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Abstract

In the classical version of the Bayesian quickest change detection problem proposed by Shiryaev,

there is a sequence of observations whose distribution changes at a random time, and the goal is to

minimize the average delay in detecting the change, subjectto a constraint on the probability of false

alarm. We consider this quickest change detection problem with an additional constraint on the average

number of observations used in detecting the change, where we have the option to choose whether or

not to take a given observation. The objective is to select the observation control policy along with the

stopping time at which the change is declared, so as to minimize the average detection delay, subject

to constraints on both the probability of false alarm and theaverage number of observations used. In

contrast to the single threshold test that is optimal for theShiryaev problem, the optimal algorithm for our

problem belongs to a class of randomized three-threshold policies. As in the Shiryaev test, the statistic

being thresholded is the a posteriori probability of the occurrence of the change, given the observation

sequence. Towards characterizing the thresholds for the optimal algorithm, we provide an asymptotic

analysis of deterministic three-threshold policies for the case where the probability of false alarm is

small, the average number of observations used is large, andthe change event is rare. The asymptotic

analysis reveals that any three-threshold policy can be well approximated by a two-threshold policy. An

advantage of the two-threshold policy is that there exists aunique pair of thresholds that achieves the

constraints on the probability of false alarm and the average number of observations used. Therefore,

using our analysis, the thresholds can be set directly usingthe given constraints. We provide extensive

simulation results that corroborate our analytical findings.
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I. INTRODUCTION

In the Bayesian quickest change detection problem proposedby Shiryaev [1], there is a sequence of

random variables,{Xn}, whose distribution changes at a random timeΓ. It is assumed that beforeΓ,

{Xn} are independent and identically distributed (i.i.d.) withdensityf0, and afterΓ they are i.i.d. with

densityf1. The distribution ofΓ is assumed to be known and modeled as a geometric random variable.

The objective is to find a stopping timeτ , at which time the change is declared, such that the average

detection delay is minimized subject to a constraint on the probability of false alarm.

In this paper we extend Shiryaev’s formulation by explicitly accounting for the cost of the observations

used in the detection process. We capture the observation penalty through the average number of obser-

vations used in the detection process, and allow for a dynamic control policy that determines whether or

not a given observation is taken. The objective is to choose the observation control policy along with the

stopping timeτ , so that the average detection delay is minimized subject toconstraints on the probability

of false alarm and the average number of observations used. The motivation for this model comes from

the consideration of the following engineering applications.

In statistical process control, economic-statistical control chart schemes are designed to detect an abrupt

change in an industrial process that can affect the quality of the output, and at the same time minimize

the average operational cost in some sense [2], [3], [4]. Thetraditional approach has been to use simple

algorithms from the change detection literature, such as Shewhart, EWMA and CUSUM, as control

charts, and optimize over the choice of sample size, sampling interval and control limits [4]. The reasons

for choosing the change detection algorithms mentioned above have been simplicity of design and ease

of implementation [2], [4]. However, it has been demonstrated, mostly through numerical results, that

Bayesian control charts, which choose the parameters of thedetection algorithms based on the posterior

probability that the process is out of control, perform better than the traditional control charts based on

Shewhart, EWMA or CUSUM; see [3], [4], [5], and the references therein. But, Bayesian control rules are

not preferred due to the complexity of the rules and also due to the difficulty in designing such a scheme,

e.g., choosing thresholds [4]. The process control problemis fundamentally a quickest change detection

problem, and it is therefore appropriate that the cost-efficient schemes for process control are developed

in this framework. In this paper, we derive a simple two-threshold Bayesian test, show conditions under

which it is approximately optimal, and obtain analytical approximations of its performance using which

the thresholds can be set directly from the constraints.

In many monitoring applications, for example infrastructure monitoring, environment monitoring, or
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habitat monitoring, especially of endangered species, surveillance is only possible through the use of

inexpensive battery operated sensor nodes. This could be due to the high cost of employing a wired

sensor network or a human observer, or the infeasibility of having a human intervention. For example in

habitat monitoring of certain sea-birds as reported in [6],the very reason the birds chose the habitat was

because of the absence of humans and predators around it. In these applications the sensors are typically

deployed for long durations, possibility over months, and due the constraint on energy, the most effective

way to save energy at the sensors is to switch the sensor between on and off states. An energy-efficient

quickest change detection algorithm can be employed here that can operate over months and trigger

other more sophisticated and costly sensors, which are possibly power hungry, or more generally, trigger

a larger part of the sensor network [7], when some change is detected in the process under observation.

This change could be a fault in the structures in infrastructure monitoring [7], arrival of the species to

the habitat [6], etc.

There have been other formulations of the Bayesian quickestchange detection problem that are relevant

to sensor networks: see [8]-[12]. The change detection problem studied here was earlier considered in a

more general set-up for sensor networks in [13]. But owing tothe complexity of the problem, the structure

of the optimal policy was studied only numerically, and for the same reason, no analytical expressions

were developed for the performance.

The goal of this paper is to develop a deeper understanding ofthe trade-off between delay, false alarm

probability, and the cost of observation or information, and to identify a control policy for data-efficient

quickest change detection that has some optimality property and is easy to design. As mentioned earlier,

we extend Shiryaev’s quickest change detection formulation by applying an additional constraint on the

number of observations used in the detection process. We characterize the optimal control policy for

this problem by solving a Lagrangian relaxation using dynamic programming. Following an approach

similar to the one in [13], we show that thea posterioriprobability pk of the change having happened

before timek, given all the information up to timek, serves as a sufficient statistic for both the stopping

rule as well as the observation control law. Furthermore, weshow that the optimal control policy that

minimizes the Lagrangian cost has a three-threshold structure. However, finding the optimal control

for the original constrained optimization problem would require optimizing over the three thresholds

and possible randomization over such optimized three-threshold policies. To this end, we analyze the

three-threshold policy using nonlinear renewal theory [14], [15], and characterize the optimal choice of

thresholds. Specifically, we identify an asymptotic regimein which any three-threshold policy, and hence

also the optimal policy for the constrained optimization problem when the optimal policy is deterministic,
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can be well approximated by a two-threshold policy. The advantage of this simpler two-threshold policy

is that there exists a unique pair of thresholds that achieves the constraints on the probability of false

alarm and the average number of observations used. Also, using our analytical results, the thresholds can

be set directly using the constraints.

In the following section, we set up the data-efficient quickest change detection problem with on-

off observation control, and summarize the dynamic programming solution. The layout of the paper is

provided at the end of the section.

II. PROBLEM FORMULATION AND DYNAMIC PROGRAMMING SOLUTION

As in the model for the classical Bayesian quickest change detection problem described in Section I,

we have a sequence of random variables{Xn}, which are i.i.d. with densityf0 before the random change

point Γ, and i.i.d. with densityf1 after Γ. The change pointΓ is modeled as geometric with parameter

ρ, i.e., for 0 < ρ < 1, 0 ≤ π0 < 1,

πk = P{Γ = k} = π0 I{k=0} + (1− π0)ρ(1 − ρ)k−1
I{k≥1},

whereI is the indicator function, andπ0 represents the probability of the change having happened before

the observations are taken. Typicallyπ0 is set to 0.

In order to minimize the average number of observations used, at each time instant, a decision is

made on whether to use the observation in the next time step, based on all the available information.

Let Sk ∈ {0, 1}, with Sk = 1 if it is been decided to take the observation at timek, i.e. Xk is available

for decision making, andSk = 0 otherwise. Thus,Sk is an on-off (binary) control input based on the

information available up to timek − 1, i.e.,

Sk = µk−1(Ik−1), k = 1, 2, . . .

with µ denoting the control law andI defined as:

Ik =
[

S1, . . . , Sk,X
(S1)
1 , . . . ,X

(Sk)
k

]

.

Here,X(Si)
i representsXi if Si = 1, otherwiseXi is absent from the information vectorIk. The choice

of S1 is based on the priorπ0.

As in the classical change detection problem, the end goal isto choose a stopping time on the

observation sequence at which time the change is declared. Denoting the stopping time byτ , we can

define the average detection delay (ADD) as

ADD = E
[

(τ − Γ)+
]

.
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Further, we can define the probability of false alarm (PFA) as

PFA= P(τ < Γ).

The new performance metric for our problem is the average number of observations (ANO) used in

detecting the change:

ANO = E

[

τ
∑

k=1

Sk

]

.

Let γ = {τ, µ0, . . . , µτ−1} represent a policy for cost-efficient quickest change detection. We wish to

solve the following optimization problem:

minimize
γ

ADD(γ),

subject to PFA(γ) ≤ α, and ANO(γ) ≤ β, (1)

whereα andβ are given constraints. This problem is difficult to solve directly and hence we consider a

Lagrangian relaxation of this problem which can be solved using dynamic programming.

The Lagrangian relaxation of the optimization problem in (1) is,

R(γ) = min
γ

ADD(γ) + λf PFA(γ) + λc ANO(γ), (2)

whereλf andλc are Lagrange multipliers. It is easy to see that ifλf andλc can be found such that

the solution to (2) achieves the PFA and ANO constraints withequality, then the solution to (2) is also

the solution to (1). In general it can be argued that the solution to the constrained problem (1) can be

obtained by randomizing over solutions to (2). Due to the result in [16], it can be further argued that the

number of policies over which the randomization has to be done will be finite.

The solution to the optimization problem in (2) can be obtained using dynamic programming and

following steps similar to those given in [13]. In the following we summarize these steps.

Let Θk denote the state of the system at timek. After the stopping timeτ it is assumed that the system

enters a terminal stateT and stays there. Fork < τ , we haveΘk = 0 for k < Γ, andΘk = 1 otherwise.

Then we can write

ADD = E

[

τ−1
∑

k=0

I{Θk=1}

]

and PFA= E[I{Θτ=0}].

Furthermore, letDk denote the stopping decision variable at timek, i.e.,Dk = 0 if k < τ andDk = 1

otherwise. Then the optimization problem in (2) can be written as a minimization of an additive cost

over time:

R(γ) = min
γ

E

[

τ
∑

k=0

gk(Θk,Dk, Sk)

]
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with

gk(θ, d, s) = I{θ 6=T }

[

I{θ=1}I{d=0} + λf I{θ=0}I{d=1} +λc I{s=1}I{d=0}

]

.

Using standard arguments [18] it can be seen that this optimization problem can be solved using infinite

horizon dynamic programming with sufficient statistic (belief state) given by:

pk = P{Θk = 1 | Ik} = P{Γ ≤ k | Ik}.

Using Bayes’ rule,pk can be shown to satisfy the recursion

pk+1 =











Φ(0)(pk) if Sk+1 = 0

Φ(1)(Xk+1, pk) if Sk+1 = 1

where

Φ(0)(pk) = pk + (1− pk)ρ (3)

and

Φ(1)(Xk+1, pk) =
Φ(0)(pk)L(Xk+1)

Φ(0)(pk)L(Xk+1) + (1− Φ(0)(pk))
(4)

with L(Xk+1) = f1(Xk+1)/f0(Xk+1) being the likelihood ratio, andp0 = π0. Note that the structure of

recursion forpk is independent of timek.

The optimal policy for the problem given in (2) can be obtained from the solution to the Bellman

equation:

J(pk) = min
dk,sk+1

λf (1− pk)I{dk=1} + I{dk=0}

[

pk +B
(0)
J (pk)I{sk+1=0} + (λc +B

(1)
J (pk))I{sk+1=1}

]

(5)

with

B
(0)
J (pk) = J(Φ(0)(pk))

and

B
(1)
J (pk) = E[J(Φ(1)(Xk+1, pk))].

It is easy to show by an induction argument (see, e.g., [13]) that J , B(0)
J andB(1)

J are all non-negative

concave functions on the interval[0, 1], and thatJ(1) = B
(0)
J (1) = B

(1)
J (1) = 0. Also, by Jensen’s

inequality

B
(1)
J (p) ≤ J(E[Φ(1)(X, p)]) = B

(0)
J (p), p ∈ [0, 1].
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From these properties ofJ , B(0)
J andB(1)

J , it is easy to show that the optimal policyγ∗ = (τ∗, µ∗
0, µ

∗
1, . . . , µ

∗
τ−1)

for the problem given in (2) has the following three threshold structure:

S∗
k+1 = µ∗

k(pk) =











0 if pk ∈ [0, B∗) ∪ [C∗, A∗]

1 if pk ∈ [B∗, C∗)

τ∗ = inf {k ≥ 1 : pk > A∗}

(6)

with 0 ≤ B∗ ≤ C∗ ≤ A∗ ≤ 1. The value ofA∗, B∗, andC∗ depend on the choice ofλf andλc.

Remark 1. With B∗ = 0 andC∗ = A∗, the algorithm in(6) reduces to the classical Shiryaev test [1].

The optimal policy described in (6) has the following interpretation. Recall thatpk is thea posteriori

probability of the change having happened before timek, given all the information up to timek. If pk

is either close to 0 or close to 1, the test has high confidence about the change, and therefore does not

take a new observation and relies on the prior. Ifpk is large enough, we stop and declare a change.

We next characterize the solution to the constrained optimization problem given in (1) using the

dynamic programming solution structure (6) that we derivedfor the Lagrangian relaxation given in (2).

Now, for given(A∗, B∗, C∗), γ∗ in (6) has some PFA and ANO performance. For a givenα andβ, if

λf andλc can be chosen such that PFA(γ∗) = α and ANO(γ∗) = β, then it is clear that the solution to

(2) is also a solution to (1). In the following we refer to thiscase by saying that a deterministic policy

is optimal. If no suchλf andλc exists, then one has to randomize over three-threshold policies that are

solutions to (2), to meet the constraintsα and β with equality. Since our objective is to find easy-to-

design data-efficient quickest change detection algorithms, we restrict our attention to the characterization

of deterministic optimal policies: finding(A∗, B∗, C∗) in (6) for a givenα andβ.

Towards characterizing deterministic optimal policies, we make the important observation that it is not

enough to find a three-threshold policy that meets the constraintsα andβ with equality. In Table I we

show the performance obtained via simulations of a three-threshold policy for various values of thresholds,

which we denote by(A,B,C), and for the parameter set:ρ = 0.01, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1). The

table clearly shows that multiple values of thresholds(A,B,C) satisfy the same constraintsα = 10−3

andβ = 40, and one can optimize over the choice of thresholds to get thebest ADD. Thus, the dynamic

programming argument only tells us that the optimal policy,i.e., the one that minimizes ADD subject to

constraints on PFA and ANO, can be found within the class of three-threshold policies. Further, not all

three-threshold policies are optimal solutions to the constrained optimization problem described in (1).

We will therefore denote a generic (deterministic) three-threshold policy byγ(A,B,C), with the
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TABLE I

ρ = 0.01, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1)

A B C ANO PFA ADD

0.998993 0.182426 0.991837 40 10−3 189

0.998952 0.222700 0.997268 40 10−3 88

0.998876 0.231475 0.997975 40 10−3 62

0.998708 0.236855 0.998341 40 10−3 46

0.998499 0.239577 0.998438 40 10−3 42.3

0.998449 0.240489 0.998449 40 10−3 42.1

understanding that the policy may not be optimal. In order toobtain the optimal thresholds for given

constraints PFA≤ α and ANO≤ β, i.e. to find(A∗, B∗, C∗) in (6), it is still necessary to obtain analytical

expressions for ADD, PFA and ANO, and to solve the optimization problem (1) on the space of thresholds,

(A,B,C). To this end, in the following section, we derive analyticalapproximations for ADD, PFA and

ANO in terms of(A,B,C) for any three-threshold policyγ(A,B,C).

In Section IV-A we use our analytical approximations to characterize this optimal choice of thresholds.

Specifically, observe in Table I that the ADD was minimum forA = C. We will show in Section IV-A

that this is a typical choice, i.e., a two-threshold policy is optimal among deterministic policies, unless

the ANO constraintβ is very severe. Even when a two-threshold policy is not optimal, we will show,

in Section IV-B via simulations, that using a two-thresholdin those cases results in marginal loss in

performance.

In Section IV-C, we provide a possible justification for the role of the third threshold for cases where

using three thresholds is optimal. In Section IV-D, we provide design guidelines for the two-threshold

algorithm, and in Section IV-E we comment on the trade-off between ANO and ADD. Finally, we

summarize the results and comment on future work in Section V.

III. A SYMPTOTIC ANALYSIS OFγ(A,B,C)

In this section we derive asymptotic approximations for ADD, PFA and ANO for a three-threshold

policy γ(A,B,C). To that end, we first convert the recursion forpk (see (3) and (4)) to a form that is

amenable to asymptotic analysis.

Define,Zk = log pk

1−pk
for k ≥ 0. This new variableZk has a one-to-one mapping withpk. By defining

a = log
A

1−A
, b = log

B

1−B
, c = log

C

1−C
,
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we can write the recursions (3) and (4) in terms ofZk.

For k ≥ 1,

Zk+1 = Zk + logL(Xk+1) + | log(1− ρ)|+ log
(

1 + ρ e−Zk
)

, if Zk ∈ [b, c) (7)

and

Zk+1 = Zk + | log(1− ρ)|+ log
(

1 + ρ e−Zk
)

, if Zk /∈ [b, c) (8)

with

Z1 = log
(

eZ0 + ρ
)

+ | log(1− ρ)|+ log (L(X1)) I{Z0∈[b,c)}.

Here we have used the fact thatSk+1 = 1 if pk ∈ [B,C), andSk+1 = 0 otherwise (see (6)). The crossing

of thresholdsA, B, C by pk is equivalent to the crossing of thresholdsa, b, c by Zk. Thus the stopping

time for γ(A,B,C) (equivalentlyγ(a, b, c) with some abuse of notation) is

τ = inf {k ≥ 1 : Zk > a} .

In this section we study the asymptotic behavior ofγ(a, b, c) in terms ofZk, under various limits of

a, b, c andρ. Specifically, we provide an asymptotic expression for ADD,for fixed b andρ, asc, a → ∞.

We also provide, asc, a → ∞ andρ → 0, asymptotic expression for PFA for fixedb, and for ANO with

b → −∞. Note that the limit ofc, a → ∞ corresponds to PFA going to zero (and ADD, ANO→ ∞),

and the limit ofρ → 0 corresponds to a rare change event.

Fig. 1 shows a typical evolution ofγ(a, b, c), i.e., ofZk using (7) and (8), starting at time 0. Note that

for Zk ∈ [b, c), recursion (7) is used, while outside that interval, recursion (8), which only uses the prior

ρ, is used. As a resultZk increases monotonically outside[b, c).

Define,

τc = inf {k ≥ 1 : Zk > c} .

From Fig. 1 again, each timeZk crossesb from below, it can either increase toc (point τc), and then

monotonically increase to stop ata (point τ ), or it can go belowb and approachb monotonically again

from below, at which time it faces a similar set of alternatives. Thus the passage to thresholdc possibly

involves multiple cycles of the evolution ofZk below b. We will show in Section III-B that after the

change pointΓ, following a finite number of cycles belowb, Zk grows up to crossc, and the time

spent on the cycles belowb is insignificant as compared toτc − Γ, asc, a → ∞. In fact we show that,

asymptotically, the time to reachc is equal to the time taken by the classical Shiryaev algorithm to move

from b to c. (Note that for the classical Shiryaev algorithm the evolution of Zk would be based on only

(7)).
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Fig. 1. Evolution ofZk for f0 ∼ N (0, 1), f1 ∼ N (0.5, 1), andρ = 0.01, with thresholdsa = 4.59, c = 3.89, andb = −1.38,

corresponding to thepk thresholdsA = 0.99, C = 0.98 andB = 0.2, respectively. AlsoZ0 = b.

WhenZk crossesc from below, it does so with an overshoot. Overshoots play a significant role in the

performance of many sequential algorithms (see [14], [17])and they are central to the performance of

γ(a, b, c) as well. In Section III-C, we show that PFA depends on the overshoot(Zτc − c) as c → ∞,

and on thresholdsc and a, but is not a function of the thresholdb. The overshoot distribution is also

used to approximate the time forZk to move fromc to a.

The number of observations taken during the detection process is the total time spent byZk between

b andc. As c, a → ∞, Zk crossesc only after change pointΓ, with high probability. The total number

of observation taken can thus be divided in to two parts: one taken beforeΓ, which is the fraction of

time Zk is aboveb (and hence depends only onb), and the part consumed afterΓ. In Section III-D we

show that, asymptotically, the average number of observations used afterΓ is approximately equal to the

delay itself.

In Section III-E we provide numerical results to demonstrate that under various scenarios, for limiting

as well as moderate values ofa, b, c andρ, our asymptotic expressions for ADD, PFA and ANO provide

good approximations.

In Section IV we use the asymptotic expressions for ADD, PFA and ANO to argue that the optimal

three-threshold policyγ∗(a∗, b∗, c∗) for given constraints PFA≤ α and ANO≤ β, can be well approxi-

mated by a two-threshold policy. We also provide numerical and simulation results to support the claim.

We begin our analysis by first obtaining the asymptotic overshoot distribution for(Zτc − c) using

nonlinear renewal theory [14], [15]. As mentioned above, this will be useful for the ADD analysis and
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will be critical to the PFA analysis. For convenience of reference, in Table II, we provide a glossary of

important terms used in this paper.

TABLE II

GLOSSARY

Symbol Definition/Interpretation Symbol Definition/Interpretation

ADD Average detection delay λ Starting atb, first timeZk is outside[b, c)

PFA Probability of false alarm Λ Starting atb, first timeZk crossesc

ANO0 Average # observations used before change or crossesb from below

ANO1 Average # observations used after change ADDs Starting atb, time for Zk to reachc underP1, when

{Xk} Observation sequence Zk is reset tob each time it crossesb from below

pk a posteriori probability of change λ(x) Starting atx ≥ b, first timeZk is outside[b, c)

Zk log pk
1−pk

=
∑k

i=1
Yi + ηk, Λ(x) Starting atx ≥ b, first timeZk crossesc

τ (τc) First time forpk to crossA (C) or or crossesb from below

first time forZk to crossa = log A
1−A

(c) λ̂ Starting atb, first timeZk < b with c = ∞

{ηk} Slowly changing sequence λ̂(x) Starting atx ≥ b, first timeZk < b with c = ∞

R(x), r̄ Asymptotic distribution and mean of overshoot Tb Time spent byZk below b, afterΓ, whenτ ≥ Γ

when
∑k

i=1
Yi crosses a large threshold Λ̃x Starting atx ≥ b, first timeZk > c, or crossesb from

t(x, y) Time for Zk to reachy starting atx using (8) below, or is stopped by occurrence of change

ν(x, y) Time for Zk to reachy starting atx using (7) δx The fraction of timeZk is aboveb, when stopped bỹΛx

also, time for Shiryaev test to reachy starting atx ν̃b (ν̂b) Starting atb, time for Zk to reachc, whenZk is

νb, ν0 ν(b, c) andν(−∞, c) reflected atb (reset tob when it crossesb from below)

In what follows, we useEℓ andPℓ to denote, respectively, the expectation and probability measure when

change happens at timeℓ. We useE∞ andP∞ to denote, respectively, the expectation and probability

measure when the entire sequence{Xn} is i.i.d. with densityf0. Also, g(x) = o(1) asx → x0 is used

to denote thatg(x) → 0 in the specified limit.

A. Asymptotic overshoot

In this section we characterize the overshoot distributionof Zk as it crossesc as c → ∞. For this

analysis, we can therefore assume thatZk < c. Also, in analyzing the trajectory ofZk, it useful to allow

for arbitrary starting pointZ0 (shifting the time axis). We first combine the recursions in (7) and (8) to

get:

Zk+1 = Zk + I{Zk≥b} logL(Xk+1) + | log(1− ρ)|+ log
(

1 + e−Zkρ
)

.
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By definingYk = logL(Xk)+| log(1−ρ)| and expanding the above recursion, we can write an expression

for Zn:

Zn =

n
∑

k=1

Yk + log
(

eZ0 + ρ
)

+

n−1
∑

k=1

log
(

1 + e−Zkρ
)

−
n
∑

k=1

I{Zk<b} logL(Xk)

=

n
∑

k=1

Yk + ηn. (9)

Hereηn is used to represent all terms other than the first in the equation above:

ηn = log
(

eZ0 + ρ
)

+

n−1
∑

k=1

log
(

1 + e−Zkρ
)

−
n
∑

k=1

I{Zk<b} logL(Xk). (10)

As defined in [14],ηn is a slowly changingsequence if

n−1max{|η1|, . . . , |ηn|}
n→∞
−−−→
i.p.

0, (11)

and for everyǫ > 0, there existsn∗ andδ > 0 such that for alln ≥ n∗

P{ max
1≤k≤nδ

|ηn+k − ηn| > ǫ} < ǫ. (12)

If indeed{ηn} is a slowly changing sequence, then the distribution ofZτc − c, asc → ∞, is equal to

the asymptotic distribution of the overshoot when the random walk
∑n

k=1 Yk crosses a large positive

boundary. We have the following result.

Theorem 1. Let R(x) be the asymptotic distribution of the overshoot when the random walk
∑n

k=1 Yk

crosses a large positive boundary underP1. Then for fixedρ and b, underP1, we have the following:

1) {ηn} is a slowly changing sequence.

2) R(x) is the distribution ofZτc − c as c → ∞, i.e.,

lim
c→∞

P [Zτc − c ≤ x|τc ≥ Γ] = R(x). (13)

Proof: When b = −∞, Zk evolves as in the classical Shiryaev test statistic, and it is easy to see

that in this case:

ηn =

[

log
(

eZ0 + ρ
)

+

n−1
∑

k=1

log
(

1 + e−Zkρ
)

]

= log

[

eZ0 +

n−1
∑

k=0

ρ(1− ρ)k
k
∏

i=1

f0(Xi)

f1(Xi)

]

.
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It was shown in [17] that this{ηn} sequence (forb = −∞), with Z0 = −∞, is a slowly changing

sequence. It is easy to show that{ηn} is a slowly changing sequence even ifZ0 is a random vari-

able. Also, if LZ is the last timeZk crossesb from below, then note that, afterLZ , the last term
∑n

k=1 I{Zk<b} logL(Xk) in (10) vanishes, andηn in (10) behaves like theηn for b = −∞. We prove the

theorem using these observations. The detailed proof is given in the appendix to this section.

B. Delay Analysis

The PFA forγ(a, b, c) can be shown to have the following expression and bound [17]:

PFA= E[1− pτ ] ≤ 1−A =
1

1 + ea
≤ e−a. (14)

We will later show that this upper bound is tight if the gap betweenc anda is significant enough. Using

this upper bound we can show that the ADD ofγ(a, b, c) is given by:

ADD = E
[

(τ − Γ)+
]

= E[τ − Γ|τ ≥ Γ](1 + o(1)) asc, a → ∞. (15)

As c, a → ∞, the conditional delayE[τ − Γ|τ ≥ Γ] will be due to the sample paths in whichZk

crossesc after the change pointΓ, i.e. τc ≥ Γ. The following lemma establishes that the conditional

delay can be written as a sum of two other conditional incremental delay terms. We need the following

definition. Lett(x, y) be the constant time taken byZk to move fromZ0 = x to y using the recursion

(8), i.e.

t(x, y)
∆
= inf{k ≥ 0 : Zk > y,Z0 = x, x, y /∈ [b, c)}. (16)

Lemma 1. For fixedρ and b, if t(c, a) is bounded asc, a → ∞, then asc, a → ∞,

E[τ − Γ|τ ≥ Γ] = (E[τ − τc|τc ≥ Γ] + E[τc − Γ|τc ≥ Γ]) (1 + o(1)) (17)

Proof: See the appendix to this section for the proof.

In the following, we provide asymptotic expressions forE[τ − τc|τc ≥ Γ] andE[τc − Γ|τc ≥ Γ].

1) Asymptotic expression forE[τc − Γ|τc ≥ Γ]: Let Ψ represent the Shiryaev recursion, i.e., updating

Zk using only (7). Define

ν(x, y) = inf {k ≥ 1 : Ψ(Zk−1) > y, Z0 = x} . (18)
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Thus,ν(x, y) is the time for the Shiryaev test to reachy starting atx. Also, define the stopping times:

νb = ν(b, c), (19)

and

ν0 = ν(−∞, c). (20)

Note that,ν0 is the stopping time for the classical Shiryaev test [1] andνb is its modified form which

starts atb.

From Theorem 1 in [17],

E[ν0 − Γ|ν0 ≥ Γ] ≥
c

D(f1, f0) + | log(1− ρ)|
(1 + o(1)) asc → ∞,

where,D(f1, f0) is the K-L divergence betweenf0 andf1. Also based on the second order approximation

for E1[ν0] developed in [17], we have obtained the following approximation for E1[νb]:

E1[νb] =
c− E[η(b)] + r̄

D(f1, f0) + | log(1− ρ)|
+ o(1) asc → ∞, (21)

where,η(b) is the a.s. limit of the slowly changing sequenceηn with Z0 = b underf1, (see (10) and

(46)), and

r̄ =

∫ ∞

0
xdR(x), (22)

with R(x) as in Theorem 1. Sinceη(b) is not a function of the thresholdc, we have

E[ν0 − Γ|ν0 ≥ Γ] = E1[νb](1 + o(1)) as c → ∞. (23)

Using (23) we prove the following lemma.

Lemma 2. For fixedb and ρ,

E[τc − Γ|τc ≥ Γ] ≥ E1[νb](1 + o(1)) as c → ∞.

Proof: We have for anyb andc,

E[τc − Γ|τc ≥ Γ] ≥ E[ν0 − Γ|ν0 ≥ Γ].

This is true because skipping observations can only lead to larger delay. The result then follows from

(23).

In the following we show thatE[τc − Γ|τc ≥ Γ] is also asymptotically upper bounded byE1[νb].

It was discussed in reference to Fig. 1 that each timeZk crossesb from below, it faces two alternatives,

to crossc without ever coming back tob or to go belowb and cross it again from below. It was mentioned
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that the passage to the thresholdc is through multiple such cycles. Motivated by this we define the

following stopping timesλ andΛ:

λ
∆
= inf{k ≥ 1 : Zk /∈ [b, c), Z0 = b}, (24)

and

Λ
∆
= inf{k ≥ 1 : Zk > c or ∃ k s.t. Zk−1 < b andZk ≥ b , Z0 = b}. (25)

We can writeΛ as a function ofλ using (16):

Λ = (λ+ t(Zλ, b))I{Zλ<b} + λ I{Zλ>c} = λ+ t(Zλ, b)I{Zλ<b}.

The significance of these stopping times is as follows. If we start the process atZ0 = b andresetZk to b

each time it crossesb from below, then the time taken byZk to move fromb to c is the sum of a finite but

random number of random variables with distribution ofΛ, sayΛ1,Λ2, . . . ,ΛN . For i = 1, . . . , N − 1,

ZΛi
< b, andZΛN

> c. Thus the time to reachc in this case isE1

[

∑N
k=1Λk

]

.

DefineADDs = E1

[

∑N
k=1Λk

]

. Lemma 3 shows thatE1

[

∑N
k=1Λk

]

is the dominant term in an upper

bound toE[τc − Γ|τc ≥ Γ] asc, a → ∞.

Lemma 3. For a fixedb and ρ, we have asc, a → ∞, c < a

E[τc − Γ|τc ≥ Γ] ≤ ADDs (1 + o(1)) . (26)

Proof: The proof is provided in the appendix.

We next show thatE1[νb] is asymptotically equivalent toADDs, and is hence an asymptotic upper

bound forE[τc − Γ|τc ≥ Γ].

Lemma 4. For a fixedb, ADDs, the average time forZk to crossc starting at b, underP1, with Zk

reset tob each time it crossesb from below, is asymptotically equal to the corresponding time taken by

the Shiryaev recursion, i.e.,

ADDs = E1[νb](1 + o(1)) as c, a → ∞.

Hence,

E[τc − Γ|τc ≥ Γ] ≤ E1[νb] (1 + o(1)) as c, a → ∞.
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Proof: We provide a sketch of the proof here. The details are provided in the appendix. Note that

ADDs = E1

[

N
∑

k=1

Λk

]

(i)
= E1[N ]E1[Λ]

(ii)
=

E1[Λ]

P1(Zλ > c)

=
E1[λ] + E1[t(Zλ, b)|{Zλ < b}]P1(Zλ < b)

P1(Zλ > c)
.

In the above equation, equality(i) follows from Wald’s lemma [14], and equality(ii) follows because

N ∼ Geom(P (Zλ > c)). The main idea of the proof is to find stopping times which upper and lower

bound the Shiryaev time on average and have delay equal toE1[λ]
P1(Zλ>c) asc → ∞. Finally, we use Lemma

3.

We have thus proved the following theorem.

Theorem 2. For a fixedb and ρ, we have asc, a → ∞,

E[τc − Γ|τc ≥ Γ] = E1[νb] (1 + o(1)) . (27)

2) Asymptotic expression forE[τ − τc|τc ≥ Γ]: The time forZk to reacha after it has crossedc is

non-zero only if the overshootZτc − c < a − c. If the overshoot isx < a − c, then the time taken is

t(c+x, a). Since, withc → ∞, the distribution ofZτc −c is R(x), one can approximateE[τ −τc|τc ≥ Γ]

for large c, by averagingt(c+ x, a) overR(x).

We first prove a lemma in which we obtain asymptotic upper and lower bounds ont(x, y).

Lemma 5. For a fixed value ofρ,
(

y − x

| log(1− ρ)|

)

(1 + o(1)) ≤ t(x, y) ≤

(

y − x

| log(1− ρ)|
+ 1

)

(1 + o(1)) as x, y → ∞. (28)

Also, for fixed values ofx and y, we have

t(x, y) =

(

log(1 + ey)− log(1 + ex)

| log(1− ρ)|

)

(1 + o(1)) as ρ → 0. (29)

Proof: The proof is provided in the appendix.

We use Lemma 5 to prove the following theorem.
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Theorem 3. As c, a → ∞,
(
∫ a−c

0

a− c− x

| log(1− ρ)|
dR(x)

)

(1 + o(1)) ≤ E[τ − τc|τc ≥ Γ]

≤

(
∫ a−c

0

a− c− x

| log(1− ρ)|
dR(x) +R(a− c)

)

(1 + o(1)).

(30)

The asymptotic upper and lower bounds differ byR(a − c), which being a distribution satisfies0 ≤

R(a− c) ≤ 1. Further if a− c → ∞ or a− c → constant> 0 with ρ → 0, then we have

E[τ − τc|τc ≥ Γ] =

(
∫ a−c

0

a− c− x

| log(1− ρ)|
dR(x)

)

(1 + o(1)). (31)

Proof: The proof is provided in the appendix.

C. PFA Analysis

We know from equation (14) that PFA can be written asE[1− pτ ]. We first obtain an expression for

PFA as a function of the overshoot whenZk crossesa.

Lemma 6. For fixedρ and b, as c, a → ∞

PFA = E[1− pτ ] = e−aE[e−(Zτ−a)](1 + o(1)).

Proof: See the appendix for the proof.

From Lemma 6, it is evident that PFA depends on the overshoot whenZk crossesa asa → ∞. This

overshoot in turn depends on the overshoot ofZk when it crossesc. Since the latter has an asymptotic

distribution (Theorem 1) that depends only on densitiesf0, f1 and prior ρ, and is independent ofb,

it is natural to expect that asc → ∞, PFA is completely characterized by the asymptotic distribution

R(x) and is not a function of the thresholdb. This is indeed true and is established using the following

argument.

When Zk crossesc it can either directly jump abovea with an overshoot greater thana − c, i.e.,

{Zτc > a}, or crossc with an overshoot less thana − c, i.e., {Zτc ≤ a}. In the former case, the false

alarm is then a function of the asymptotic distributionR(x) as c → ∞. In the latter case, becauseZk

crossesa with the help of only the prior, the overshoot is small and goes to zero asρ → 0 (8). As

a → ∞, Zτ−1 ≫ 0. Hence,

Zτ − Zτ−1 = log

(

1 + e−Zτ−1ρ

1− ρ

)

≤ log

(

1 + ρ

1− ρ

)

asa → ∞.

Thus on the set{Zτ ≤ a}, Zτ − a ≈ 0 for ρ small enough, and in this casePFA ≈ e−a. Based on this

idea we have obtained an asymptotic expression for PFA.
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Theorem 4. For b fixed, asc, a → ∞, and ρ → 0,

PFA =

(

e−aR(a− c) + e−c

∫ ∞

a−c

e−xdR(x)

)

(1 + o(1)). (32)

Proof: The proof is provided in the appendix.

D. Computation ofANO

As c → ∞, τc ≥ Γ with high probability. As a result, the total number of observations used can be

separated in two parts, one used beforeΓ and the other used afterΓ. The part used beforeΓ is the

fraction of time the processZk is aboveb. The part used afterΓ, for largec, is approximately the time

taken byZk to reachc. We obtain an asymptotic expression for ANO based on the above ideas.

First note that,

ANO = E

[

τ
∑

k=1

Sk

]

= E

[

τc
∑

k=1

Sk

]

= E

[

τc
∑

k=1

Sk

∣

∣

∣

∣

τc ≥ Γ

]

P(τc ≥ Γ) + E

[

τc
∑

k=1

Sk

∣

∣

∣

∣

τc < Γ

]

P(τc < Γ)

= E

[

τc
∑

k=1

Sk

∣

∣

∣

∣

τc ≥ Γ

]

(1 + o(1)) as c → ∞.

The last equality follows because
∑τc

k=1 Sk ≤ Γ on {τc < Γ}, andP(τc < Γ) < e−c → 0 asc → ∞.

DefineANO0 as the average number of observations used beforeΓ, andANO1 as the average number

of observations used afterΓ, conditioned on the event{τc ≥ Γ}. We can then write ANO as

ANO =

(

E

[

τc
∑

k=1

Sk

∣

∣

∣

∣

τc ≥ Γ

])

(1 + o(1))

=

(

E

[

Γ−1
∑

k=1

Sk

∣

∣

∣

∣

τc ≥ Γ

]

+ E

[

τc
∑

k=Γ

Sk

∣

∣

∣

∣

τc ≥ Γ

])

(1 + o(1))

= (ANO0 +ANO1) (1 + o(1)) as c → ∞.

Following (24), we define

λ̂ = inf{k ≥ 1 : Zk < b,Z0 = b, c = ∞}. (33)

The theorem below gives asymptotic expressions forANO0 andANO1.

Theorem 5. For fixed thresholdb, we have asc, a → ∞,

ANO1 = E1[νb](1 + o(1)),
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and asc, a → ∞, ρ → 0, and b → −∞, with ρ taken to 0 beforeb is taken to−∞,

ANO0 =
ρ−1 E∞[λ̂]

E∞[λ̂] + E∞[t(Z
λ̂
, b)]

1

1 + eb
(1 + o(1)),

where,λ̂ is as defined in(33).

Proof: The number of observations used afterΓ can be written as the difference between the time

for Zk to reachc and the time spend by it belowb. For this we define the variable

Tb
△
= E

[

τc
∑

k=Γ

1{Zk<b}

∣

∣

∣

∣

τc ≥ Γ

]

.

Thus

ANO1 = E [τc − Γ|τc ≥ Γ]− Tb + 1.

We know from Theorem 2 thatE [τc − Γ|τc ≥ Γ] ≈ E1[νb]. The following lemma shows that asc → ∞,

Tb converges, and evenANO1 ≈ E1[νb] for largec.

Lemma 7. For a givenρ and b,

ANO1 = E1[νb](1 + o(1)) as c, a → ∞.

Proof: The proof is provided in the appendix.

For computation ofANO0, we allow for the possibility that the process{Zk} started withZ0 = z0 6=

−∞, z0 < b. Let t(b) be the first timeZk crossedb from below, i.e.,t(b) = t(z0, b). Using the fact that

observations are used only aftert(b), we can write the following:

ANO0=E

[

Γ−1
∑

k=1

Sk

∣

∣

∣

∣

τc ≥ Γ

]

=E





Γ−1
∑

k=t(b)

Sk

∣

∣

∣

∣

Γ > t(b), τc ≥ Γ



P(Γ > t(b)|τc ≥ Γ). (34)

We now compute each of the two terms in (34). For the first term in (34), we have the following lemma.

Lemma 8. For a fixedb, asc, a → ∞, ρ → 0, andb → −∞, with ρ taken to 0 beforeb is taken to−∞,

E





Γ−1
∑

k=t(b)

Sk

∣

∣

∣

∣

Γ > t(b), τc ≥ Γ



 =
ρ−1 E∞[λ̂]

E∞[λ̂] + E∞[t(Z
λ̂
, b)]

(1 + o(1)).

Proof: Note that

lim
c,a→∞

E





Γ−1
∑

k=t(b)

Sk

∣

∣

∣

∣

Γ > t(b), τc ≥ Γ



 = E





Γ−1
∑

k=t(b)

Sk

∣

∣

∣

∣

Γ > t(b), c = ∞



 .
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To compute the right hand side of the above equation, note that conditioned on{Γ > t(b)},
∑Γ−1

k=t(b) Sk

is approximately the number of observations used when the processZk starts atZ0 = b, goes through

multiple cycles belowb, with each cycle length having distribution ofλ̂, and the sequence of cycles is

interrupted by occurrence of change. See the appendix for the detailed proof.

For the second term in (34), we show thatP(Γ > t(b)|τc ≥ Γ) is equal to 1
1+eb

in the limit and is

independent ofz0.

Lemma 9.

P(Γ > t(b)|τc ≥ Γ) =
1

1 + eb
+ o(1) as c, a → ∞, ρ → 0.

Proof: The proof is provided in the appendix.

The Lemmas 7-9 taken together completes the proof of Theorem5.

Simpler Approximation forANO0: Invoking Wald’s lemma [14], we writeE∞[λ̂] as,

E∞[λ̂] =
E∞[Z

λ̂
]− E∞[η

λ̂
]

−D(f1, f0) + | log(1 − ρ)|
.

We have developed the following approximation forE∞[λ̂]:

E∞[λ̂] ≈
r̄ + log(1 + ρe−b)

D(f1, f0)− | log(1− ρ)|
. (35)

Here,log(1 + ρe−b) is an approximation toE∞[η
λ̂
] by ignoring all the random terms afterb is factored

out of it. This extrab will cancel with theb in E∞[Z
λ̂
] = b+E∞[Z

λ̂
− b]. We approximateE∞[b−Z

λ̂
]

by r̄, the mean overshoot of the random walk
∑k

i=1 Yk, with meanD(f1, f0) − | log(1 − ρ)|, when it

crosses a large boundary (see (9)).

For the termE∞[t(Z
λ̂
, b)], we use (29) and the steps followed in the proof of Theorem 3 toget the

following approximation:

E∞[t(Z
λ̂
, b)] ≈

∫ ∞

0

log(1 + eb)− log(1 + eb−x)

| log(1− ρ)|
dR(x). (36)

Thus, we approximate the distribution of(b− Z
λ̂
) by R(x). As we will see in the next section, both of

these approximations work well for Gaussian observations.

E. Numerical Results

In Sections III-B-III-D, we have obtained asymptotic expressions for ADD, PFA, and ANO as a

function of the system parameters: the thresholdsa, b, c, the densitiesf0 and f1, and the priorρ. We

summarize the results below for convenience of reference. We write νb asν(b, c) to show its dependence
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on b andc. Also, we writeλ̂ (33) asλ̂(b) to indicate its dependence onb. The asymptotic approximations

are:

ADD ≈ E[τc − Γ|τc ≥ Γ] + E[t(Zτc , a)|τc ≥ Γ]

≈ E1[ν(b, c)] +

∫ a−c

0

a− c− x

| log(1− ρ)|
dR(x), (37)

PFA ≈ e−aR(a− c) + e−c

∫ ∞

a−c

e−xdR(x), (38)

ANO ≈ ANO0 +ANO1

≈
ρ−1

1 + eb
E∞[λ̂(b)]

E∞[λ̂(b)] + E∞[t(Z
λ̂(b), b)]

+ E1[ν(b, c)]. (39)

Recall that an approximation forE1[ν(b, c)] was obtained in (21), based on the result from [17], and a

simpler approximation forANO0 was developed using (35) and (36).

In this section, we compare (37)-(39) with simulation results to demonstrate the accuracy of these

approximations. We assume that the observations are Gaussian with f0 ∼ N (0, 1), andf1 ∼ N (θ, 1),

θ > 0, for the simulations and analysis. In the simulations, the PFA values are computed using the

expressionE[1− pτ ] given in (14). This guarantees a faster convergence for small values of PFA. Also,

we define

ANO% = ANO expressed as the percentage of the average number of

observations used by the Shiryaev test that achieves the same PFA.
(40)

Thus, a small ANO% corresponds to a large saving in the average number of observations used for

detection byγ(a, b, c). In Section IV we will show that the optimal choice of thresholds for γ(a, b, c)

depends on the ANO%.

In Sections III-B, we identified limits under whichE1[ν(b, c)] is a good approximation forE[τc−Γ|τc ≥

Γ]: for fixed b, asc, a → ∞. Clearly, in this limit ANO% increases to 100. In Table III, we fix b = 1.0

and increasea, and compareE[τc − Γ|τc ≥ Γ], obtained using simulations, toE1[ν(b, c)] from (37). We

see in Table III that the approximation improves as the ANO% increases. In generalE1[ν(b, c)] is a good

approximation forE[τc − Γ|τc ≥ Γ] when ANO% is large, but may not be a good approximation when

ANO% is small.

In Table IV we compareE1[ν(b, c)] andE[τc − Γ|τc ≥ Γ] for various values ofρ, thresholdsa, b, c,

with c = a, and post change meanθ. The table demonstrates that the analytical approximationis quite

accurate even for these moderate values of the parameters chosen and for 20-50% of savings in the

average number of observations used (note the ANO% in the table). We also tabulate the corresponding
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TABLE III

ρ = 0.05, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1), c = a

Simulations Analysis

a b E[τc − Γ|τc ≥ Γ] E1[ν(b, c)] ANO%

1.2 1.0 16 1.7 9%

5.0 1.0 29.6 13.1 37%

9.0 1.0 41.7 25.2 52%

18.0 1.0 68.8 52.2 70%

50.0 1.0 165 149 86%

100.0 1.0 315 299 93%

values of PFA achieved using analysis (38) and using simulations. A comparison of PFA values shows

that (38) is quite accurate for the parameters chosen.

TABLE IV

f0 ∼ N (0, 1), f1 ∼ N (θ, 1), c = a

ADD PFA ANO%

θ ρ a b Simulations Analysis Simulations Analysis

E[τc − Γ|τc ≥ Γ] E1[ν(b, c)]

0.4 0.01 8.5 -2.2 104.9 111.7 1.608×10−4 1.608×10−4 83%

0.75 0.01 6.467 -2.2 32.3 29.5 1.002×10−3 1.004×10−3 49%

2.0 0.01 7.5 -4.0 6.1 6.23 1.77×10−4 1.768×10−4 47%

0.75 0.005 8.7 -3.0 42.6 40.4 1.076×10−4 1.076×10−4 48%

0.75 0.1 8.5 0.0 23.9 22.18 1.286×10−4 1.285×10−4 75%

To further show the accuracy of (38) as an approximation for PFA, in Table V we compare (38) with

the PFA obtained using simulations ofγ(a, b, c) for the same choice of thresholds(a, b, c). Note that in

comparison with Table IV, herec < a. From the table we see that (38) gives a very good estimate of

PFA.

In Table VI, we show that PFA is not a function ofb for large values ofc anda. We fix a = 4.6 and

c = 3.89, and increaseb from -2.2 to 0.85. We notice that PFA is unchanged in simulations whenb is

changed this way. This is also captured by the analysis and itis quite accurate.

In Table VII we demonstrate the accuracy of ANO approximations,ANO0 andANO1 (39), for the

same set of parameters as in Table IV. The table shows that theapproximations in (39) are quite accurate
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TABLE V

PFA: FORf0 ∼ N (0, 1), f1 ∼ N (θ, 1), c < a

PFA PFA

θ ρ a b c Simulations Analysis

0.4 0.01 3.0 0 2.5 4.63×10−2 4.87×10−2

0.4 0.01 6.0 2.0 5.8 2.239×10−3 2.253×10−2

0.75 0.01 9.0 -2.0 9.0 7.968×10−5 7.964×10−5

2.0 0.01 5.0 -4.0 -1.0 6.649×10−3 6.72×10−3

0.75 0.005 7.6 3.0 7.5 3.531×10−4 3.535×10−4

0.75 0.1 4.0 -3.0 2.0 1.71×10−2 1.83×10−2

TABLE VI

PFA for ρ = 0.01, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1)

a b c Simulations Analysis

4.6 -2.2 3.89 9.2×10−3 9.24×10−3

4.6 -1.5 3.89 9.2×10−3 9.24×10−3

4.6 -0.85 3.89 9.2×10−3 9.24×10−3

4.6 0 3.89 9.2×10−3 9.24×10−3

4.6 0.85 3.89 9.2×10−3 9.24×10−3

for the parameters chosen.

Table VIII shows the comparison of simulations and analysisfor E[t(Zτc , a)|τc ≥ Γ], as provided in

equation (37). We tabulate the result for various values ofρ and thresholdsa andc. The values indicate

that the approximation is quite accurate.

TABLE VII

f0 ∼ N (0, 1), f1 ∼ N (θ, 1), c = a

ANO0 ANO1

θ ρ a b Simulations Analysis Simulations Analysis

0.4 0.01 8.5 -2.2 66.3 62.88 102.9 111.7

0.75 0.01 6.467 -2.2 34.92 34.24 27.86 29.46

2.0 0.01 7.5 -4.0 42.94 46.4 6.08 6.23

0.75 0.005 8.7 -3.0 77.18 75.09 38.73 40.38

0.75 0.1 8.5 0.0 2.64 3.2 21.17 22.18
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TABLE VIII

E[t(Zτc , a)|τc ≥ Γ] for f0 ∼ N (0, 1), f1 ∼ N (0.75, 1)

ρ a c Simulations Analysis

0.01 6.9 4.6 179 179

0.01 4.6 3.9 29.2 29.2

0.2 4.6 3.9 1.5 1.2

0.2 9.2 3.89 21.7 21.2

0.001 2.31 2.2 9.46 9.8

Remark 2. In Section IV-A we show that the optimal solution to the problem in (1), withADD, PFA,

andANO given by the expressions in (37), (38) and (39), has a two-threshold structure. The optimality

arguments there depend onE1[ν(b, c)] being a good approximation for bothADD (with c = a) and

ANO1, and also on the fact thatPFA does not depend on the thresholdb. Hence, based on the numerical

results shown in Table III-VII, we may surmise that a two-threshold policy is approximately optimal when

ANO% is large.

IV. TWO-THRESHOLD STRUCTURE

In this section, using the analytical results developed so far, i.e., using (37)-(39), we argue that the

three-threshold policyγ(a, b, c) can be well-approximated by a two-threshold policy by showing the sense

in which a two-threshold policy is optimal (Section IV-A). By two-threshold policy we meanγ(a, b, c)

with c = a. This two-threshold policy offers uniqueness of operatingpoint and simplicity of design

(Section IV-D).

A. Optimality of the two-threshold structure

If the asymptotic expressions (37)-(39) are taken to be the actual system performance, we can solve

the optimization problem in (1) by finding the thresholdsa, b and c which minimize ADD for given

constraints on PFA and ANO. We will now prove that the solution to this constrained optimization

problem can be found within the class of two-threshold policies obtained by settingc = a.

If c = a then the performance ofγ(a, b, c) can be obtained by simply substitutingc = a in various

asymptotic expressions. We identify this as a separate policy γ(a′, b′), where we usea′ and b′ to name
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the two thresholds. Then the performance of this two-threshold policy would be:

ADD′ ≈ E1[ν(b
′, a′)] (41)

PFA′ ≈ e−a′

∫ ∞

0
e−xdR(x). (42)

ANO′ ≈ ANO′
0 +ANO′

1

≈
1

ρ

1

1 + eb′
E∞[λ̂(b′)]

E∞[λ̂(b′)] + E∞[t(Z
λ̂
, b′)]

+ E1[ν(b
′, a′)] (43)

Theorem 6. The optimal solution to the problem in (1), in the class of deterministic three-threshold

policies, withADD, PFA andANO given by (37)-(39) is a two-threshold policy.

Proof: We claim that given anya, b and c for the three-threshold policyγ(a, b, c), we can select

somea′ andb′ for the two-threshold policyγ(a′, b′), and get at least as good of an operating point. The

key to this argument is the independence of PFA fromb and the fact that ANO1 andE[τc − Γ|τc ≥ Γ],

being equal, can be controlled simultaneously.

First we selecta′ such that the false alarm probabilities are same forγ(a, b, c) andγ(a′, b′):

e−aR(a− c) + e−c

∫ ∞

a−c

e−xdR(x) = e−a′

∫ ∞

0
e−xdR(x).

It is easy to see thata′ ≥ c. Now selectb′ such that the following Shiryaev delays are equal:

E1[ν(b, c)] = E1[ν(b
′, a′)].

Sincea′ ≥ c, we haveb′ ≥ b. Since the Shiryaev delays are exactly the respective ANO1s for the two

algorithm, we see that: the two systems have the same PFA, andhave the same post change ANO, i.e.,

ANO1 = ANO′
1. Also,

ANO0 ≥ ANO′
0 sinceb ≤ b′.

Using thisa′ andb′ we also get a smaller delay because

E1[ν(b
′, a′)] ≤ E1[ν(b, c)] +

∫ a−c

0

a− c− x

| log(1− ρ)|
dR(x). (44)

Thus we have founda′ and b′ which gives the same PFA performance but at least as good ADD and

ANO. Moreover, note the optimala′ and b′ can be obtained directly based on the constraints on PFA

and ANO using (42) and (43), and no further optimization is required.

Thus, based on Theorem 6 and the accuracy of the asymptotic expressions demonstrated in Sec-

tion III-E, we see that as long as the asymptotic expressionsreflect the true system behavior, a three-

threshold policy can always be well approximated by a two-threshold policy.
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Remark 3. This means that, if the performance of the optimal deterministic policy is given by(37)-(39),

then it can be well approximated by a two-threshold policy.

Remark 4. Within the class of two-threshold policies, there is a unique policy that meets a given set of

constraintsα and β with equality. Thus, no further optimization is needed.

B. Comparative Performance

The dynamic programming solution suggested that the optimal algorithm has three thresholds. In

Section IV-A we showed that if (37)-(39) reflect the true system performance then the thresholdc is

not required. However, there are cases in which having a third threshold helps. In those cases, it is

interesting to know how much one loses in performance by using the two-threshold algorithm. It is not

easy to analytically quantify the loss. We therefore study this via simulations.

In Table IX, for various system parameters, we compare the performance of the two-threshold algorithm

with the best that can be achieved using three thresholds. Weuse the simulation set up:ρ = 0.01,

f0 ∼ N (0, 1), f1 ∼ N (θ, 1), θ > 0, andα = 10−3. For various values ofθ and the ANO constraintβ,

we perform extensive simulations to search for the best three-threshold performance. In Table IX we refer

to the best point by(a∗, b∗, c∗). We then compare this best three-threshold point with the performance

of the two-threshold algorithm. Although we have chosenρ = 0.01 andα = 10−3, this is typical of how

the two algorithms compare. The table clearly shows that forANO savings of up to 90% (ANO% up

to 10), there is almost no loss in performance by using a two-threshold policy over the three-threshold

policy. For ANO% of 5-10, there is less than 1% loss in performance. However for all the three values

of θ considered, it is evident that if we seek 99% of ANO savings, then by using the third threshold we

may get a better delay.

Remark 5. In Section III-E, in Table IV, we showed that forANO% of 50 − 100, E1[ν(b, c)] is a

good approximation forE[τc − Γ|τc ≥ Γ]. In Theorem 6 we showed that when this happens, a three-

threshold policy can be well approximated by a two-threshold policy. Table IX shows that even for

ANO% of 10 − 50, where Theorem 6 may not be applicable, a two-threshold policy is optimal. Also,

for ANO% < 10, where a three-threshold policy is optimal, their is a marginal loss in performance by

using a two-threshold policy.
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TABLE IX

ρ = 0.01, f0 ∼ N (0, 1), f1 ∼ N (θ, 1), α = 10−3

Three-threshold Two-Threshold

θ β ANO% a∗ b∗ c∗ ADD a b ADD

0.2 127 40% 6.787 2.585 6.787 345.83 6.787 2.585 345.83

0.2 50 16% 6.89 4.75 6.65 489.5 6.787 4.89 490.2

0.2 15 5% 6.901 5.6 6.326 557.88 6.787 6.06 558.35

0.2 3.5 1.1% 6.901 5.2 5.38 580.4 6.782 6.6 580.86

0.75 40 30% 6.467 -1.15 6.467 42.1 6.467 -1.15 42.1

0.75 15 11% 6.467 2.18 6.467 206.4 6.467 2.18 206.4

0.75 5 4% 6.88 4.25 5.7 450.55 6.47 5.0 455.3

0.75 1.7 1.3% 6.898 4.8 4.93 540.5 6.345 6.2 549.5

2.0 40 40% 5.768 -3.68 5.768 5.58 5.768 -3.68 5.58

2.0 10 10% 5.768 -1.39 5.768 16.2 5.768 -1.39 16.2

2.0 5 5% 5.768 0.05 5.768 47.44 5.768 0.05 47.44

2.0 2 2% 6.48 2.9 5.2 257.14 5.74 3.4 273.6

C. Role of the third threshold

In the last section we saw that two-threshold policies are approximately optimal, unless the ANO

constraint is very severe. Based on our analytical study ofγ(a, b, c), we now provide a possible justification

for this behavior, for low values of PFA. To meet the low ANO constraint using two thresholdsb and

a, we might need to choose a largeb. Here is a reason why we may not want a largeb. For γ(a, b, c),

choosing(a∗, b∗, c∗) is equivalent to choosingb∗ first, then usingc to meet the ANO constraint, and

then usinga to meet the PFA constraint. Choosing a largeb may not be optimal, because for largeb,

it is possible thatE[Γ] ≪ t(−∞, b), and the algorithm may wait for a long time before taking the first

sample, even after the change has already occurred. We may get a better trade-off by choosing a smaller

b and usec < a to meet the constraint on ANO.

The third threshold is required in one more scenario. For thedelay analysis, we used the fact that the

passage ofγ(a, b, c) to c is through multiple cycles belowb. However there are cases, for example for

ρ = 0.2, f0 ∼ N (0, 1), f1 ∼ N (0.1, 1), for which as soon asZk crossesb from below, it grows up toc

without ever coming back tob. In such a case it may be possible that we may not be able to meetthe

ANO constraint exactly by using only two thresholds. However, we can meet a constraint smaller than

the one required with a small loss in performance.
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D. Design of two-threshold policy and improvedADD approximation

In this section we comment on how to choose the thresholdsa and b, equivalentlyA and B, for

the two-threshold algorithm. In the previous sections we have found expressions for the PFA and ANO

performance of the algorithm.

PFA ≈ e−a

∫ ∞

0
e−xdR(x) ≤ e−a,

ANO ≈
1

ρ

1

1 + eb
E∞[λ̂]

E∞[λ̂] + E∞[t(Z
λ̂
, b)]

+ E1[νb],

where,

E∞[λ̂] ≈
r̄ + log(1 + ρe−b)

D(f1, f0)− | log(1− ρ)|
,

E∞[t(Z
λ̂
, b)] ≈

∫ ∞

0

log
(

1+eb

1+eb−x

)

| log(1− ρ)|
dR(x),

E1[νb] ≈
a− E[η(b)] + r̄

D(f1, f0) + | log(1− ρ)|
.

Note that
∫∞
0 e−xdR(x) and r̄ can be computed numerically, at least for Gaussian observations [14].

Also, E[η(b)] andE∞[t(Z
λ̂
, b)] can be computed using Monte Carlo simulations. Since, PFA isnot a

function of b, givenα andβ, we can set,

a = log

∫∞
0 e−xdR(x)

α
,

and use this value ofa and given constraintβ to select the value ofb using the above expressions. As

mentioned earlier, this choice ofa andb would give approximately the minimum possible ADD.

For data in Table X, we start with the constraintsα andβ and use the analytical expressions above

to choosea and b that meet these constraints. We then simulate the algorithmusing these thresholds

to check if the performance meets the desired constraints westarted with. We also compare the ADD

values obtained in simulations and analysis. We see that theanalytical expressions provide us with the

means to design the two-threshold algorithm.

For computing ANO, if one wants to avoid Monte Carlo simulations in the computation ofE∞[t(Z
λ̂
, b)]

or E1[νb], then the following approximations also works well:

E∞[t(Z
λ̂
, b)] ≈

log
(

1+eb

1+eb−r̄

)

| log(1− ρ)|
.

E1[νb] ≈
a− b+ r̄

D(f1, f0) + | log(1− ρ)|
.
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TABLE X

f0 ∼ N (0, 1), f1 ∼ N (0.75, 1). THRESHOLDSa AND b OBTAINED USING PFA AND ANO EXPRESSIONS.

Constraints Two Thresholds Simulations Analysis

ρ α β a b ANO ANO% PFA ADD E1[νb]

0.05 3×10−6 45 12.27 -0.62 43.5 77% 3.002×10−6 41.1 38.7

0.05 5×10−4 30 7.15 -0.62 28.1 71% 5.017×10−4 25.7 23.3

0.01 6.5×10−5 70 9.2 -2.1 69.5 51% 6.523×10−5 42.25 38.6

0.01 1×10−3 60 6.46 -2.06 59.1 47% 1.01×10−3 33 29.13

Although,E1[νb] is a good approximation forANO1 for almost all values ofa and b, unfortunately,

as was mentioned earlier, it is not necessarily a very good approximation for ADD. Recall thatE1[νb]

is a good approximation for ADD only when the gap betweena and b is large, which corresponds to

large ANO%. For moderate gap betweena and b, or for smaller ANO%, the quality of approximation

depends on other systems parameters. In Section III-E, Table IV, and in this section in Table X, we

saw some of these cases where the approximation was good (note the ANO% in Table X). Although,

the two-threshold algorithm can be designed by selectinga and b as mentioned above, a better ADD

approximation can be obtained as follows.

The technique for this new approximation comes from the proof of Lemma 3. Analogous to the steps

in the proof of Lemma 3 we identify three events:

A = {ZΓ < b},

B = {ZΓ ≥ b;Zk ր b},

C = {ZΓ ≥ b;Zk ր a},

where, we have replaced thresholdc by thresholda. We can write the following expression forE[τ−Γ|τ ≥

Γ],

E[τ − Γ|τ ≥ Γ] = E[τ − Γ;A|τ ≥ Γ] + E[τ − Γ;B|τ ≥ Γ] + E[τ − Γ; C|τ ≥ Γ].

We then assume that the eventB ∪ C is dominated byC. That is, we assume that ifZΓ > b, thenZk

climbs toa. Define,Pb = P(ZΓ ≥ b). Then,

Pb = P(B ∪ C) ≈ P(C).

Thus,

ADD ≈ Pb E[λ(ZΓ)|C] + (1− Pb)(E[t(ZΓ, b)|A] + ADDs). (45)
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From proof of Lemma 4, it is easy to show the following:

ADDs = E1[λ|{Zλ > a}] + (E1[λ|{Zλ < b}] + E1[t(Zλ, b)|{Zλ < b}])
P1(Zλ < b)

1− P1(Zλ < b)
.

We now use the following approximations:

E1[λ|{Zλ > a}] ≈ E[λ(ZΓ)|C] ≈ E1[νb],

E1[λ|{Zλ < b}] ≈
r̄ + log(1 + ρe−b)

D(f1, f0)− | log(1− ρ)|
,

E1[t(Zλ, b)|{Zλ < b}] ≈ t(b− r̄, b) ≈
log(1 + eb)− log(1 + eb−r̄)

| log(1− ρ)|
.

Remark 6. Note that withE[λ(ZΓ)|C] ≈ E1[νb], and E[t(ZΓ, b)|A] being independent of thresholda,

this new approximation(45) reduces to the existing one, i.e. toE1[νb] for a fixedb as a → ∞: in this

limit ADDs approachesE1[νb] (Lemma 4).

To compute (45), we also need approximations forP1(Zλ < b), Pb and E[t(ZΓ, b)|A]. Those are

provided below. Settinga = ∞ we have, by Wald’s likelihood identity, Proposition 2.24, Pg 13, [14],

P1(Zλ < b) = E∞

[

f1(X1) . . . f1(Xλ)

f0(X1) . . . f0(Xλ)

]

.

UnderP∞, λ a.s. ends inb and with high probability it takes very small values. Hence,this expressions

can be computed using Monte Carlo simulations. Further,

Pb = P(Γ > t(−∞, b))P(ZΓ > b|Γ > t(−∞, b))

≈
1

1 + eb
E∞[λ̂]

E∞[λ̂] + E∞[t(Z
λ̂
, b)]

.

We already have the approximations forE∞[λ̂] andE∞[t(Z
λ̂
, b)]. The approximation forE[t(ZΓ, b)|A]

can be obtained as follows:

(1− Pb)E[t(ZΓ, b)|A] = (1− Pb)E[t(ZΓ, b)|{ZΓ < b}]

= E[t(ZΓ, b)|{ZΓ < b} ∩ {Γ > t(−∞, b)}]P({Γ > t(−∞, b)} ∩ {ZΓ < b})

+E[t(ZΓ, b)|{ZΓ < b} ∩ {Γ ≤ t(−∞, b)}]P({Γ ≤ t(−∞, b)} ∩ {ZΓ < b}).

This can be computed using

P({Γ > t(−∞, b)} ∩ {ZΓ < b}) ≈
1

1 + eb
E∞[t(Z

λ̂
, b)]

E∞[λ̂] + E∞[t(Z
λ̂
, b)]

,

and

P({Γ ≤ t(−∞, b)} ∩ {ZΓ < b}) = P({Γ ≤ t(−∞, b)}) ≈
eb

1 + eb
.
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To compute conditional expectation oft(ZΓ, b), we need to subtract fromt(x, b), the mean ofΓ condi-

tioned on{Γ ≤ t(x, b)}. Specifically,

E[t(ZΓ, b)|{ZΓ < b} ∩ {Γ > t(−∞, b)}] = t(b− r̄, b)−
1

P(Γ ≤ t(b− r̄, b))

t(b−r̄,b)
∑

k=1

k(1 − ρ)k−1ρ,

and,

E[t(ZΓ, b)|{ZΓ < b} ∩ {Γ ≤ t(−∞, b)}] = t(−∞, b)−
1

P(Γ ≤ t(−∞, b))

t(−∞,b)
∑

k=1

k(1− ρ)k−1ρ.

Thus we have obtained approximations for all the terms for the new approximation for ADD in (45).

We now provide, in Table XI, numerical results to show the accuracy of the new ADD approximation

(45), by comparing it with simulations and also withE1[νb]. All the points here correspond to a low

value of ANO%:ANO = 10% of the Shiryaev ANO. We also set PFA around1×10−3. The table clearly

demonstrates that the new ADD approximation predicts ADD with less than 5% error.

TABLE XI

f0 ∼ N (0, 1), f1 ∼ N (0.75, 1), PFA≈ 10−3 , ANO=10%OF SHIRYAEV ANO

ADD

ρ a b Simulations Analysis Analysis

New (45) E1[νb]

0.01 6.4 2.7 250 260 14.42

0.005 6.45 0.6 181 190 22.09

0.001 6.47 -2.7 75 80 33.68

0.0005 6.47 -3.49 74 79 36.49

0.0001 6.47 -5.2 76 80 42.56

E. Trade-off curves

In Fig. 2 and 3 we plot the ANO-ADD trade-off for the two-threshold algorithm. Specifically, we

compare the two-threshold algorithm with the classical Shiryaev test and study how much ANO can

be reduced without significantly loosing in terms of ADD. Fig. 2 shows that we can reduce ANO by

up to 25% as compared to the Shiryaev test, while getting approximately the same ADD performance.

Moreover, if we allow for a 10% increase in ADD, then we can reduce ANO by up to 50%. If the change

is rarer (ρ = 0.001), then Fig. 3 shows that we can reduce ANO by 70% by allowing for 10% excess

ADD.
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Fig. 2. Trade-off curves comparing performance of two-threshold algorithm with the Shiryaev test for ANO=75% and 50% of

Shiryaev ANO.f0 ∼ N (0, 1), f1 ∼ N (0.75, 1), andρ = 0.01.
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Fig. 3. Trade-off curves comparing performance of two-threshold algorithm with the Shiryaev test for ANO=30% and 15% of

Shiryaev ANO.f0 ∼ N (0, 1), f1 ∼ N (0.75, 1), andρ = 0.001.

V. CONCLUSIONS

We posed a data-efficient version of the classical Bayesian quickest change detection problem, where

we control the number of observations taken before the change is declared. We obtained a two-threshold

Bayesian test that has some optimality properties and is easy to design. Specifically, we identified an

asymptotic regime – when the false alarm probability is small, the change is rare and the ANO constraint

is not very severe – in which either a deterministic two-threshold policy is optimal, or the optimal policy

can be obtained by randomizing over two-threshold policies. We supported our claim via analytical and

simulation results. We derived analytical approximationsfor the ADD, PFA and ANO performance of

the two-threshold policy using which we can design the test by choosing the thresholds. Further, the

two-threshold policy which meets a given set of constraintswith equality is unique among the class of
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two-threshold policies. This result has implications in many engineering applications where an abrupt

change has to be detected in a process under observation, butthere is a cost associated with acquiring

the data needed to make accurate decisions.

In the absence of knowledge of the prior onΓ, an important problem for future research is to see if two-

threshold policies are optimal in non-Bayesian (e.g., minimax) settings. More importantly, it is of interest

to understand how to update the test metric in a non-Bayesiansetting when we skip an observation.

From an application point of view, one can design a two-threshold test based on the Shiryaev-Roberts

or CUSUM approaches [19], and use the undershoot of the metric when it goes below the threshold ‘b’,

to design the off times. Furthermore, if we are able to find useful lower bounds on delay for given false

alarm and ANO constraints, we may be able to use these to proveasymptotic optimality of such heuristic

tests, as is done for the standard quickest change detectionproblem [17], [20]. Also, such lower bounds

can possibly help in obtaining insights for cases where the observations are not i.i.d. [17], [20]. Other

interesting problems in this area include the design of data-efficient optimal algorithms for robust change

detection or nonparametric change detection.

APPENDIX TOSECTION III-A

Proof of Theorem 1:We first show thatηn with b = −∞, andZ0 a random variable, is a slowly

changing sequence. LetZ0 takes valuez0, then

ηn = log

[

ez0 +

n−1
∑

k=0

ρ(1− ρ)k
k
∏

i=1

f0(Xi)

f1(Xi)

]

P1−a.s.
−−−−−→
n→∞

log

[

ez0 +

∞
∑

k=0

ρ(1− ρ)k
k
∏

i=1

f0(Xi)

f1(Xi)

]

.

Define

η(Z0)
△
= log

[

eZ0 +

∞
∑

k=0

ρ(1− ρ)k
k
∏

i=1

f0(Xi)

f1(Xi)

]

.

Note thatη(Z0) as a function ofZ0 is well defined and finite underP1. This is because by Jensen’s

inequality, forZ0 = z0,

E[η(z0)] ≤ log

[

ez0 +

∞
∑

k=0

ρ(1− ρ)kE1

(

k
∏

i=1

f0(Xi)

f1(Xi)

)]

= log

[

ez0 +

∞
∑

k=0

ρ(1− ρ)k

]

= log (ez0 + 1) .

Thus

ηn
P1−a.s.
−−−−−→
b=−∞

η(Z0) = log
(

eZ0 + ρ
)

+

∞
∑

k=1

log
(

1 + e−Zkρ
)

. (46)
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This implies
∑∞

k=1 log
(

1 + e−Zkρ
)

converges a.s. for i.i.d.{Xk} and b = −∞. This series will also

converge with probability 1 if we condition on a set with positive probability.

Let change happen atΓ = l. We setZ0 = ZΓ = Zl and assume that{Xk}, k ≥ 1 have densityf1,

which would happen afterΓ. We first show that starting with the aboveZ0, the sequenceηn generated

in (10) is slowly changing.

To verify the first condition (11), from (10) note that,

n−1max{|η1|, . . . , |ηn|} ≤ n−1

[

| log
(

eZ0 + ρ
)

|+
n−1
∑

k=1

log
(

1 + e−Zkρ
)

+

n
∑

k=1

(| logL(Xk)|) I{Zk<b}

]

.

Since,Zk → ∞ a.s.,log
(

1 + e−Zkρ
)

→ 0, also,I{Zk<b} → 0 a.s. Thus both the sequences{log
(

1 + e−Zkρ
)

}

and{(| logL(Xk)|) I{Zk<b}} are Cesaro summable and have Cesaro sum of zero. Thus the terminside

the square bracket above, when divided byn, goes to zero a.s. and hence also in probability. Thus the

first condition is verified.

To verify the second condition (12), we first obtain a bound on|ηn+k − ηn|.

|ηn+k − ηn| ≤
n+k−1
∑

i=n

log
(

1 + e−Ziρ
)

+

n+k
∑

i=n+1

(| logL(Xi)|) I{Zk<b}.

Thus,

max
1≤k≤nδ

|ηn+k − ηn| ≤
n+nδ−1
∑

i=n

log
(

1 + e−Ziρ
)

+

n+nδ
∑

i=n+1

(| logL(Xi)|) I{Zk<b}
△
= d1n + d2n.

Here, for convenience of computation, we used1n andd2n to represent the first and second partial sums

respectively. Now,

P{ max
1≤k≤nδ

|ηn+k − ηn| > ǫ} ≤ P(d1n + d2n > ǫ),

and we bound the probabilityP(d1n + d2n > ǫ) as follows.

On the event thatE
△
= {Zk ≥ b,∀k ≥ 0}, d2n is identically zero, thus forn large enough,

P(d1n + d2n > ǫ|E) = P(d1n > ǫ|E) < ǫ.

This is becaused1n behaves like a partial sum of a series of type in (46). Since the series in (46)

converges if random variables are generated i.i.d.f1, it will also converge if conditioned on the event

E. Thus, the partial sumd1n converges to 0 almost surely, and hence converges to 0 in probability, i.e.,

P(d1n > ǫ|E) → 0. Select,n = n∗
1 such that∀n > n∗

1, P(d
1
n > ǫ|E) < ǫ.

Define

LZ = sup{k ≥ 1 : Zk−1 < b,Zk ≥ b},
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with LZ = ∞ if no suchk exists. On the eventE′, which is the compliment ofE, LZ is a.s. finite.

Then, by noting thatd2n = 0 for LZ < n, we get forn large enough,

P(d1n + d2n > ǫ|E′)
△
= PE′(d1n + d2n > ǫ) ≤ PE′(d1n + d2n > ǫ;LZ ≥ n) + PE′(d1n + d2n > ǫ;LZ < n)

≤ PE′(LZ ≥ n) + PE′(d1n + d2n > ǫ;LZ < n)

= PE′(LZ ≥ n) + PE′(d1n > ǫ;LZ < n)

≤ PE′(LZ ≥ n) + PE′(d1n > ǫ|LZ < n)

< ǫ/2 + ǫ/2 = ǫ.

Since,LZ is almost surely finite,PE′(LZ ≥ n) → 0 asn → ∞. Thus we can selectn = n∗
2 such that

∀n > n∗
2, PE′(LZ ≥ n) < ǫ/2. For the second term, note that conditioned onLZ < n, d1n behaves like

a partial sum of a series of type in (46), withZ0 replaced byZLZ
. Since the series in (46) converges

if random variables are generated i.i.d.f1 beyondLZ , it will also converge if conditioned on the event

{LZ < n}. Thus, the partial sumd1n converges to 0 almost surely, and hence converges to 0 in probability,

i.e., PE′(d1n > ǫ|LZ < n) → 0. Select,n = n∗
3 such that∀n > n∗

3, P(d
1
n > ǫ|LZ < n) < ǫ/2. Then

n∗ = max{n∗
1, n

∗
2, n

∗
3}, is the desiredn∗ and pick anyδ > 0. Then forn > n∗,

P(d1n + d2n > ǫ) = P(d1n + d2n > ǫ|E)P(E) + P(d1n + d2n > ǫ|E′)P(E′)

< ǫP(E) + ǫP(E′) < ǫ.

Since the sequenceηn is slowly changing, according to [14], the asymptotic distribution of the overshoot

whenZk crosses a large boundary underf1 is R(x). Thus we have the following result,

lim
c→∞

Pℓ [Zτc − c ≤ x|τc ≥ l] = R(x),

wherePℓ is the probability measure with change happening atl. Now,

P [Zτc − c ≤ x|τc ≥ Γ] =

∞
∑

l=1

Pl [Zτc − c ≤ x|τc ≥ l] P(Γ = l|τc ≥ Γ),

and

lim
c→∞

Pl [Zτc − c ≤ x|τc ≥ l] P(Γ = l|τc ≥ Γ) = R(x)P(Γ = l) ≤ 1.

Hence we have the desired result by dominated convergence theorem.
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APPENDIX TOSECTION III-B

Proof of Lemma 1:Clearly,

E[τ − Γ|τ ≥ Γ] = E[τ − τc|τ ≥ Γ] + E[τc − Γ|τ ≥ Γ].

UsingE[Y ;D] to represent integration of the random variableY over the setD, we writeE[τc−Γ|τ ≥ Γ]

as follows,

E[τc − Γ|τ ≥ Γ] = E[τc − Γ|τc ≥ Γ, τ ≥ Γ] P(τc ≥ Γ|τ ≥ Γ) + E[τc − Γ; τc < Γ|τ ≥ Γ]

(i)
= E[(τc − Γ)|τc ≥ Γ](1 + o(1)) +

E[τc − Γ; τc < Γ ≤ τ ]

P(τ ≥ Γ)
as c, a → ∞.

(ii)
= E[(τc − Γ)|τc ≥ Γ](1 + o(1)) + o(1) as c, a → ∞.

Here,(i) follows because{τc ≥ Γ} ⊂ {τ ≥ Γ}, andP(τc < Γ|τ ≥ Γ) → 0 as c, a → ∞. To show the

latter, we obtain an upper bound onP(τc < Γ|τ ≥ Γ). Using an argument identical to the one given in

(14) we get

e−c ≥ P(τc < Γ) = P(τc < Γ|τ ≥ Γ)(1− PFA) + P(τc < Γ|τ < Γ)PFA

= P(τc < Γ|τ ≥ Γ)(1− PFA) + PFA.

This implies,

P(τc < Γ|τ ≥ Γ) ≤
e−c − PFA

1− PFA
≤

e−c

1− PFA
≤

e−c

1− e−a
→ 0 asc, a → ∞.

For (ii) note that, over{τc < Γ ≤ τ}, −Γ ≤ τc − Γ ≤ 0, and hence integrable. Thus,E[τc − Γ; τc <

Γ ≤ τ ] → 0 asc → ∞ because

P(τc < Γ ≤ τ) ≤ P(τc < Γ) ≤ e−c → 0 asc → ∞.

Now we want to showE[τ − τc|τ ≥ Γ] = E[τ − τc|τc ≥ Γ](1 + o(1)). Conditioning on{τc ≥ Γ} and

its compliment we get,

E[(τ − τc)|τ ≥ Γ] = E[(τ − τc)|τc ≥ Γ, τ ≥ Γ] P(τc ≥ Γ|τ ≥ Γ)

+E[(τ − τc)|τc < Γ, τ ≥ Γ] P(τc < Γ|τ ≥ Γ)

= E[(τ − τc)|τc ≥ Γ](1 + o(1))

+E[(τ − τc)|τc < Γ, τ ≥ Γ]P(τc < Γ|τ ≥ Γ) as c, a → ∞

= E[(τ − τc)|τc ≥ Γ](1 + o(1)) + o(1) as c, a → ∞.
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We get the above equalities becauseP(τc < Γ|τ ≥ Γ) → 0 as c, a → ∞. Also, from the hypothesis in

the lemma,

E[(τ − τc)|τc < Γ, τ ≥ Γ] ≤ t(c, a) < ∞ asc, a → ∞,

and thus it follows that

E[(τ − τc)|τc < Γ, τ ≥ Γ]P(τc < Γ|τ ≥ Γ) → 0 asc, a → ∞.

Proof of Lemma 3:We use{Zk ր b} to indicate thatZk approachesb from below for somek > Γ,

i.e. ∃k > Γ, s.t., Zk−1 < b,Zk ≥ b. and use{Zk ր c} to represent the event thatZk crossedc without

ever coming back tob, i.e.,Zk ≥ b,∀k > Γ. Define,

λ(x) = inf{k ≥ 1 : Zk /∈ [b, c), Z0 = x, b ≤ x < c}. (47)

Also let Λ(x) be defined withZ0 = x similar to (25). Thus,λ and λ(b) have the same distribution.

Similarly, Λ and Λ(b) are identically distributed. The behavior of the delay pathdepends onZΓ, the

value ofZk at the change pointΓ, and howZk evolves after that point. We thus define the following

three disjoint events:

A = {ZΓ < b}

B = {ZΓ ≥ b;Zk ր b}

C = {ZΓ ≥ b;Zk ր c}.

We can write,

E[τc − Γ|τc ≥ Γ] = E[τc − Γ;A|τc ≥ Γ] + E[τc − Γ;B|τc ≥ Γ] + E[τc − Γ; C|τc ≥ Γ]. (48)

Now consider each of the three terms on the right hand side of the above equation.

Under the eventA, the processZk starts belowb and reachesc after multiple up-crossings of the

thresholdb. Then,

E[τc − Γ;A|τc ≥ Γ] ≤ E[t(ZΓ, b)|A] + E1

[

N
∑

k=1

Λk

]

P(A|τc ≥ Γ). (49)

This upper bound was obtained as follows. Lett1 be the first timeZk crossesb from below. Then the

time to reachc, t1 onwards, is upper bounded by the time to reachc if we resetZk to b; this is because

c−Zt1 ≤ c− b. Arguing this way each timeZk crossesb from below, we have the desired upper bound

overA.
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Under the eventB, the processZk starts aboveb and crossesb beforec. It then has multiple up-crossings

of b, similar to the case of eventA. Arguing in a similar manner, we get

E[τc − Γ;B|τc ≥ Γ] ≤ E[Λ(ZΓ)|B, ZΛ(ZΓ) < b] + E1

[

N
∑

k=1

Λk

]

P(B|τc ≥ Γ)

Similarly,

E[τc − Γ; C|τc ≥ Γ] = E[Λ(ZΓ)|C, ZΛ(ZΓ) > c]P(C|τc ≥ Γ)

≤ E1[Λ(b)|ZΛ(b) > c]P(C|τc ≥ Γ)

≤ E1

[

N
∑

k=1

Λk

]

P(C|τc ≥ Γ).

Substituting we get,

E[τc − Γ|τc ≥ Γ] = E[τc − Γ;A|τc ≥ Γ] + E[τc − Γ;B|τc ≥ Γ] + E[τc − Γ; C|τc ≥ Γ].

≤ E[t(ZΓ, b)|A] + E1

[

N
∑

k=1

Λk

]

P(A|τc ≥ Γ)

+E[Λ(ZΓ)|B, ZΛ(ZΓ) < b] + E1

[

N
∑

k=1

Λk

]

P(B|τc ≥ Γ)

+E1

[

N
∑

k=1

Λk

]

P(C|τc ≥ Γ)

= E1

[

N
∑

k=1

Λk

]

+ E[t(ZΓ, b)|A] + E[Λ(ZΓ)|B, ZΛ(ZΓ) < b]. (50)

In equation (50), we observe that except forADDs = E1

[

∑N
k=1Λk

]

, other terms are not a function

of thresholdc. Thus we have

E[τc − Γ|τc ≥ Γ] ≤ ADDs (1 + o(1)) asc, a → ∞, c < a.

Proof of Lemma 4: Based onΨ, we define two new recursions, one in which the evolution ofZk

is truncated atb,

Ψ̃(Zk) =







Ψ(Zk) if Ψ(Zk) ≥ b

b if Ψ(Zk) < b,

and, another in which the overshoot is ignored each time the Shiryaev recursion crossesb from below,

Ψ̂(Zk) =







b if Zk < b andΨ(Zk) ≥ b

Ψ(Zk) otherwise.
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Based on these two recursions we define two new stopping times:

ν̃b = inf{k ≥ 1 : Ψ̃(Zk−1) > c,Z0 = b},

ν̂b = inf{k ≥ 1 : Ψ̂(Zk−1) > c,Z0 = b}.

These two stopping times stochastically upper and lower bound the Shiryaev stopping timeνb defined in

(19), i.e.,

E1[ν̃b] ≤ E1[νb] ≤ E1[ν̂b]. (51)

Recall from (18) that

ν(x, y) = inf{k ≥ 1 : Ψ(Zk−1) > y,Z0 = x}.

Using Wald’s lemma [14], we can get the following expressions:

E1[ν̃b] =
E1[λ]

P1(Zλ > c)
, E1[ν̂b] =

E1[λ] + E1[ν(Zλ, b); {Zλ < b}]

P1(Zλ > c)
. (52)

Multiplying and dividingADDs by E1[λ] we get

ADDs =
E1[λ] + E1[t(Zλ, b); {Zλ < b}]

E1[λ]

E1[λ]

P1(Zλ > c)

= E1[ν̃b]
E1[λ] + E1[t(Zλ, b); {Zλ < b}]

E1[λ]

= E1[ν̃b](1 + o(1)) asc, a → ∞.

The last equality follows becauseE1[λ] → ∞ asc → ∞, while E1[t(Zλ, b); {Zλ < b}] is not a function

of c. Similarly, multiplying and dividingADDs by E1[λ] + E1[ν(Zλ, b); {Zλ < b}] we get

ADDs = E1[ν̂b] (1 + o(1)) as c → ∞.

Using these two expressions forADDs and the relationship thatE1[ν̃b] ≤ E1[νb] ≤ E1[ν̂b], we have,

ADDs = E1[νb](1 + o(1)) asc → ∞.

Proof of Lemma 5:First note that by definition (16),Zt(x,y) > y ≥ Zt(x,y)−1. Also, from (8)

Zt(x,y) = Zt(x,y)−1 + log
1

1− ρ
+ log(1 + e−Zt(x,y)−1ρ)

≤ y + log
1

1− ρ
+ log(1 + e−yρ).

Thus

y < Zt(x,y) ≤ y + log
1

1− ρ
+ log(1 + e−yρ),
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equivalently

ey < eZt(x,y) ≤ ey
1

1− ρ
(1 + e−yρ).

Further, the recursion (8) can be written in terms ofeZk for k ≥ 0:

eZk+1 =
ρ+ eZk

1− ρ
.

Using this we can write an expression foreZt(x,y) :

eZt(x,y) =
ex

(1− ρ)t
+

t(x,y)
∑

k=1

ρ

(1− ρ)k
=

ex + 1

(1− ρ)t(x,y)
− (1− ρ).

Using the bounds forZt(x,y) obtained above, we get

ey <
ex + 1

(1− ρ)t(x,y)
− (1− ρ) ≤ ey

1

1− ρ
(1 + e−yρ).

This gives us bounds fort(x, y):

log(1 + ey − ρ)− log(1 + ex)

| log(1− ρ)|
≤ t(x, y) ≤

log
(

1 + ey (1+e−yρ)
(1−ρ) − ρ

)

− log(1 + ex)

| log(1− ρ)|
. (53)

By keepingρ fixed and takingx, y → ∞ we get (28), and by keepingx, y fixed and takingρ → 0 we

get (29).

Proof of Theorem 3:Let

Rc(x) = P(Zτc − c ≤ x|τc ≥ Γ).

Then

E[τ − τc|τc ≥ Γ] =

∫ a−c

0
t(c+ x, a)dRc(x).

By using (28) from Lemma 5, and noting thatlimc→∞Rc(x) = R(x), we get (30). In (30), asc, a → ∞,

if a− c → ∞, or a− c → constant> 0 andρ → 0, then
∫ a−c

0
a−c−x

| log(1−ρ)|dR(x) dominatesR(a− c) in

the limit and we get (31).

APPENDIX TOSECTION III-C

Proof of Lemma 6:Since,pτ > A imply Zτ > a, we have,

1

1 + e−Zτ
≥

1

1 + e−a
.

The required result is obtained by obtaining upper and lowerbounds on PFA as follows.

PFA = E[1− pτ ] = E

[

1

1 + eZτ

]

≤ E
[

e−Zτ
]

.
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Also,

PFA = E[1− pτ ] = E

[

1

1 + eZτ

]

= E

[

1

eZτ

1

1 + e−Zτ

]

≥ E

[

1

eZτ

1

1 + e−a

]

= E
[

e−Zτ
]

(1 + o(1)) asa → ∞.

Thus,

PFA = E[e−Zτ ](1 + o(1)) = e−aE[e−(Zτ−a)](1 + o(1)) asc, a → ∞, c < a.

Proof of Theorem 4:First note that,

E[e−(Zτ−a)] = E[e−(Zτ−a)|τc ≥ Γ](1− P(τc < Γ)) + E[e−(Zτ−a)|τc < Γ]P(τc < Γ).

Since,P(τc < Γ) = E[1− pτc ] ≤ 1− C ≤ e−c, we can write,

PFA = e−aE[e−(Zτ−a)|τc ≥ Γ](1 + o(1)) asc, a → ∞, c < a.

Further, we evaluateE[e−(Zτ−a)|τc ≥ Γ] as follows.

E[e−(Zτ−a)|τc ≥ Γ] = E[e−(Zτ−a)|Zτc ≤ a, τc ≥ Γ]P(Zτc ≤ a|τc ≥ Γ)

+E[e−(Zτ−a);Zτc > a|τc ≥ Γ].

= E[e−(Zτ−a)|Zτc ≤ a, τc ≥ Γ]P(Zτc − c ≤ a− c|τc ≥ Γ)

+ea−cE[e−(Zτ−c);Zτc > a|τc ≥ Γ]

e−aE[e−(Zτ−a)|τc ≥ Γ] = e−aE[e−(Zτ−a)|Zτc ≤ a, τc ≥ Γ]P(Zτc − c ≤ a− c|τc ≥ Γ)

+e−cE[e−(Zτ−c);Zτc > a|τc ≥ Γ].

From Theorem 1 it follows that:

lim
c→∞

P(Zτc − c ≤ a− c|τc ≥ Γ)

R(a− c)
= 1, and

lim
c→∞

E[e−(Zτ−c);Zτc > a|τc ≥ Γ]
∫∞
a−c

e−xdR(x)
= 1.

Further we can show that,

ea

1 + ea
(1− ρ) ≤ E[e−(Zτ−a)|Zτc ≤ a, τc ≥ Γ] ≤ 1,

and goes to1 asc, a → ∞, andρ → 0. This proves the theorem.
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APPENDIX TOSECTION III-D

Proof of Lemma 7:Using Theorem 2 we writeANO1 as

ANO1 = E [τc − Γ|τc ≥ Γ]

(

1−
Tb − 1

E [τc − Γ|τc ≥ Γ]

)

= E1[νb]

(

1−
Tb − 1

E [τc − Γ|τc ≥ Γ]

)

(1 + o(1)) as c, a → ∞.

We now obtain an upper bound on Tb−1
E[τc−Γ|τc≥Γ] which goes to zero asc, a → ∞.

Recall from Lemma 3 thatA and B are the events under which excursions belowb are possible.

The passage toc is through multiple cycles belowb, and the time spend belowb in each cycle can be

bounded byt(−∞, b). DefineNA andNB as one plus the number of cycles belowb, under eventsA

andB respectively. Then,

Tb − 1 ≤ Tb ≤ P1(A)t(−∞, b)E[NA] + P1(B)t(−∞, b)E[NB].

The averagesE[NA] andE[NB] can be written as a series of probabilities, where each term correspond

to the event thatZk goes belowb, and not abovec, each time it crossesb from below. Each of these

probabilities can be maximized by settingZk to b, each time it crossesb from below. Hence,E[NA] ≤

E[N ] andE[NB] ≤ E[N ]. This gives a bound onTb − 1.

Tb − 1 ≤ t(−∞, b)E[N ].

By using (51) we get asc, a → ∞,

Tb − 1

E [τc − Γ|τc ≥ Γ]
≤

t(−∞, b)E[N ]

E1[νb]
(1 + o(1)) ≤

t(−∞, b)E[N ]

E1[ν̃b]
(1 + o(1)).

From (52) we know thatE1[ν̃b] = E1[λ]E[N ]. Thus the upper bound on Tb−1
E[τc−Γ|τc≥Γ] goes to 0 as

c, a → ∞. This proves the lemma.

Proof of Lemma 9:SinceP{τc ≥ Γ} → 1 asc → ∞,

P(Γ > t(b)|τc ≥ Γ) = P(Γ > t(b)) + o(1) as c, a → ∞

=
1

1 + z0
(1− ρ)t(b) + o(1) as c, a → ∞.

From (29) in Lemma 5, withy = b andx = z0, we have

t(z0, b) =

(

log(1 + eb)− log(1 + ez0)

| log(1− ρ)|

)

(1 + o(1)) asρ → 0.

From this, it is easy to show that

(1− ρ)t(b) →

(

1 + ez0

1 + eb

)

asρ → 0.
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By substituting this in the expression forP(Γ > t(b)|τc ≥ Γ) we get the desired result.

Proof of Lemma 8:Each timeZk crossesb from below, is satisfies:

b < Zk ≤ b+ log
1

1− ρ
+ log(1 + e−bρ).

Define,b1
△
= b + log 1

1−ρ
+ log(1 + e−bρ). Thenb1 → b asρ → 0. Also, each timeZk crossesb from

below, the average number of observations used beforeΓ can be increased by settingZk = b1 and

decreased by settingZk = b. This is because of the geometric nature of change. LetZk = x when it

crossesb from below, and suppose we resetZk to b1. Then, the number of observations used before

change, on an average, would be the number of observations used beforeZk reachesx from b1, plus

the number of observations used there onwards as if the process started atx. Similar reasoning can be

given to explain why the average number of observations useddecreases, if we resetZk to b, each time

it crossesb from below.

Define the following stopping time:

Λ̃x = inf{k ≥ 1 : Zk−1 < b andZk ≥ b or k ≥ Γ, Z0 = x ≥ b, c = ∞}.

Thus,Λ̃x is the time forZk, to start atZ0 = x with c = ∞, and stop the first time, eitherZk approaches

b from below, or when change happens. Also, letδx ∈ (0, 1) be such thatΛ̃xδx is the number of

observations used beforeZk was stopped bỹΛx, i.e., fraction ofΛ̃x whenZk ≥ b. If {Λ̃b
k} and{Λ̃b1

k }

be sequences with distribution of̃Λb and Λ̃b1 respectively and ifLx is the number of timesZk crosses

b from below and is set tox at each such instant, then,

E∞[Lb] E∞[Λ̃bδb] = E∞





Lb

∑

k=1

Λ̃b
kδ

b
k



 ≤ E





Γ−1
∑

k=t(b)

Sk

∣

∣

∣

∣

Γ > t(b), c = ∞





≤ E∞





Lb1
∑

k=1

Λ̃b1
k δb1k



 = E∞[Lb1 ] E∞[Λ̃b1δb1 ].

Here the equalities follows from Wald’s lemma [14].

In the above,Lx is Geom(P0[Γ ≤ Λ̃x]), and henceE∞[Lb1 ] = 1
P0[Γ≤Λ̃b1 ]

. Also note that

P0[Γ ≤ Λ̃b1 ]

P0[Γ ≤ Λ̃b]
→ 1 asρ → 0.

Further, forx = b1 or x = b, defineλ̂(x) based on (33) as

λ̂(x) = inf{k ≥ 1 : Zk < b,Z0 = x ≥ b, c = ∞}.
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It is clear thatλ̂(b) = λ̂. Thus we have, for bothx = b1 andx = b,

E∞[Λ̃xδx] = E∞[Λ̃xδx|Γ ≤ Λ̃xδx]P0[Γ ≤ Λ̃xδx] + E∞[Λ̃xδx|Γ > Λ̃xδx]P0[Γ > Λ̃xδx]

→ E∞[λ̂(x)] asρ → 0.

Here, the result follows because asρ → 0, Λ̃xδx converges a.s. to a finite limit andP0[Γ ≤ Λ̃xδx] → 0.

Also for the same reason,P0[Γ > Λ̃xδx] → 1 asρ → 0. Moreover, sinceb1 → b asρ → 0, we have as

ρ → 0

E∞[λ̂(b1)] → E∞[λ̂(b)] = E∞[λ̂].

Thus,

E





Γ−1
∑

k=t(b)

Sk

∣

∣

∣

∣

∣

Γ > t(b), c = ∞



 =
E∞[λ̂]

P0[Γ ≤ Λ̃b]
(1 + o(1)) asρ → 0.

Using Binomial expansion we can obtain an approximation forP0[Γ ≤ Λ̃b]:

P0[Γ ≤ Λ̃b] = P0[Γ ≤ λ̂+ t(Z
λ̂
, b)] = 1− P0[Γ > λ̂+ t(Z

λ̂
, b)]

= 1− E∞[(1− ρ)λ̂+t(Zλ̂,b)]

(i)
= ρ

(

E∞[λ̂] + E∞[t(Z
λ̂
, b)]
)

(1 + o(1)) asρ → 0.

(54)

To see why(i) is true we note that,

t(Z
λ̂
, b) ≤ t(−∞, b) ≈

log
(

1 + eb
)

| log (1− ρ) |
.

Using L’Hopital’s rule it is easy to show that asρ → 0, followed by b → −∞,

ρn

(

log
(

1 + eb
)

log(1− ρ)

)n

→ 0.

Using this in the Binomial expansion ofE∞[(1− ρ)λ̂+t(Zλ̂,b)] we get equality(i) in (54).
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