is asymptotically equivalent t&dDD?, and is hence an asymptotic upper
bound forE[r, — T'|7. > T'].

Lemma 4. For a fixedb, ADD?, the average time fo, to crossc starting atb, underPq, with Z;
reset tob each time it crosses from below, is asymptotically equal to the correspondimgetitaken by

the Shiryaev recursion, i.e.,
ADD?® = Eq1[»)(1 + o(1)) asc,a — oc.

Hence,

E[r. = T|me > T'] < Ei[p] (1 4+ 0(1)) asc,a — oo.

May 17, 2011 DRAFT



16

Proof: We provide a sketch of the proof here. The details are providghe appendix. Note that
N
>
k=1

= Ei[N]E[A]

@) _ Ei[A]

Pl(Z)\ > C)

E1[>\] + El[t(Z)\,b)HZ)\ < b}]Pl(Z)\ < b)
Pl(Z)\ > C)

In the above equation, equality) follows from Wald’'s lemmal[[14], and equalitfii) follows because

ADD®* = E;

N ~ Geom(P(Z, > ¢)). The main idea of the proof is to find stopping times which upged lower
bound the Shiryaev time on average and have delay eqlﬁ% asc — oo. Finally, we use Lemma
[} [

We have thus proved the following theorem.
Theorem 2. For a fixedb and p, we have ag,a — oo,
E[r. = T|r. > T] = E1[p] (1 + o(1)) . (27)
2) Asymptotic expression fdt[r — 7.|7. > T'|: The time forZ; to reacha after it has crossed is
non-zero only if the overshodf,. — ¢ < a — c. If the overshoot ist < a — ¢, then the time taken is
t(c+x,a). Since, withc — oo, the distribution ofZ,, — ¢ is R(z), one can approximat@[r — 7.|7. > T']

for large ¢, by averaging(c + z,a) over R(z).

We first prove a lemma in which we obtain asymptotic upper ameet bounds ort(z, y).

Lemma 5. For a fixed value op,

<&> (1+0(1)) <t(z,y) < <Lw)‘ + 1) (1+0(1)) asz,y — co.  (28)

[log(1 — p)| [log(1 —p
Also, for fixed values of andy, we have
log(1+¢e¥) —log(1 + ex)>
t(xz,y :< 140(1)) asp — 0. (29)
) nost o)) oW
Proof: The proof is provided in the appendix. |

We use Lemmal5 to prove the following theorem.
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Theorem 3. Asc,a — oo,

[ = ge@) 4+ o) < Bir = 219 (50)

< (/0_ ﬁd}z(@ + R(a— c)> (1 + o(1)).

The asymptotic upper and lower bounds differ Bya — ¢), which being a distribution satisfie® <

R(a — ¢) < 1. Further if a — ¢ — oo or a — ¢ — constant> 0 with p — 0, then we have

@ g—c—x
Elr — 7. > T = / 7de> 1+ o0(1)). 31
renln 1) = ([ G AR ) (1 ol1) (31)
Proof: The proof is provided in the appendix. [ |

C. PFA Analysis

We know from equation (14) that PFA can be writtenk$ — p,]. We first obtain an expression for

PFA as a function of the overshoot wheéf crosses:.

Lemma 6. For fixedp and b, asc,a — oo
PFA = E[l —p,] = e “Ele"% 9|1 + o(1)).

Proof: See the appendix for the proof. |
From LemmdDb, it is evident that PFA depends on the overshben, crosses: asa — oo. This
overshoot in turn depends on the overshootgfwhen it crosses. Since the latter has an asymptotic

distribution (Theoreni]l) that depends only on densifigsfi and prior p, and is independent df,

it is natural to expect that as — oo, PFA is completely characterized by the asymptotic distidn
R(x) and is not a function of the threshobd This is indeed true and is established using the following
argument.

When Z;, crossese it can either directly jump above with an overshoot greater than— ¢, i.e.,
{Z;, > a}, or crossc with an overshoot less than— ¢, i.e., {Z.. < a}. In the former case, the false
alarm is then a function of the asymptotic distributi®iz) asc — oo. In the latter case, becausg
crossese with the help of only the prior, the overshoot is small and gt@ zero asp — 0 (8). As

a — oo, Zr_1 > 0. Hence,

1+4e % 1
Zr— Zr-_1 =log <¥> < log <1ﬂ> asa — 0o.

Thus on the se{Z, <a}, Z;, — a = 0 for p small enough, and in this ca$&'A ~ ¢~ *. Based on this

idea we have obtained an asymptotic expression for PFA.
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Theorem 4. For b fixed, asc,a — oo, and p — 0,

PFA = (e_aR(a —c)+ e‘c/

[e.e]

—C

e—:vdR(x)> (1+ o(1)). (32)

Proof: The proof is provided in the appendix. [ |

D. Computation ofANO

As ¢ — oo, 7. > T with high probability. As a result, the total number of obh&gions used can be
separated in two parts, one used befbrand the other used aftdt. The part used befor€ is the
fraction of time the procesg&, is aboveb. The part used after, for largec, is approximately the time
taken byZ, to reachc. We obtain an asymptotic expression for ANO based on the alunas.

First note that,
ANO = E zs]Elzs]
k=1
. i:sk

- E ZSkTCEF]P(TCEF)—i—E Tc<r]P(Tc<r)
Lk=1 k=1

= E Sklte >T| (1+0(1)) as c¢— oo.
Lk=1

The last equality follows because ;s , Sy <T on{r. <T}, andP(r. <T) <e ©— 0 asc — oo.
Define ANOQy as the average number of observations used bé&foamd ANO; as the average number

of observations used aftél, conditioned on the everit. > I'}. We can then write ANO as
ANO = <E > S
Lk=1

m—1 ] Te
_ (E > Splre=T|+E|> Sk )(1+0(1))
Lk=1 i k=T

— (ANOy+ANO;) (1 +0(1)) as c¢— oo.

e 2T ) (1+o0(1))

T > T

Following (24), we define
AN=inf{k>1:2, <b,Zy=b,c=o0}. (33)
The theorem below gives asymptotic expressionsAidiO, and ANO;.

Theorem 5. For fixed threshold, we have as,a — o,

ANO; = E1[1](1 + o(1)),
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and asc,a — oo, p — 0, andb — —oo, with p taken to O beforé is taken to—oo,
p ! B[] 1
Eoo[j\] + Eoo[t(Zj\v b)] 1+ el

ANOg = (1+0(1)),

where, ) is as defined if33).

Proof: The number of observations used affecan be written as the difference between the time

for Z;, to reachc and the time spend by it belo For this we define the variable

A i
T, =E [Z Lz, <v}
k=T

TCZF].

Thus
ANO; =E[r. —T|r. >T] - T + 1.

We know from Theorer]2 thdt [r. — I'|7. > I'| = E;[v;]. The following lemma shows that as— o,

T, converges, and eveANO; ~ E;[v;] for largec.

Lemma 7. For a givenp and b,

ANO; =Ej[n](1+0(1)) as c¢,a— .

Proof: The proof is provided in the appendix. |
For computation oANO,, we allow for the possibility that the proce$&;.} started withZ, = zy #
—00, 29 < b. Lett(b) be the first timeZ;, crossed from below, i.e.,t(b) = t(zp,b). Using the fact that

observations are used only aft€b), we can write the following:

-1
ANOG=E | > 5
Lk=1

TCEI’]

[ T-1
=E | Y Sk[T>t(b), 7. >T| P(T > t(b)|re > T). (34)
| k=t(b)
We now compute each of the two terms[inl(34). For the first terf84), we have the following lemma.

Lemma 8. For a fixedb, asc,a — oo, p — 0, andb — —oo, with p taken to 0 beforé is taken to—oco,

{zs

ke=t(b)

_ p~! EOO[S‘] o
L' > t{b),7e 2 P] T Bz )

Proof: Note that

-1 -1
Jim B { > ST > t(b), 7 > r] =E { > ST > t(b),c = oo] .
k=t(b) k=t(b)
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To compute the right hand side of the above equation, notecthaditioned or{I" > #(b)}, Zl,;;tl(b) Sk

is approximately the number of observations used when theegsZ; starts atZ, = b, goes through

multiple cycles belows, with each cycle length having distribution af and the sequence of cycles is

interrupted by occurrence of change. See the appendix éoddiailed proof. [ |
For the second term in_(B4), we show tHal" > ¢(b)|7. > T) is equal toﬁ in the limit and is

independent of.

Lemma 9.

P(L > t(b)|r. > T) =

T ; to(l) as c,a—o00,p—0.
e

Proof: The proof is provided in the appendix.

The Lemmas]1719 taken together completes the proof of TheBtem

Simpler Approximation foANOg: Invoking Wald’s lemmal[14], we writdl[\] as,

o Exl[Z5] — Eco[ng]
BN = =57 ) 7 Toe 1)1

We have developed the following approximation for,[\]:

. = —b
B\ ~ 7+ log(1 + pe™?) .

D(f1, fo) — [log(1 — p)|

Here,log(1 + pe~?) is an approximation td [n5] by ignoring all the random terms aftéris factored

(35)

out of it. This extrab will cancel with theb in Eo[Z5] = b+ Eoo[Z5 — b]. We approximatéi [b — Z5]
by 7, the mean overshoot of the random Waﬂl‘{.“:l Yy, with meanD(f1, fo) — | log(1 — p)|, when it
crosses a large boundary (seé (9)).

For the termE.[t(Z;,b)], we use[(2B) and the steps followed in the proof of Thedrem Getothe
following approximation:

[ log(1 + e?) —log(1 + ")
Bz, 0]~ [ I

Thus, we approximate the distribution @f — Z5) by R(z). As we will see in the next section, both of

dR(z). (36)

these approximations work well for Gaussian observations.

E. Numerical Results

In Sections II[-BEII-D, we have obtained asymptotic exgs®mns for ADD, PFA, and ANO as a
function of the system parameters: the threshalds, ¢, the densitiesf, and f1, and the priorp. We

summarize the results below for convenience of refereneewite v, asv (b, ¢) to show its dependence
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onb andc. Also, we write \ (33) asﬁ\(b) to indicate its dependence énThe asymptotic approximations

are:
ADD ~ Elr.—T|r. > T+ E[t(Z..,a)|r. > T
~ Ei[v(b,c)] + /0 ﬁd}ﬂx), 37)
PFA ~ e “Rla—c)+e ¢ /OO e “dR(z), (38)
ANO ~ ANOp + ANO; o
~ Eoe\(0)] - Eufubc)). (39)

L+ ¢ B [AD)] + Eaolt(Z5 ), D)]
Recall that an approximation fdt;[v (b, c)] was obtained in[(21), based on the result from [17], and a
simpler approximation foANO, was developed using (B5) ard [36).
In this section, we comparé (37)-(39) with simulation ré&sub demonstrate the accuracy of these
approximations. We assume that the observations are Gauagth f, ~ A (0,1), and f; ~ N (6, 1),
6 > 0, for the simulations and analysis. In the simulations, ti&\ Ralues are computed using the
expressiortl[1 — p;| given in [14). This guarantees a faster convergence forlsrakies of PFA. Also,

we define

ANO% = ANO expressed as the percentage of the average number of
(40)
observations used by the Shiryaev test that achieves the BB

Thus, a small ANO% corresponds to a large saving in the aeenagnber of observations used for
detection by~(a, b, c). In Section[IV we will show that the optimal choice of threktofor v(a, b, ¢)
depends on the ANO%.

In Section$TII-B, we identified limits under whidh, [ (b, ¢)] is a good approximation fd&[r.—I'|7. >
I']: for fixed b, asc,a — oo. Clearly, in this limit ANO% increases to 100. In Talplel llleviix b = 1.0
and increase, and compard[r, — I'|7. > I'], obtained using simulations, 1, [v (b, ¢)] from (37). We
see in Tabl&Tll that the approximation improves as the AN@#%eases. In general [v(b, ¢)] is a good
approximation forE[r, — T'|7. > I'| when ANO% is large, but may not be a good approximation when
ANO% is small.

In Table[IM we comparé, [v (b, c)] andE[r. — T'|7. > T] for various values o, thresholdsu, b, ¢,
with ¢ = a, and post change medh The table demonstrates that the analytical approximasiajuite
accurate even for these moderate values of the parameteserctand for 20-50% of savings in the

average number of observations used (note the ANO% in the)talfe also tabulate the corresponding
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TABLE Il
p=0.05, fo ~ N(0,1), i ~N(0.75,1),c=a

Simulations Analysis

a b E[re = T|7. > T] | Ei[v(b,c)] | ANO%
1.2 1.0]| 16 1.7 9%

5.0 1.0| 29.6 13.1 37%
9.0 1.0 | 41.7 25.2 52%
18.0 | 1.0 | 68.8 52.2 70%
50.0 | 1.0 | 165 149 86%
100.0 | 1.0 | 315 299 93%

values of PFA achieved using analydis](38) and using simonisit A comparison of PFA values shows

that [38) is quite accurate for the parameters chosen.

TABLE IV
fo~N(0,1), fi ~N(0,1),c=a

ADD PFA ANO%
0 p a b Simulations Analysis Simulations | Analysis
Elre = T|re > T | E1[v(b,0)]

0.4 |0.01 |85 -2.2 | 104.9 111.7 1.608<10™* | 1.608<10™* | 83%
0.75| 0.01 | 6.467 | -2.2| 32.3 29.5 1.002¢<107% | 1.004x10~2 | 49%
20 | 001 |75 |-40/|6.1 6.23 1.77x107* | 1.768<107* | 47%
0.75 | 0.005 | 8.7 -3.0 | 42.6 40.4 1.076x107* | 1.076x10™* | 48%
07501 |85 |00 |239 22.18 1.286<107* | 1.285¢107* | 75%

To further show the accuracy df (38) as an approximation fok,Rn Table[M we compard (38) with
the PFA obtained using simulations ofa, b, ¢) for the same choice of thresholds, b, ¢). Note that in
comparison with Table1V, here < a. From the table we see th&t {38) gives a very good estimate of
PFA.

In Table[V], we show that PFA is not a function bffor large values of: anda. We fix a = 4.6 and
¢ = 3.89, and increasé from -2.2 to 0.85. We notice that PFA is unchanged in simolegiwhenb is
changed this way. This is also captured by the analysis aisdqitiite accurate.

In Table[VIl we demonstrate the accuracy of ANO approxima&ijoANO, and ANO; (39), for the

same set of parameters as in Tdblé IV. The table shows thapih®ximations in[(39) are quite accurate
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for the parameters chosen.

TABLE V
PFA:FOR fo ~ N (0,1), f1 ~N(0,1),c<a

PFA PFA
0 p a b c Simulations | Analysis
0.4 |0.01 |30 25 | 4.63x107% | 4.87x107?
0.4 | 001 | 60|20 |58 | 22391073 | 2.253«10~2
0.75] 001 | 9.0| -2.0| 9.0 | 7.968<107° | 7.964x10°
2.0 | 0.01 | 50| -40| -1.0| 6.649%<10~° | 6.72¢x10°
0.75| 0.005| 7.6 | 3.0 | 7.5 | 3.531x10™* | 3.535¢<10~*
0.75| 0.1 40| -3.0| 20 | 1.71x1072? | 1.83x1072
TABLE VI

PFAfor p = 0.01, fo ~ N(0,1), f1 ~ N(0.75,1)

a b c Simulations | Analysis

46| -22 | 3.89| 9.2x10°* 9.24x103
46| -15 | 3.89| 9.2x10°3 9.24x103
4.6 | -0.85| 3.89 | 9.2x107* 9.24x107°
46| 0 3.89| 9.2x10°3 9.24x103
46| 0.85 | 3.89 | 9.2x107* 9.24x107°

23

Table[VIIl shows the comparison of simulations and analysisE[t(Z;.,a)|7. > T'], as provided in

equation[(37). We tabulate the result for various valueg ahd thresholda andc. The values indicate

that the approximation is quite accurate.

TABLE VI
fo~N(0,1), fi ~N(0,1),c=a

ANOq ANO,
0 p a b Simulations | Analysis | Simulations | Analysis
04 | 001 | 85 -2.2 | 66.3 62.88 102.9 111.7
0.75| 0.01 | 6.467 | -2.2 | 34.92 34.24 27.86 29.46
20 | 001 |75 -4.0 | 42.94 46.4 6.08 6.23
0.75| 0.005 | 8.7 -3.0 | 77.18 75.09 38.73 40.38
0.75] 0.1 8.5 0.0 | 2.64 3.2 21.17 22.18
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TABLE VI
E[t(Z:.,a)|re > T for fo ~ N(0,1), f1 ~ N(0.75,1)

p a c Simulations | Analysis
0.01 | 6.9 |46 | 179 179
0.01 |46 |39 | 292 29.2

0.2 46 | 39 | 15 1.2

0.2 9.2 | 389 217 21.2
0.001| 2.31| 2.2 | 9.46 9.8

Remark 2. In Section IV-A we show that the optimal solution to the peabin [1), withADD, PFA,
and ANO given by the expressions in_{37),138) ahdl (39), has a twestiold structure. The optimality
arguments there depend diy [v(b, c)] being a good approximation for botADD (with ¢ = a) and
ANO;, and also on the fact th&FA does not depend on the threshéldHence, based on the numerical
results shown in Table -V, we may surmise that a twaetirold policy is approximately optimal when
ANO% is large.

IV. TWO-THRESHOLD STRUCTURE

In this section, using the analytical results developedaspife., using[(37)E(39), we argue that the
three-threshold policy(a, b, ¢) can be well-approximated by a two-threshold policy by simgathe sense
in which a two-threshold policy is optimal (Sectibn IV-A).yBwo-threshold policy we meaf(a, b, ¢)
with ¢ = a. This two-threshold policy offers uniqueness of operatpaint and simplicity of design
(Section1V-D).

A. Optimality of the two-threshold structure

If the asymptotic expressions (3T)-[39) are taken to be tieahsystem performance, we can solve
the optimization problem in({1) by finding the thresholdsb and ¢ which minimize ADD for given
constraints on PFA and ANO. We will now prove that the solutio this constrained optimization
problem can be found within the class of two-threshold pedicobtained by setting = a.

If ¢ = a then the performance of(a,b,c) can be obtained by simply substitutiag= a in various

asymptotic expressions. We identify this as a separateyolia’, '), where we use’ andd’ to name
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the two thresholds. Then the performance of this two-thokekpolicy would be:

ADD’

&2

Eq[v(b,a)] (41)
PFA' ~ e~ /0 e “dR(z). (42)

ANO' ~ ANOj + ANO/
11 Eso[A(D)]
pl+te” Eg[AV)] + Eolt(Z5, V)]

&2

Eq[v (b, a")] (43)

Theorem 6. The optimal solution to the problem ifl(1), in the class ofedaiinistic three-threshold

policies, withADD, PFA and ANO given by [(3V){(39) is a two-threshold policy.

Proof: We claim that given any:, b and ¢ for the three-threshold policy(a,b,c), we can select
somea’ and?d’ for the two-threshold policyy(a’,b'), and get at least as good of an operating point. The
key to this argument is the independence of PFA fioand the fact that ANQandE[r. — I'|7. > T,
being equal, can be controlled simultaneously.

First we select’ such that the false alarm probabilities are sameyfar, b, ¢) and~(a’,b'):

e “R(a—rc)+ e_c/

a—c

o0

e “dR(x) = e_“,/ e YdR(x).
0
It is easy to see that’ > c¢. Now select)’ such that the following Shiryaev delays are equal:
E1[v(b,c)] = E1[v(V,d)].

Sinced’ > ¢, we havel’ > b. Since the Shiryaev delays are exactly the respective ANOr the two
algorithm, we see that: the two systems have the same PFAharalthe same post change ANO, i.e.,
ANO; = ANOj. Also,

ANO, > ANOy sinceb < V.
Using thisa’ and?’ we also get a smaller delay because
a—C—X

Ei[v(V,a")] < Exfv(b,0)] + /O h Tog(1—p)]

Thus we have found’ and b’ which gives the same PFA performance but at least as good ARD a

dR(z). (44)

ANO. Moreover, note the optimal’ and?’ can be obtained directly based on the constraints on PFA

and ANO using[(4R) and_(43), and no further optimization iguie=d. [ |
Thus, based on Theorepm 6 and the accuracy of the asymptqiiessions demonstrated in Sec-

tion [[MI-E] we see that as long as the asymptotic expresgiefisct the true system behavior, a three-

threshold policy can always be well approximated by a tweghold policy.
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Remark 3. This means that, if the performance of the optimal detestimpolicy is given by37)-(39),

then it can be well approximated by a two-threshold policy.

Remark 4. Within the class of two-threshold policies, there is a ueiguolicy that meets a given set of

constraintsa and 8 with equality. Thus, no further optimization is needed.

B. Comparative Performance

The dynamic programming solution suggested that the optatgorithm has three thresholds. In
Section[IV-A we showed that i (37)-(89) reflect the true systperformance then the threshalds
not required. However, there are cases in which having al tthireshold helps. In those cases, it is
interesting to know how much one loses in performance byguie two-threshold algorithm. It is not
easy to analytically quantify the loss. We therefore study via simulations.

In TableTX, for various system parameters, we compare thfemeance of the two-threshold algorithm
with the best that can be achieved using three thresholdsus#ethe simulation set upi = 0.01,
fo ~N(0,1), f ~N(0,1), § >0, anda = 1073, For various values of and the ANO constraing,
we perform extensive simulations to search for the besettieeshold performance. In Talplel IX we refer
to the best point bya*,b*, ¢*). We then compare this best three-threshold point with théopmsance
of the two-threshold algorithm. Although we have chogen 0.01 anda = 1073, this is typical of how
the two algorithms compare. The table clearly shows thatAfdO savings of up to 90% (ANO% up
to 10), there is almost no loss in performance by using a tweshold policy over the three-threshold
policy. For ANO% of 5-10, there is less than 1% loss in perfance. However for all the three values
of # considered, it is evident that if we seek 99% of ANO savingentby using the third threshold we

may get a better delay.

Remark 5. In SectionI-E, in Tabld1V, we showed that f&dNO% of 50 — 100, E;[v(b,c)] is a
good approximation fott[r. — I'|7. > T']. In Theoreni b we showed that when this happens, a three-
threshold policy can be well approximated by a two-thredhpblicy. Table[TX shows that even for
ANO% of 10 — 50, where Theorerhl6 may not be applicable, a two-thresholccpa$ optimal. Also,

for ANO% < 10, where a three-threshold policy is optimal, their is a maagiloss in performance by

using a two-threshold policy.
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TABLE IX
p=0.01, fo ~N(0,1), fi ~N(0,1),a =107>

Three-threshold Two-Threshold

0 5 ANO% a* b* c* ADD | a b ADD
0.2 (127 | 40% | 6.787 2.58% 6.787 345.88 6.787 2.58% 345.83
0.2 50 16% | 6.89| 4.75| 6.65| 489.5| 6.787 4.89| 490.2
0.2 15 | 5% 6.901 5.6 6.324 557.88 6.787 6.06| 558.35
0.2 35 | 1.1% | 6.901 5.2 | 5.38| 580.4| 6.782 6.6 | 580.86
0.75 {40 30% | 6.467 -1.15 6.467 42.1 | 6.467 -1.15 42.1

0.7515 | 11% | 6.467 2.18| 6.467 206.4| 6.467 2.18| 206.4
0.75 5 4% 6.88| 4.25| 5.7 450.545 6.47| 5.0 | 455.3
0.75 1.7 | 1.3% | 6.898 4.8 | 4.93| 540.5| 6.34% 6.2 | 549.5
2.0 40 40% | 5.768 -3.68 5.768 5.58 | 5.768 -3.68 5.58

20 [10 | 10% | 5.768 -1.39 5.768 16.2 | 5.768 -1.39 16.2

20 B 5% 5.768 0.05| 5.768 47.44| 5.768 0.05| 47.44
20 2 2% 6.48| 2.9 | 5.2 | 257.14 5.74| 3.4 | 273.6

C. Role of the third threshold

In the last section we saw that two-threshold policies angr@pmately optimal, unless the ANO
constraint is very severe. Based on our analytical study @fb, ¢), we now provide a possible justification
for this behavior, for low values of PFA. To meet the low ANOnstraint using two thresholds and
a, we might need to choose a largeHere is a reason why we may not want a latgé-or v(a, b, ¢),
choosing(a*,b*, c*) is equivalent to choosing* first, then usingc to meet the ANO constraint, and
then usinga to meet the PFA constraint. Choosing a latgemay not be optimal, because for large
it is possible thatt[I'] < t(—oc,b), and the algorithm may wait for a long time before taking thiet fi
sample, even after the change has already occurred. We maybgtter trade-off by choosing a smaller
b and usec < a to meet the constraint on ANO.

The third threshold is required in one more scenario. Fordday analysis, we used the fact that the
passage ofy(a, b, c) to c is through multiple cycles below. However there are cases, for example for
p=02, fo ~N(0,1), f1 ~N(0.1,1), for which as soon ag}. crossed from below, it grows up ta:
without ever coming back té. In such a case it may be possible that we may not be able to tmeet
ANO constraint exactly by using only two thresholds. Howewee can meet a constraint smaller than

the one required with a small loss in performance.
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D. Design of two-threshold policy and improvadD approximation

In this section we comment on how to choose the thresheldsd b, equivalently A and B, for
the two-threshold algorithm. In the previous sections weehfaund expressions for the PFA and ANO

performance of the algorithm.

[ee]
PFA =~ e_“/ e “dR(x) < e ¢,
0

11 Eoo[A]

ANO R b N
pl+e" B[N + Ex[t(Z;,0)]

+ E1 [Vb],

where,

S 7+ log(1 + pe?)
ExN ~ 5T oG = o)1

oo log 1%5:
Enlt(Z;.0)] ~ /O ﬁdm@,

a—EnO)]+7
D(f1, fo) + [log(1 — p)|

Note thatf0°° e *dR(x) and 7 can be computed numerically, at least for Gaussian obsemngaf14].

Ei[w] =~

Also, E[n(b)] andE[t(Z5,b)] can be computed using Monte Carlo simulations. Since, PFAotsa
function of b, givena and 3, we can set,

e TdR
a = log —fo ¢ (w),
«

and use this value af and given constrain to select the value of using the above expressions. As
mentioned earlier, this choice afandb would give approximately the minimum possible ADD.

For data in Tablé¢ X, we start with the constraiatsand 8 and use the analytical expressions above
to chooses and b that meet these constraints. We then simulate the algoritkimg these thresholds
to check if the performance meets the desired constraintstarged with. We also compare the ADD
values obtained in simulations and analysis. We see thaariaéytical expressions provide us with the
means to design the two-threshold algorithm.

For computing ANO, if one wants to avoid Monte Carlo simuas in the computation di.[t(Z5, )]
or E4[v], then the following approximations also works well:
log (13;5;)

[log(1 —p)|

a—b+7
D(f1, fo) +|log(1 —p)|

Eoo[t(Zj\> b)]

Q

E1 [Vb]
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TABLE X

fo ~N(0,1), fi ~N(0.75,1). THRESHOLDSa AND b OBTAINED USING PFAAND ANO EXPRESSIONS

Constraints Two Thresholds Simulations Analysis
P a B | a b ANO | ANO% | PFA ADD | Ei[v]
0.05 | 3x10~ 45 | 12.27| -0.62 | 435 | 7% 3.002x10~% | 41.1 | 38.7
0.05 | 5x10~* 30| 715 | -062 | 281 | 71% 5.017x10~* | 25.7 | 23.3
0.01 | 6.5x107° | 70 | 9.2 2.1 69.5 | 51% 6.523<10~5 | 42.25 | 38.6
0.01 | 1x1073 60 | 6.46 | -2.06 | 59.1 | 47% 1.01x10~3 | 33 29.13

Although, E;[1] is a good approximation foANO; for almost all values of: andb, unfortunately,
as was mentioned earlier, it is not necessarily a very gogaoxpmation for ADD. Recall thak [v,]
is a good approximation for ADD only when the gap betweeandb is large, which corresponds to
large ANO%. For moderate gap betweerandb, or for smaller ANO%, the quality of approximation
depends on other systems parameters. In Setfion IlI-E eT&kl and in this section in TablelX, we
saw some of these cases where the approximation was goaal tiretANO% in Tablé_X). Although,
the two-threshold algorithm can be designed by seleciirand b as mentioned above, a better ADD
approximation can be obtained as follows.

The technique for this new approximation comes from the pobd.emmal3. Analogous to the steps

in the proof of Lemmal3 we identify three events:
A = {Zp < b},

B

{Zr > b; Zi, / b},
C = {Zr>b;Z; /S a},

where, we have replaced thresheldy threshold:. We can write the following expression falfr—I'|7 >
I,

E[r-T|r>T] = E[r-T;Alr >T]+E[r -T;B|r >T]+E[r —T;C|t > T].

We then assume that the evefiu C is dominated byC. That is, we assume that #r > b, then Z;

climbs toa. Define, P, = P(Zr > b). Then,
P,=P(BUC)~P(C).
Thus,

ADD ~ P, E[A(Z1)|C] + (1 — B)(E[t(Zr, b)|A] + ADD®). (45)
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From proof of Lemmdl4, it is easy to show the following:

Pl(Z)\ < b)

ADD? = E1[A{Z) > a}] + (E1[A{Zx < b}] + E1[t(Zx,0){Zx < b}]) TP (2, < D)

We now use the following approximations:

EiM{Z\>a}] =~ ENZr)C] ~ Eilw),
7 +log(1 + pe”®)
D(f1, fo) — [log(1 — p)|’
—F ~ log(l + €b) — log(l 4 6b—?)
O T g )

Remark 6. Note that withE[\(Z1)|C] ~ Ei[], and E[t(Zr,b)|A] being independent of threshold

Ei[A{Zx < b}]

&2

Eq1[t(Zx, 0)[{Zx < b}]

Q

this new approximatiorf43) reduces to the existing one, i.e. g [v;,] for a fixedb as a — oo: in this

limit ADD?® approachest;[v,] (LemmeH).

To compute [(4b), we also need approximations fafZ, < b), P, and E[t(Zr,b)|.A]. Those are
provided below. Setting = co we have, by Wald'’s likelihood identity, Proposition 2.24y P3, [14],

J1(X1) ... f1(X))
LX) fo(X0)]

UnderP, A a.s. ends irb and with high probability it takes very small values. Henitgs expressions

Pi(Z)y <b)=E

can be computed using Monte Carlo simulations. Further,

P, = P > t(—00,b))P(Zr > b|I' > t(—o0,b))
1 Eoo[A
L+ e B[\ + Eo[t(Z5,)]

Q

We already have the approximations #x,[\] and E, [t(Z5,b)]. The approximation foiS[t(Zr, b)| Al

can be obtained as follows:
(1 - P)E[t(Zr,b)[A] = (1 - P)E[t(Zr,b){Zr < b}]
= E[t(Zr,b){Zr < b} N{L' > t(—00,b)}/P({I' > t(—o0,b)} N {Zr < b})
FE[t(Zr, b)[{Zr < b} N {T < t(—00, b)P{T < t(—00,b)} N {Zr < b}).

This can be computed using
1+ e’ B[N + Ex[t(Z5, b))

P{T > t(—o0,b)} N{Zr < b}) =

and ,
P({I" < #(~00,b)} N {Zr < b}) = P({T < t(~00.0)}) ~ 1.
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To compute conditional expectation tfZr, b), we need to subtract fron{z, b), the mean of" condi-

tioned on{I" < t(x,b)}. Specifically,

H(bo—7.)
Blt(Zr, D{Zr < b} > (=00.b)}] = b= 7.b) =~ t(lb —7 > K10
- ’ k=1
and,
t(—o0,b

)
Eft(Zr,b)I{Zr < b} 1{T < (00, b)}] = (00,) = 5z ;_OO 5y 2o KL=
- ’ k=1

Thus we have obtained approximations for all the terms ferrtbw approximation for ADD in(45).
We now provide, in TableZXI, numerical results to show theuaacy of the new ADD approximation
(45), by comparing it with simulations and also wil [v,]. All the points here correspond to a low
value of ANO%:ANO = 10% of the Shiryaev ANO. We also set PFA arouhg 10~3. The table clearly

demonstrates that the new ADD approximation predicts ADEhwess than 5% error.

TABLE XI
fo~N(0,1), fi ~N(0.75,1), PFAx 10~%, ANO=10%O0F SHIRYAEV ANO

ADD
p a b Simulations| Analysis | Analysis

New {48) | E1[vs)
0.01 6.4 | 2.7 250 260 14.42
0.005 | 6.45| 0.6 181 190 22.09
0.001 | 6.47 | -2.7 | 75 80 33.68
0.0005| 6.47 | -3.49 | 74 79 36.49
0.0001| 6.47| -5.2 | 76 80 42.56

E. Trade-off curves

In Fig.[2 and[B we plot the ANO-ADD trade-off for the two-thhedd algorithm. Specifically, we
compare the two-threshold algorithm with the classicaln®gv test and study how much ANO can
be reduced without significantly loosing in terms of ADD. HRE shows that we can reduce ANO by
up to 25% as compared to the Shiryaev test, while gettingajpately the same ADD performance.
Moreover, if we allow for a 10% increase in ADD, then we canuagl ANO by up to 50%. If the change
is rarer p = 0.001), then Fig.8 shows that we can reduce ANO by 70% by allowinglfa?o excess
ADD.
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Fig. 2. Trade-off curves comparing performance of twoghmd algorithm with the Shiryaev test for ANO=75% and 50% of
Shiryaev ANO. fo ~ N(0,1), f1 ~ N(0.75,1), andp = 0.01.
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Fig. 3. Trade-off curves comparing performance of two4hmd algorithm with the Shiryaev test for ANO=30% and 15% of
Shiryaev ANO. fo ~ N(0,1), f1 ~ N(0.75,1), andp = 0.001.

V. CONCLUSIONS

We posed a data-efficient version of the classical Bayesigckegst change detection problem, where

we control the number of observations taken before the ahaéndeclared. We obtained a two-threshold

Bayesian test that has some optimality properties and ig ®adgesign. Specifically, we identified an

asymptotic regime — when the false alarm probability is $ntfa¢ change is rare and the ANO constraint

is not very severe — in which either a deterministic two-$hi@d policy is optimal, or the optimal policy

can be obtained by randomizing over two-threshold policigs supported our claim via analytical and

simulation results. We derived analytical approximatiémsthe ADD, PFA and ANO performance of

the two-threshold policy using which we can design the tgsthwoosing the thresholds. Further, the

two-threshold policy which meets a given set of constraimth equality is unique among the class of
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two-threshold policies. This result has implications innyangineering applications where an abrupt
change has to be detected in a process under observatiothepatis a cost associated with acquiring
the data needed to make accurate decisions.

In the absence of knowledge of the prior Bpan important problem for future research is to see if two-
threshold policies are optimal in non-Bayesian (e.g., max) settings. More importantly, it is of interest
to understand how to update the test metric in a non-Bayess#ting when we skip an observation.
From an application point of view, one can design a two-thols test based on the Shiryaev-Roberts
or CUSUM approaches$ [19], and use the undershoot of the anelren it goes below the threshold,*
to design the off times. Furthermore, if we are able to findwldewer bounds on delay for given false
alarm and ANO constraints, we may be able to use these to pywraptotic optimality of such heuristic
tests, as is done for the standard quickest change detgrtiblem [17], [20]. Also, such lower bounds
can possibly help in obtaining insights for cases where theevations are not i.i.d._[17], [20]. Other
interesting problems in this area include the design of-déteient optimal algorithms for robust change

detection or nonparametric change detection.

APPENDIX TOSECTION[T=A]

Proof of Theoreni]1: We first show that),, with b = —oo, and Z; a random variable, is a slowly

changing sequence. Lé&f, takes valuey, then

77n—10g ZO+ZP1_ kH ] P; a.s.

Define

k

0(X;

e - IS
1=1

o) k
%+ p(1 - p) fo(?i] '
k=0 !

Note thatn(Z,) as a function ofZ, is well defined and finite undé?;. This is because by Jensen’s

o)

yAN
n(Zy) = log

inequality, for Zy = 2,

E[n(z)] < log

ZO“‘ZPI— kE(

k=0

— log e+ p(1— p)k] = log (™ +1).
k=0
Thus 0o
M S5 (Zo) = log (¢ + p) + Y log (1+ ¢ % p). (46)

k=1
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This implies 37, log (1 + e~#*p) converges a.s. for i.i.d{X;} andb = —oc. This series will also
converge with probability 1 if we condition on a set with ga& probability.

Let change happen dt = I. We setZ, = Zr = Z; and assume th&tX;}, £ > 1 have densityfi,
which would happen after. We first show that starting with the abov®, the sequence, generated
in (XQ) is slowly changing.

To verify the first condition[(111), from_(10) note that,

n—1 n
n~ max{|ml,.... ||} <07t | [log (% +p) [+ log (1+e % p) + Y (|log L(Xp)|) Iz, <} | -
k=1 k=1

Since,Z;, — oo a.s.Jog (1 + e~ % p) — 0, also,I;z, .,y — 0a.s. Thus both the sequendésg (1 + ¢~ %*p)}
and {(|log L(Xg)|) I{z,<p } are Cesaro summable and have Cesaro sum of zero. Thus théntade

the square bracket above, when dividedhygoes to zero a.s. and hence also in probability. Thus the
first condition is verified.

To verify the second condition_(IL2), we first obtain a boundmn x — 75|

n+k—1 n+k
ik =1l < Y og (T+e )+ > (Jlog L(X:)]) Iz, <b)-
i=n i=n-+1
Thus,
n+nd—1 n+nd A
08X [ — 7l < Z log (14 ¢ 7p) + Z;l (1log L(X:)|) Lz, = dy, + da.
=n =n

Here, for convenience of computation, we uBeandd? to represent the first and second partial sums

respectively. Now,

_ < 1 2
P{lﬁi’;g'"wf M| > €} < P(d, + d;; > €),

and we bound the probability (d}, + d2 > ¢) as follows.

On the event thal? 2 {Z), > b,Vk > 0}, d2 is identically zero, thus for. large enough,
P(d. +d? > ¢|E) =P(d. > ¢|E) < e.

This is becausell behaves like a partial sum of a series of type [in] (46). Sinee stries in [(46)
converges if random variables are generated ific.it will also converge if conditioned on the event
E. Thus, the partial sund} converges to 0 almost surely, and hence converges to O iralpili, i.e.,
P(d}, > ¢|E) — 0. Select,;n = n} such thatvn > nj, P(d} > ¢|E) < e.
Define
Ly =sup{k>1:Z_1 <b,Z >0},
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with L, = oo if no suchk exists. On the evenk’, which is the compliment ofZ, L is a.s. finite.

Then, by noting thati? = 0 for Lz < n, we get forn large enough,

P(di —I—di > ¢|E') 2 PE/(d,ll + di >e€) < PE/(di —I—di >e Ly >n)+ PE/(di —I—di >e€ Ly <n)

IN

Pp/(Lz >n)+Pp(d:+d> > e Ly <n)

IN

PE/(LZ > Tl) + PE/(d%L > E‘LZ < n)
< €/2+4¢€/2=c¢.

Since, Ly is almost surely finitePg (Lz > n) — 0 asn — oco. Thus we can seleat = nj such that
Vn > n%, Pp/(Lz > n) < ¢/2. For the second term, note that conditionedlon < n, d’ behaves like

a partial sum of a series of type in_{46), wihy replaced byZ;,. Since the series i _(#6) converges
if random variables are generated i.i/d. beyondLz, it will also converge if conditioned on the event
{Lz < n}. Thus, the partial suni’, converges to 0 almost surely, and hence converges to 0 iripiti,
i.e., Pg/(dl > €|Ly < n) — 0. Select,n = nj such thatvn > nj, P(d} > ¢|Lz < n) < ¢/2. Then

n* = max{nj,n3,ns}, is the desirech* and pick anys > 0. Then forn > n*,
P(d. +d2 >¢) = P(d.+d2>¢eE)PE)+P(d +d> > eE)P(E)
< €eP(E)+eP(E') <e.

Since the sequeneg is slowly changing, according to [14], the asymptotic digttion of the overshoot

when Z;, crosses a large boundary undgris R(x). Thus we have the following result,

lim P, [Z, —c<z|r. > 1] = R(x),

c—00

where P, is the probability measure with change happening atow,

P(Z;, —c<alre>T] =Y P[Z;, —c<alr. > |P(L =, > T),
=1

and
li_>m P [Z;, —c<zlr. >1|PT =7, >T)=R(z)P(l'=1) < 1.
Hence we have the desired result by dominated convergeroectn. [ |
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APPENDIX TO SECTION[II=B]
Proof of Lemmdl1: Clearly,
Elr =T|r >T)=E[r — 7|t > T| 4+ E[r. = |7 > T].

UsingE[Y’; D] to represent integration of the random variablever the seD, we write E[7.—T'|7 > T

as follows,
Elr. =T >T] = E[r-T|>T,7>T] P(re. >T|7 >T)+E[r. = ;7. < T'|7 > T
(%) Elr, -y << 71
2 E[(te = T)|me > T](1 + 0(1)) + [re P(T;P) ) as c,a — oo.

@ El(7 = D)2 T+ o(1)) +0(1)  as c,a = ox.

Here, (i) follows becausgr. > T'} ¢ {r > T}, andP(r. < I'|r > T') — 0 asc,a — co. To show the

latter, we obtain an upper bound &{7. < I'|r > T'). Using an argument identical to the one given in
(I4) we get
e ¢>P(r,<T) = P(r. <T|r >T)(1 - PFA)+P(r. < T|r < I')PFA

= P(r. <T|r >T)(1 - PFA) + PFA.

This implies,

e ¢ — PFA e ¢ e ¢
<

> < <
Plre<Tir 2T) < 4 5r < T-ppA ~ 1o

— 0 asc,a — oo.

For (i7) note that, ove{7. < I' < 7}, —I' < 7. — I" < 0, and hence integrable. ThuB|r. — I'; 7. <

I' < 7] — 0 asc — oo because
Pir.<T <7)<P(r.<T)<e “—0asc— .

Now we want to showE[r — 7.|7 > I'| = E[r — 7,|7. > T'](1 + o(1)). Conditioning on{r. > I'} and

its compliment we get,
E[(t =)t >T] = E[(r —7)|te >T,7>T] P(r. >T|7>T)
+E[(T —71)|te <T,7>T] P(r. <T|7 >T)
= EBl(r —7)l7e 2 T](1 + o(1))
+E[(r —7e)|Te < T,7 >T|P(r. <T|7 >T) as c,a — o0

= E[(r —71)|lre > T](14+0(1)) +0(1) as c¢,a — .
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We get the above equalities becad¥e,. < I'|t > I') — 0 asc,a — oo. Also, from the hypothesis in
the lemma,

E[(T —1e)|te < T,7 > T] < t(c,a) < o0 a@sc,a — 00,
and thus it follows that
Bl(r —7o)lre <7 2 TJP(re <Tlr 2T) 50 asc,a — oo,

[
Proof of Lemma&l3:We use{Z;. b} to indicate thatZ, approaches from below for some: > T,
ie. 3k > T, st.,Zr_1 <b,Z >b. and use{Z;, " ¢} to represent the event thay, crossed: without

ever coming back t@, i.e., Z, > b,Vk > I". Define,
Mz)=inf{k > 1: Zx ¢ [b,¢),Zy = x,b < x < c}. 47)

Also let A(z) be defined withZ, = = similar to [25). Thus,\ and \(b) have the same distribution.
Similarly, A and A(b) are identically distributed. The behavior of the delay pdépends on/r, the
value of 7, at the change poinf, and howZ; evolves after that point. We thus define the following

three disjoint events:
A = {Zr <b}
= {Zr 2 b2y / b}
C = {Zr>b;Z; /c}.
We can write,
Elr. —=T|r. >T] = E[r. —T;Al7. > T+ E[r. —I;B|7. > T] + E[r. = I;C|7. > T]. (48)

Now consider each of the three terms on the right hand sideeofbove equation.
Under the eventd, the processZ; starts belowb and reaches after multiple up-crossings of the

thresholdb. Then,
N

>

k=1
This upper bound was obtained as follows. letbe the first timeZ; crossesd from below. Then the

E[r. = T; A|lr. > T] < E[t(Zr,b)|A] + Eq P(A|r. > T). (49)

time to react, t; onwards, is upper bounded by the time to reachwe resetZ;, to b; this is because
c¢—Z;, < c—b. Arguing this way each time’;, crosse$ from below, we have the desired upper bound

over A.
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Under the evenB, the procesg;, starts abové and crosses beforec. It then has multiple up-crossings

of b, similar to the case of evemt. Arguing in a similar manner, we get
N

>

k=1

Elr, — T; B|r. > T] < E[A(Zr)|B, Zu(z,) < b] + Ex P(B|r. > I)

Similarly,

E[r.—T;Clr > T] = E[A(ZD)|C, Za(z) > P(C|re > T)

IN

El[A(b)‘ZA(b) > C]P(C‘Tc > P)
N

S

k=1

IN

E, P(C|r. > T).

Substituting we get,
E[re =Tlr. >T] = Elr.—T;Alr. > T+ Elr. — T;B|7. > '] + E[r. — I';C|7. > T.

N
S

k=1

IN

E[t(Zr,b)|A] + E4 P(A|r. >T)

N

S

k=1

+E[A(ZF)|B, ZA(ZF) < b] + E; P(B|Tc > F)

+E; P(C|r. >T)

N
S
k=1
N

S

k=1

- B + E[t(Zr, b)A] + E[A(Z0)|B, Zyz,) < b (50)

In equation[(5D), we observe that except fobD* = E; [fo:l Ak], other terms are not a function

of thresholde. Thus we have
E[r. =Tl > T] < ADD*(1 +0(1)) asc,a — oo,c < a.

[ |
Proof of Lemmal4: Based on¥, we define two new recursions, one in which the evolutior pf
is truncated ab,
- U (Zy) if U(Zx)>b
U (Zy) = _
b if U(Zy) <b,
and, another in which the overshoot is ignored each time Hie/& v recursion crosseésfrom below,

B(2,) b if Z, <bandW¥(Z;) >b
k =
U (Zy) otherwise.
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Based on these two recursions we define two new stopping:times
oy, = inf{k>1:9(Zy_)>c,Zy=b},
oy = inf{k>1:U(Z,_1)>c, Zy =b}.

These two stopping times stochastically upper and lowen8dhe Shiryaev stopping time, defined in

@9, i.e.,
Eq[7] < Eqi[wp] < Eq[is]. (51)

Recall from [I8) that
v(z,y) =inf{k > 1:V(Zy_1) >y, Zy = z}.

Using Wald's lemmal[14], we can get the following expression
_ El E1[A] + E1[v(Z3,b); {2 < b}]

Pl(Z)\ > C), Pl(Z)\ > C)
Multiplying and dividing ADD® by E;[\] we get
Ei[A] + Eq[t(Z),0);{Z) <b}]  Eq[}]

Eq[A] Pi(Z) > ¢)
E1[\] + Eq[t(Z), 0); {Zx < b}]
Eq[A]

= Ei[m](1+0(1)) asc,a— oc.

Eq (o) Eq[p] = . (52)

ADD® =

= Ei[vp]

The last equality follows becaud& [\]| — co asc — oo, while E1[t(Z),b); {Z\ < b}] is not a function

of c. Similarly, multiplying and dividingADD?® by E;[A\] + E1[v(Zx,b); {Zx < b}] we get
ADD® = E;[] (1 + o(1)) as ¢ — oo.
Using these two expressions fADD* and the relationship thdt; [p] < Eq[1] < Eq[], we have,

ADD?® = Eq[1p)(1 + o(1)) asc — oo.

Proof of Lemmals: First note that by definitiorl (16)7;(, ) > ¥ > Zy(5,,)—1- Also, from [8)

1 —
Zt(x,y) = Zt(l‘,y)—l + lOg 11— P + log(l +e Zt(m,y)71p)

1
< y+log 1 +log(1+ e p).

Thus

Y < Zyay) <y +log + log(1 + e Yp),

I—p

May 17, 2011 DRAFT



40

equivalently

(L+e7Yp).

ey < er(z,y) S eyl 1

Further, the recursioh}(8) can be written in termse6f for k > 0:

Z
eZrtt = pre” te .
1—p
Using this we can write an expression fgfv:
z t(2,y) z
Ziw) — & P __ e+l _(1—

e = + = 1 .
i DR eyt v Rl et

Using the bounds fo¥,(, ,, obtained above, we get
Y exi—’_l — — < e¥
N T RO e

This gives us bounds faf(z, y):

(L+e ¥p).

14+e v T
log(1 + €% — p) — log(1 + €?) log (1 + eyﬁ - p) —log(1+ ¢€")

<t(z,y) < (53)
og(1 =) ) og (= p)

By keepingp fixed and takingr,y — oo we get [28), and by keeping, y fixed and takingp — 0 we
get [29). [ |

Proof of Theorer]3: Let
R.(x) =P(Z, —c<z|t. >T).

Then
Elr — 1| >T] = / t(c+ x,a)dR.(x).
0

By using [28) from Lemma&l5, and noting thai._, - R.(z) = R(z), we get[[3D). In[(30), a8, a — oo,
if a—c— o0, 0ra—c— constant> 0 andp — 0, then [° Moz pdR(z) dominatesR(a — c) in
the limit and we get[(31). [ |

APPENDIX TOSECTION[II=C]

Proof of LemmaJ6: Since,p, > A imply Z. > a, we have,

1 1
> .
l+e? = 14e

The required result is obtained by obtaining upper and Idveamds on PFA as follows.

1 -z
= — = < T
PFA =E[l —p;] =E [1+ezf} <El[e?]
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Also,

1 1 1
PFA —E[l—p,]=B|— | = B| > 1
1= pr] [1+ezf} LZT 1+e—Zf]

E L%Tle_a] —E[e %] (1+0(1)) asa — oo,

Thus,
PFA = Ele %" ](1 + 0(1)) = e E[e” % ~9](1 4+ 0(1)) asc,a — oo,¢ < a.

[ |
Proof of Theorenil4:First note that,
Ele= %= = E[e=% 9|7, > T](1 = P(7. < T)) + E[e"% 9|7, < T|P(7, < I).
Since,P(7. <T') =E[l —p.] <1—C < e~ ¢ we can write,
PFA = ¢ “Ele” %~ |7, > T](1 + o(1)) asc,a — oo,c¢ < a.
Further, we evaluat&[e~(4-~% |7, > T'] as follows.
Ele” @ 9, >T] = Bl 9|2, <a,7.>TP(Z, <a|r.>T)
+E[e~% 9. 7 > al|r, >T).
= E[e_(Z*_“)]ZTC <a,1.>T|P(Z;, —c<a—clt. >T)
+e*Ble= %79, Z, > alr, > T
e Ble= %7, >T] = e Ble” % 9Z,. <a,7.>T|P(Z, —c<a—cr.>1T)
+e_CE[e_(Z’_C); Z;. > alt. > 1.
From Theoreni]1 it follows that:
—c<a-— >
lim P(Z;, —c<a—clt. >T) _ and
c—00 R(a—c¢)
. Ble %79, 7, >a|r. >T)
lim T = 1
c—o0 [ e dR(x)
Further we can show that,
e? 7
(1) BT <o 2T <,
and goes td asc,a — oo, andp — 0. This proves the theorem. |
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APPENDIX TO SECTION[I-D]

Proof of Lemma&]7: Using Theoreni ]2 we writddNO; as

T, —1
= — > -
ANO; Elr. —T|r. > T <1 BT > F]>
B T, —1
= Ei1[n) <1 TEmoTns I‘]) (14+0(1)) as c¢,a— 0.

We now obtain an upper bound %% which goes to zero as a — oc.

Recall from Lemmdl3 thaid and B are the events under which excursions belpware possible.
The passage to is through multiple cycles below, and the time spend belowin each cycle can be
bounded byt(—o0,b). Define N4 and N as one plus the number of cycles beléywunder eventsd

and B respectively. Then,
Ty, —1<T, < Pl(A)t(—OO, b)E[NA] + Pl(B)t(—OO, b)E[NB]

The average&[N 4] andE[Np] can be written as a series of probabilities, where each temegpond
to the event thatZ, goes belowb, and not above:, each time it crossek from below. Each of these
probabilities can be maximized by settitfy to b, each time it crossels from below. HenceE[N 4] <

E[N] andE[Ng] < E[N]. This gives a bound off;, — 1.
Ty — 1 < t(—00, b)E[N].

By using [51) we get ag,a — oo,

T —1 {(—00, b)E[N]
E[TC—F’TCZF] - El[Vb]

t(— 00, b)E[N]
E1[i%)]

(1+o0(1)) < (14 0(1)).

From [52) we know that (i3] = Ei[NE[N]. Thus the upper bound op i< goes to 0 as
¢,a — oo. This proves the lemma. |

Proof of Lemm&]9: SinceP{7. > T} — 1 asc — oo,

P(T > t(d)|. >T) = P >tb)+o(l) as ca—
1
= 1—p)'® 4 o(1 .
1—|-z0( )" +o(l1) as c,a—
From [29) in Lemmals, withy = b andz = 2y, we have

log(1 + €?) —log(1 + e*)
|log(1 — p)|

t0) = (

From this, it is easy to show that

14 e*
(1—p)t(b)—><1+eb> asp — 0.

> (I14+o0(1)) asp — 0.
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By substituting this in the expression feX(I" > ¢(b)|7. > I') we get the desired result. [ |

Proof of Lemm&l8: Each timeZ,, crossed from below, is satisfies:

1
- +log(1 +e7?p).

Define,b; = 2 + log = = T log(1 +e~*p). Thenb; — b asp — 0. Also, each timeZ;, crosses from
below, the average number of observations used bdfooan be increased by setting, = b; and
decreased by setting, = b. This is because of the geometric nature of change.4,et « when it
crossesh from below, and suppose we resgf to b;. Then, the number of observations used before
change, on an average, would be the number of observati@ts heforeZ;, reachesr from by, plus
the number of observations used there onwards as if the ggatarted at. Similar reasoning can be
given to explain why the average number of observations dseceases, if we resé¢f, to b, each time

it crosses) from below.

Define the following stopping time:
A =inf{k>1:2Z,_y<bandZ,>bork>T,Zy=x>b,c=o00}.

Thus,A” is the time forZy, to start atZ, = x with ¢ = oo, and stop the first time, eithéf, approaches
b from below, or when change happens. Also, dét < (0,1) be such thatA\*s* is the number of
observations used befo, was stopped by\?, i.e., fraction ofA” when Z;, > b. If {A%} and {Abl}

be sequences with distribution df and A" respectively and ifL* is the number of timesZ;, crosses

b from below and is set ta at each such instant, then,

Eoo[L] Eoo[Ab?] = ZAbék < Z S |T > t(b
k=t(b)
Lh ~ ~
< Eoo | D APG) | = EoolL"] Boo[AP6™).
k=1
Here the equalities follows from Wald’s lemnia [14].
In the aboveL? is Geom(Po[I" < A*]), and henceét, [Lt] = W Also note that

Po[l < At

M —1lasp—0.

Po[l" < A?]

Further, forz = b, or = = b, define\(z) based on[(33) as

Mz) =inf{k>1:2Z, <b,Zy=x>b,c= o0}
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It is clear that\(b) = A. Thus we have, for botlt = b, andz = b,
Eo[A%6%] = Eoo[A%6|T < A%6%]Po[[" < A%6%] 4 Eoo[A%6%|T > A%6%]P[I" > A%6?]
— Bo[A(z)] asp — 0.

Here, the result follows because as~ 0, A*§* converges a.s. to a finite limit arieh[I’ < A*§*] — 0.

Also for the same reasoiy[I" > A®3*] — 1 asp — 0. Moreover, sincé; — b asp — 0, we have as

p—0
Eoo[A(b1)] = Eoo[A(B)] = Ea[Al.
Thus,
r-1 - - Bo[d]
E k;}) Sg|I' > t(b),c=o00| = 7P0[F < A7 (1+o0(1)) asp—0.

Using Binomial expansion we can obtain an approximationfgii’ < A’]:
Po[l' < A% = Po[l' < A+ 1(Z5,b)] = 1 — Po[l' > A+ t(Z;,b)]

=1—-E,[(1- p)j\'f‘t(zva)] (54)

9, (Eacl) + Ewclt(Z3,1)]) (1+0(1))  asp—0.
To see why(i) is true we note that,

N log (1 + eb)
[log (1= p) |’
Using L'Hopital’s rule it is easy to show that as— 0, followed by b — —oc,

n log(l—i—eb) "
’ <log(1—p)> o0

Using this in the Binomial expansion &..[(1 — p)**(Z:)] we get equality(i) in (G4). |

t(Z5,b) < t(—o00,b)
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