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Abstract

In this paper we consider the problem of testing whether two samples of

contaminated data, possibly paired, are from the same distribution. Is is

assumed that the contaminations are additive noises with known moments

of all orders. The test statistic is based on the polynomials moments of

the difference between observations and noises. . A data driven selection

is proposed to choose automatically the number of involved polynomials.

We present a simulation study in order to investigate the power of the

proposed test within discrete and continuous cases. A real-data example

is presented to demonstrate the method.

keyword contaminated data; data-driven; two sample test

1 Introduction

The classical two-sample problem concerning i.i.d. observations has been exten-
sively studied in the literature. We propose in this paper to extend this problem
to the case of two contaminated samples when a noise is added to each sample.
More precisely, we consider two samples, X1, · · · , Xn and U1, · · · , Uk, from the
following two models

X = Y + Z, and U = V +W, (1)

where Y and Z (resp. V and W ) are two independent random variables. It is
also assumed that Z and W are independent. However this paper concerns inde-
pendent as well as paired variables X and U since Y and V can be dependent.
We keep this hypothesis through the paper putting n = k (the more general
case being easily obtained). We assume that all moments of Z and W exist and
are known. We are interested in testing the equality of the distribution of Y
and V . Our aim is to construct an omnibus test for the general non parametric
hypothesis

H0 : LY = LV against H1 : LY 6= LV , (2)

where LY and LV refers to the distribution of Y and V . For that we extend the
one-sample smooth test inspired of Neyman (1937) (see also Rayner and Best,
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1989, for a general introduction) to the two-sample case under (1). For the
one sample problem, the smooth test is an omnibus approach which consists in
coming down to parametric hypotheses. Then the smooth statistic is composed
of different elements each able to detect a departure from the null hypothesis.
This approach can be naturally extended to the two sample case, as in Rayner
and Best (2001) (see also Chervoneva and Iglewicz, 2005). In addition, Ledwina
(1994) introduced a data driven procedure permitting to select automatically
the number of elements of the statistic. The automatic selection is based on the
Schwarz (1978) criterion. Janik-Wróblezca and Ledwina (2000) first used this
technique combined with rank statistic for the two sample problem. Recently
Ghattas et al. (2011) obtained a data driven test for the two paired sample
problem. Various extensions of the data driven smooth test have been proposed,
particularly in the context of survival data in Krauss (2009) when samples are
right censored, or in the context of detection of changes in Antoch et al. (2008)
reducing the problem to a two sample subproblem.

From (1) it is clear that the unknown moments of Y (resp. V ) can be
expressed in terms of moments of X and Z (resp. U and W ). The proposed
smooth test is based on the difference between the k first moments of Y and
V . The order k determines the number of components of the test statistic. We
then adapt the data driven approach permitting to select automatically this
number. We first consider the case where k varies between 1 and K, for K a
fixed integer. Then we let k tend to infinity more slowly than the sample size.
For asymptotic results we make an assumption on the smallest eigenvalue of the
sample covariance matrix. But in practice, the data driven procedure is effective
in the first case with K fixed large enough, as shown in our simulations. Finally,
we apply our method to the UEFA champion’s league data from Meintanis
(2007).

Before describing our test procedure we offer a few examples that illustrate
the situation (1).

• Evaluation by experts. During an assessment, such as sensory analysis, it
is very common that experts are biased in their judgments. This bias is
commonly observed and assessed during training and can be assumed to
be known in distribution. Typically, one can assume a normal distribu-
tion with mean and variance associated with each expert. In this case,
if we want to compare the distribution of two products evaluated by two
experts, we are reduced to the situation (1) where X and U coincide with
the two experts scoring, Z and W being their errors.

• Ruin theory. Another situation that can be encountered in ruin theory is
the random sum of claims,

∑
ei, where ei are i.i.d. random variables with

known exponential distribution. The number of claims can be decomposed
into a fixed known value, n, and a random value, N , representing an
aggregation of different claims. Thus if we observe two sums

X =

n1+N1∑

i=1

ei and U =

n2+N2∑

i=1

vi,
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where ei and vi are i.i.d., one problem is to compare the randomness
structure N1 and N2, that is to test the equality of the distributions of
these two variables. This problem coincides with (1) since it is equivalent

to testing the equality of the distributions of Y =
∑N1

i=1 ei and V =∑N2

i=1 ei.

• Mixture model. The deconvolution problem is also related to a mixture
problem since a particular case of (1) is the location mixture situation of
the form

fX(x) =

∫
fY (x−m)fZ(dm), fU (x) =

∫
fV (x −m)fW (dm),

with m the location parameter, fY , fV the unknown mixed densities and
fZ , fW the known mixing densities. This situation can be encountered
when finite mixture distributions have known components, and when the
purpose is to compare their associated sub-populations associated with
these components. We can also reverse the roles of Y, V and Z,W and be
interested in the comparison of two linear mixed models with Gaussian
noise and unknown random effects.

• Extreme values. Contaminated model can be also viewed as a model for
extremal values considering the convolutions

X = αY + Z, U = βV +W,

where α and β are Bernoulli with small parameter representing the occur-
rence of an extreme event. Often the non-extreme distributions of Z and
W are well observed and known and we can be interested in the compar-
ison of the extreme distributions of Y and V . Assuming that one knows
when these rare events occur, they are observed with a known noise as in
(1).

• Scale mixture. Finally, it is current to observe the product of two variables,
say

X = Y Z, U = VW.

For instance, that is the case for Zero Inflated distributions, when Y and
V are Bernoulli random variables and Z and W are discrete random vari-
ables. Without loss of generality, by translating all variables, we can use
a log-transformation to recover (1). Many other cases can be envisaged as
X = Z/Y and U = W/V with Z and W normally distributed.

The paper is organized as follows. In Section 2 we introduce the method
based on polynomial expansions for testing the equality of the two contaminated
densities. In Section 3 we propose a simple data driven procedure that we
extend to the case where the number of components of the statistic tends to
infinity, with additional assumptions. In Section 4, finite-sample properties of
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the proposed test statistics are examined through Monte Carlo simulations. The
analysis of a the champion’s league data set is provided in Section 5. Section 6
contains a brief discussion.

2 Statistical method

Consider simultaneously two (possibly paired) samplesX1, · · · , Xn and U1, · · · , Un

following (1) and such that all moments exist and characterize the associated
distributions. Is is assumed that the moments of Z and W are known. From
(1) we have the following two expansions for all integer i

E(X i) =

i∑

j=0

cijE(Y
j)zi−j , and E(U i) =

i∑

j=0

cijE(V j)wi−j , (3)

with cij = (i!)/((j!)((i − j)!)), zi−j = E(Zi−j), and wi−j = E(W i−j). Write
ai = E(Y i) and bi = E(V i). The null hypothesis coincides with ai = bi, ∀i =
1, 2, · · · , and our testing procedure reduces to the parametric testing problem:
∀i = 1, · · · , k, ai−bi = 0, when k gets large. We shall let k tend to infinity, with
a speed depending of the sample size, and its choice will be done automatically
by a data driven method. Inverting (3) we get

ai = E(Pi(X)) and bi = E(Qi(U)), (4)

where Pi and Qi are polynomials of degree i. For instance the first three terms
are

P1(x) = x− z1,

P2(x) = x2 − 2z1P1(x)− z2,

P3(x) = x3 − 3z1P2(x)− 3z2P1(x)− z3.

To construct the test statistics we consider the vector of differences

Vs(k) = (Pi(Xs)−Qi(Us))1≤i≤k ,

and we put

Jn(k) =
1√
n

n∑

s=1

Vs(k).

Under H0, Jn(k) has mean zero and finite k × k variance-covariance matrix

Σ(k) = E0

(
V1(k)V1(k)

′)
,

where E0 denotes the expectation under H0 and V1(k)
′

is the transposition of
V1(k). Next, let us define the empirical version of Σ(k) under H0, that is the
k × k matrix

Σ̂n(k) =
1

n

n∑

s=1

Vs(k)Vs(k)
′

.

4



In the following, we assume that Σ̂n(k) is a positive-definite matrix so that the
corresponding inverse matrix and its square root exist. Note that this condition
is satisfied a.s. for n large enough since the estimator is consistent. We consider
the test statistic

Tn(k) = Jn(k)
′

Σ̂n(k)
−1Jn(k) = ‖Σ̂n(k)

−1/2Jn(k)‖2, (5)

where ‖.‖ denotes the euclidian norm on R
k. Application of the Central Limit

Theorem shows that under H0, Tn(k) converges in distribution to a χ2 random
variable with k degrees of freedom as n tends to infinity. The strategy is to
select an appropriate degree k; that is, a correct number of components in the
test statistics. In addition, observe that the null hypothesis can be rewritten
as H0 : θ = 0 where θ = E(V1(k)). Suppose that the maximum likelihood

estimator θ̂ of θ equals the empirical mean of the sample of the Vs(k)’s, that is

θ̂ = Jn(k)√
n

, as it is the case for instance when the distribution of V1(k) belongs

to an exponential family. Then, Tn(k) is the score statistic and the Schwarz
criteria is well adapted to get an automatic selection of k.

3 Data driven approach

In this section, the data-driven method introduced by Ledwina (1994) (see also
Inglot et al. 1997) is used to optimize the parameter k in our test statistic.
It is based on a modified version of Schwarz’s Bayesian information rule. The
optimal value of k, denoted by Sn, is such that

Sn = min
{
argmax
1≤k≤d(n)

(Tn(k)− k log(n))
}
, (6)

where d(n) can be either fixed, equal toK, or increasing such that limn→∞ d(n) =
∞. Once Sn is determined, the test statistic is applied with k = Sn. More
precisely, we use for our testing problem the statistic Tn(Sn). Hereafter, the
asymptotic distribution of the test statistic is derived under the null hypothesis
for cases where d(n) is fixed or unbounded.

3.1 The case where d(n) = K is fixed.

Theorem 1 Assume that d(n) = K > 1 is fixed. Under H0, when n tends to
infinity, Tn(Sn) converges in distribution to a χ2 random variable with 1 degree
of freedom.

The proof is fairly standard and follows Ledwina (1994). We will detail a more
general proof in the case where d(n) is unbounded (see Theorem 2).

Remark 1 In our simulations, we fixed K large enough, in the sense that its
value was neither reached by Sn, either under the null (for empirical level cal-
culations) or under alternatives (for empirical power calculations).
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3.2 The case where d(n) is unbounded.

Let us denote by P0 and E0 the probability and the expectation underH0. Write
λ̂min(k) the smallest eigenvalue of Σ̂n(k). We now let d(n) tend to infinity under
the following two conditions:

(A1) d(n)2/E0

(
λ̂min(d(n))

)
= oP0

(log(n)).

(A2) There exists some positive constant M such that for all k > 0,

1

k

k∑

i=1

E0

(
Z4
i

)
< M.

where Zi = Pi(X)−Qi(U).

Remark 2 The condition (A1) can be compared to results obtained in the frame-
work of random matrices. For instance, Bai and Yin (1993) (see also Silver-
stein, 1985, for the particular Gaussian case) considered the case where the
entries Zij = Pi(Xj)−Qi(Xj) are independent and identically distributed with
finite fourth moment (this moment condition may be compared with (A2)). They

shown that almost surely lim λ̂min(d(n)) = 1 when d(n)/n → 0. Then when the

random series λ̂min(d(n)) is bounded we get limE
(
λ̂min(d(n))

)
= 1 and d(n) can

be chosen as oP0
(
√
log(n)).

Assumption (A2) states that the fourth moment is bounded on average. It
is similar to Assumption 2 stated in Ledoit and Wolf (2004). More precisely,
Ledoit and Wolf used a condition on the eighth moment which is somewhat more
restrictive.

Theorem 2 Let assumptions (A1) and (A2) hold. Thus, under H0, Tn(Sn)
converges in distribution to a χ2 random variable with 1 degree of freedom.

Proof The proof is partly inspired by Janic-Wróblewska and Ledwina (2000).

First note that the greatest eigenvalue of Σ̂n(k)
−1 is the inverse of its smallest

eigenvalue. Then we have ‖|Σ̂n(k)
−1‖| = 1/λ̂min(k), where ‖|.‖| stands for the

spectral norm. Under H0, it is clear that Tn(1) converges to a χ2 random
variable with one degree of freedom. Then we have to prove that P0(Sn = 1)
tends to 1 as n tends to infinity, or equivalently that P0(Sn > 2) tends to 0. Let
us set an(k) = (k − 1) logn. By definition of Sn, we have

P0(Sn > 2) =

d(n)∑

k=2

P0(Sn = k) ≤
d(n)∑

k=2

P0

(
Tn(k)

1/2 >
√
an(k)

)
. (7)

Using the standard norm’s inequalities for matrices and vectors we get

Tn(k) = Jn(k)
′Σ̂n(k)

−1Jn(k) ≤ ‖Jn(k)‖2‖|Σ̂n(k)
−1‖|, (8)
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that we combine with Markov inequality to obtain

P0

(
Tn(k)

1/2 >
√
an(k)

)
≤ P0

(
‖Jn(k)‖‖|Σ̂n(k)

−1‖|1/2 >
√
an(k)

)

≤ E0

(
‖Jn(k)‖‖|Σn(k)

−1‖|1/2
)

√
an(k)

≤

(
E0

(
‖Jn(k)‖2

)
E0

(
‖|Σn(k)

−1‖|
))1/2

√
an(k)

=

(
E0

(
‖Jn(k)‖2

))1/2

E0

(
λ̂min(k)

)1/2√
an(k)

.

Using the independence of the pairs (Xs, Ys)1≤s≤n, we get

E0

(
‖Jn(k)‖2

)
= E0

(
1

n

n∑

s=1

n∑

t=1

Vs(k)
′Vt(k)

)

=
1

n

n∑

s=1

E0

(
Vs(k)

′Vs(k)

)

= E0

(
‖V1(k)‖2

)
. (9)

We now remark that

E0

(
‖V1(k)‖2

)
= k

(
1

k

k∑

i=1

E0

(
Z2
i

))

≤ k

(
1

k

k∑

i=1

E0

(
Z2
i

)2
)1/2

≤ kM1/2.

Finally, we have

P0(Sn > 2) ≤ sup
1≤k≤d(n)

(
1

E0(λ̂min(k))1/2

)(
M1/4d(n)√

log(n)

)
.

Theorem 2 obtains as soon as we have shown that E0(λ̂min(k))k>0 is a de-

creasing sequence, which is clear since matrices (E(Σ̂n(k))k>0 are embedded by
construction, that is, the k × k submatrix obtained from the k first lines and k
first columns of Σ̂n(k + 1) coincides (in distribution) with Σ̂n(k).

�

Finally, the test procedure is consistent against any alternative having the
form

H1(q) : ∃q ∈ N such that ai = bi, ∀i = 1, · · · , q − 1, and aq 6= bq,
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where ai and bi are given by (4)

Proposition 1 Under H1(q), Tn(Sn) tends to infinity (in probability) as n →
∞.

Proof First note that limn→∞ d(n) > q. We now prove that limn→∞ P (Sn <
q) = 0. For k < q we have P (Sn = k) ≤ P (Tn(k) > Tn(q)). By the law of
large numbers, the variable Jq/

√
n converges in probability to a non-null vector.

Since Σ̂(q) is a positive definite matrix we have J ′
qΣ̂(q)

−1Jq = OP(n) and the
test statistics Tn(q)− q log(n) tends to +∞ in probability under H ′

1. By similar
arguments, Tn(k) − k log(n) tends to −∞ under H ′

1. Then P (Sn = k) → 0 for
all k < q. It follows that limn→∞ P (Sn > q) = 1 and then Tn(Sn) tends to +∞
as n → ∞.

�

Remark 3 It is well known that the sample covariance matrix performs poorly
in the high dimensional setting. For applications in this context, we could change
the sample covariance Σ̂ by a more suitable one. In Ledoit and Wolf (2004) a

linear shrinkage is proposed, Σ∗ = ρ1I+ρ2Σ̂, where I stands for the identity ma-
trix and Σ̂ for the sample covariance (like the one used in our paper). Won et al.
(2009) proposed a non linear shrinkage for Gaussian variance matrices. Writing

the sample covariance matrix Σ̂ = Qdiag(l1, · · · , lp)QT , their estimator has the

form Σ∗ = Qdiag(λ̂1, · · · , λ̂p)Q
T , where the λ̂’s are constrained estimated eigen-

values. Another approach is the thresholding procedure proposed in Cai and Liu
(2011, see also El Karoui, 2008).Writing Σ̂ = (σ̂ij)k×k the sample covariance
matrix, a universal thresholding estimator is Σ∗ with σ∗

ij = σ̂ijI{σ̂ij > Ln},
with a proper choice of the threshold Ln. Cai and Liu (2010) proposed the more
adaptative thresholds Lij = δ(θij log k/n)

1/2, with tuning parameter δ and some
fourth moment estimators θ’s. In our problem θij should be the estimator of the
variance of V ar(ZiZj).

4 Numerical study

Models and alternatives We present empirical powers of the test through
several models. We will denote by P(m) the Poisson distribution with mean
m, N (a, b) the normal distribution with mean a and standard error b, B(N, p)
the binomial distribution on [0, N ] with probability of success p, χ2

k the chi-
squared distribution with degree k. We consider four models under H0 and
seven associated alternatives as follows:

• Model MOD1: Y ∼ χ2
2, Z ∼ N (0, 2), V ∼ χ2

2, W ∼ N (0, 0.1).
Alternative A11: V ∼ χ3

2, W ∼ N (0, 0.1).

• Model MOD2: Y ∼ χ2
2, Z ∼ N (0, 2), V ∼ χ2

2, W ∼ N (0, 1).
Alternative A12: V ∼ χ3

2, W ∼ N (0, 1).

8



• Model MOD3: Y ∼ χ2
2, Z ∼ N (0, 2), V ∼ χ2

2, W ∼ N (0, 2).
Alternative A13: V ∼ χ3

2, W ∼ N (0, 2).

• Model MOD4: Y ∼ B(10, 0.5), Z ∼ P(2), V ∼ B(10, 0.5), W ∼ P(1).
Alternative A21: V ∼ B(10, 0.4) and W ∼ P(1),
Alternative A22: V ∼ B(10, 0.6) and W ∼ P(1),
Alternative A23: V ∼ B(9, 0.5) and W ∼ P(1),
Alternative A24: V ∼ B(11, 0.5) and W ∼ P(1).

For all models and alternatives we consider i.i.d. data (X1, U1), · · · , (Xn, Un)
generated from two convolution models satisfying (1). It is assumed that Z and
W have known distribution.

Empirical levels We compute the test statistic based on a sample size n =
30, 50, 100 and 200 for a theoretical level α = 5%. The empirical level of the
test is defined as the percentage of rejection of the null hypothesis over 10000
replications of the test statistic under the null hypothesis. We have fixed d(n) =
10 arbitrarily large enough since the selected order does not exceed 4 in all our
simulations.

Empirical levels are reported in Table 1 for a fixed asymptotic level equal
to 5%. It can be seen that all values are close to the asymptotic limit, also for
small sample size.

Table 1: Empirical levels for MOD1, MOD2, MOD 3 and MOD4 with sample
sizes 30, 50, 100, 200

Model n = 30 n = 50 n = 100 n = 200
MOD1 4.70 5.07 4.92 4.90
MOD2 4.51 4.98 4.66 5.01
MOD3 4.38 4.72 4.84 4.94
MOD4 4.80 4.93 4.80 4.63

Empirical powers The empirical power of the test is defined as the percent-
age of rejection of the null hypothesis over 10000 replications of the test statistic
under Alternative. Empirical powers for alternatives A11-A13 are represented
in Figure 1. In our knowledge, there is no equivalent method in the literature
to compare contaminated distributions and then it is not possible to confront
these powers. However, for alternative A13 Z and W have the same distribu-
tion and the null hypothesis coincides with the equality of the two distributions
LX = LU . They consist in the convolution of a second order χ2 distribution
with a Gaussian distribution N (0, 2). Then, even if our method is not dedicated
to the standard two-sample problem, we can compare its power with that of the
classical Mann-Whitney test under A13. Figure 2 shows that these two tests
have similar powers, with a slight advantage for the Mann-Whitney test with
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large sample size. Note in Figure 3 that the alternative A13 is close to a transla-
tion over the null distribution that can be advantageous for the Mann-Whitney
test.
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Figure 1: Empirical powers for alternatives A11 (�), A12 (⋆) and A13 (�) with
sample sizes 30, 50, 100, 200.
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Figure 2: Empirical powers under alternatives A13 with the proposed method
(�) and with the Mann-Withney test (⋆) with sample sizes 30, 50, 100, 200.
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Figure 3: Density under the null model MOD3 with Y ∼ χ2
2 and Z ∼ N (0, 2)

(left bold curve), and density under alternative A13 with V ∼ χ2
3 and W ∼

N (0, 2) (right curve).

Figure 4 presents the powers of the test for MOD4 with alternatives A21-
A24. Both alternatives A21 and A22 are very well detected by the procedure.
Under alternatives A23 and A24 the power is less good. These results are
essentially due to the nearness between the distributions of Y and V and not in
that between X and U . To illustrate this remark, Figure 5 shows the proximity
between X and U at once for alternative A22 and for alternative A23. All
distributions are very similar. But for alternative A22, the distributions of Y
and V are closer than for alternative A23, explaining its better power.
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Figure 4: Empirical powers for alternatives A21 (�), A22 (⋆), A23 (�) and
A24 (N) with sample sizes 30, 50, 100, 200.
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(b) Distribution of U under alternative A22
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(c) Distribution of U under alternative A23

Figure 5: Distributions under MOD4 (a), alternative A22 (b) and alternative
A23 (c)

5 Illustration

Table 2 reproduces paired data used by Meintanis (2007). It concerns matches
of the UEFA Champion’s League for the seasons 2004-05 and 2005-2006 where
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there was at least one goal scored by the home team, and there was at least
one goal scored directly from a kick by any team. The first variable X is the
time (in minutes) of the first kick goal scored by either of the two team, and the
second variable U is the time of the first goal of any type scored by the home
team.

Table 2: UEFA Champion’s league data

2005-2006 X U 2004-2005 X U
Lyon-Real Madrid 26 20 Internazionale-Bremen 34 34
Milan-Fenerbahce 63 18 Real Madrid-Roma 53 39
Chelsea-Anderlecht 19 19 Man. United-Fernebahce 54 7

Club Brugge-Juventus 66 85 Bayern-Ajax 51 28
Fenerbhace-PSV 40 40 Moscow-PSG 76 64

Internazionale-Rangers 49 49 Barcelona-Shakhtar 64 15
Panathinaikos-Bremen 8 8 Leverkusen-Roma 26 48

Ajax-Arsenal 69 71 Arsenal-Panathinaikos 16 16
Man. United-Benfica 39 39 Dynamo Kyiv-Real Madrid 44 13

Real Madrid-Rosenborg 82 48 Man. United-Sparta 25 14
Villareal-Benfica 72 72 Bayern-M. Tel-Aviv 55 11
Juventus-Bayern 66 62 Bremen-Internazionale 49 49

Club Brugge-Rapid 25 9 Anderlecht-Valencia 24 24
Olympiacos-Lyon 41 3 Panathinaikos-PSV 44 30

Internazionale-Porto 16 75 Arsenal-Rosenborg 42 3
Shalke-PSV 18 18 Liverpool-Olympiacos 27 47

Barcelona-Bremen 22 14 M. Tel-Aviv-Juventus 28 28
Milan-Shalke 42 42 Bremen-Panathinaikos 2 2

Rapid-Juventus 36 52

These data have been explored assuming a Marshall-Olkin distribution in
Meinatis (2007) and with a bivariate generalized exponential distribution in
Kundu and Gupta (2009). In Meintanis (2007) the conclusion was that the
Champion’s-League data may well have arisen from a Marshall-Olkin distribu-
tion. In Kundu and Gupta (2009) the generalized exponential distribution can
not be rejected for the marginals and the bivariate generalized exponential dis-
tribution can be used for these data. We consider here another model through
contaminated Poisson distributions.

First model First we assume an additive noise

X = Y + Z and U = V +W, (10)

with Y and V having Poisson distributions and Z and W being dependent
random noise with E(Z) = E(W ) = 0. This model can be viewed as a mixed
model with Z and W as paired random effects. These effects can be considered
as discrete or continuous as in Meintanis (2007) or Kundu and Gupta (2009).

14



We assume that Y and V have mean (estimated) 40.9 and 32.9. The observed
variances are larger than the means thereby believe there is a phenomenon of
overdispersion. Obviously under (10) we have V ar(X) = V ar(Y )+V ar(Z) and
V ar(U) = V ar(V ) + V ar(W ). We apply our procedure to test the equality of
the distributions of Z and W .
Conclusion: The first statistic T (1) is retained and we obtain a p-value equal
to 0.28. Hence there is no evidence that the two additive paired random effects
differ.

Second model We also consider a multiplicative noise yielding to the follow-
ing scale mixture

X = Y Z and U = VW, (11)

with Y and V having Poisson distributions and Z and W being real positive
dependent random scale factor with E(Z) = E(W ) = 1. Again this model can
be viewed as a mixed model with random paired effects. The observed values
are discretized but we can assume that Z and W are discrete or continuous.
We assume that Y and V have mean (estimated) 40.9 and 32.9 and there is
still a phenomenon of overdispersion assuming it is a standard Poisson model.
Under (11) the variances satisfy V ar(X) = (2V ar(Z) + 1)E(X) and V ar(U) =
(2V ar(W ) + 1)E(U). Our purpose is to test H0 : LZ = LW , or equivalently
Llog(Z) = Llog(W ). For that we consider the transformation of (11)

log(Z) = log(Y ) + log(Z) and log(U) = log(V ) + log(W ).

Conclusion: Using our method we obtain a p-value equal to 0.70. Again we see
that the multiplicative paired random effects seem to have the same distribution.

6 Discussion

This paper discusses the problem of comparing two distributions contaminated
by different noises. The test is very simple and allows to compare two indepen-
dent as well as two paired contaminated samples. Simulation studies suggest
that the proposed method works well with an empirical level close to that ex-
pected.

It may be noted that the test statistic is decomposed into moments ofX,Z,U,
and W . Then it is clear that only the knowledge of the moments of Z an W
are required instead of their distributions. Hence the test could be adapted
when these distributions are unknown, if their moments can be estimated from
independent samples.

Eventually, the multivariate case could be envisaged by using the following
characteristic property: if Y and V are two random vectors taking values in R

d

then we have

H0 : Y =d V ⇔ ∀‖u‖ ≤ 1, u′Y =d u′V,
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and clearly multidimensional observations can be transformed into unidimen-
sional ones by applying a sequence of vectors u on X and U . For a fixed value
of u the problem consists in an univariate test and the statistic Tn(Sn) can be
used. denoting by Tn(u) this statistic the process {Tn(u);u ∈ (0, 1)d} converges
to a Gaussian process and a new test statistic can be envisaged by estimating
the covariance operator of the process to get a χ2 null distribution. In practice
the sequences of vectors u can be randomly chosen in (0, 1)d, but it can also be
done by a Quasi Monte Carlo method (see for instance L’Ecuyer, 2006).

To conclude, the multisample case can also be envisaged as follows: assume
that we have d convolutions simultaneously

X(i) = Y (i) + Z(i), i = 1, · · · , d

observed from d samples. Write αj(i) = E(Y (i)j) and ᾱj = 1
d

∑d
i=1 αj(i) the

common value under the null hypothesis H0 : LY (1) = · · · = LY (d). Then
under H0 the k× d vector D with components Dij = αj(i)− ᾱj is centered and
normally distributed. An adaptation of the data driven smooth test seems then
possible.
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