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Unbiased risk estimation and scoring rules

Werner Ehm

Abstract

Stein unbiased risk estimation is generalized twice, from the Gaussian shift model
to nonparametric families of smooth densities, and from the quadratic risk to more
general divergence type distances. The development relies on a connection with local
proper scoring rules.

1 Introduction: SURE and the Hyvärinen score

Consider the problem of estimating the parameter θ in the standard Gaussian shift family
Pθ = N (θ, Id), θ ∈ R

d, based on an observation x ∈ R
d. Let T be an estimator of θ of the

form T = x+g(x). Using partial integration, Stein [8] showed that under weak conditions
about g, the quadratic risk R(T, θ) = Eθ |T−θ|2 of T can be estimated unbiasedly by the
expression R̂(T ) = 2divg(x)+ |g(x)|2 + d called SURE (Stein unbiased risk estimate), so
that Eθ R̂(T ) = R(T, θ) for every θ ∈ R

d . Here | · | and 〈·, ·〉 denote the Euclidean norm
and inner product on R

d, respectively, and divg is the divergence of g. If in particular
g = ∇ log f for some function f > 0 on R

d , the risk estimate becomes

R̂(T ) = 2∆ log f(x) + |∇ log f(x)|2 + d, (1)

where as usual, ∇ denotes the gradient and ∆ = div∇ the Laplace operator on R
d. This

special case occurs if T is the posterior mean with respect to a prior distribution π : then
T = x +∇ log f(x) where f(x) =

∫
pθ(x) dπ(θ) is the corresponding mixture density, so

that g = ∇ log f.
The striking similarity between SURE and the Hyvärinen score [5],

H(p, x) = 2
∆p(x)

p(x)
−

∣∣∣∣
∇p(x)

p(x)

∣∣∣∣
2

= 2∆ log p(x) + |∇ log p(x)|2, (2)

has been noted in, e.g., [6]. In eq. (2), p denotes a sufficiently smooth, strictly posi-
tive probability density on R

d . Originally, the Hyvärinen score was introduced for score
matching, a minimum distance type estimation method. Its formal similarity to SURE is
substantiated on reexpressing the risk of T as a distance between densities. Consider the
Hyvärinen divergence defined for smooth, positive densitites p, q on R

d as

dH(p, q) =

∫
|∇ log p(y)−∇ log q(y)|2 q(y) dy. (3)

If p = f is a mixture density as above and q = pθ is the density of Pθ , we have
∇ log f(x)−∇ log pθ(x) = ∇ log f(x) + x− θ = T − θ, where again T = x+∇ log f(x) is
the corresponding posterior mean. Consequently,

R(T, θ) = Eθ |T − θ|2 =

∫
|∇ log f(x)−∇ log pθ(x)|

2 pθ(x) dx = dH(f, pθ), (4)

that is, the risk R(T, θ) of the parameter estimate T = x +∇ log f(x) equals a distance
between densities, dH(f, pθ). Furthermore, the analogue of SURE in the density scenario
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is the Hyvärinen score H(f, x), essentially. In fact, Hyvärinen’s idea, reinventing Stein’s,
was to apply partial integration to (3) which, assuming boundary terms vanish, gives

dH(p, q) =

∫ (
2∆ log p(y) + |∇ log p(y)|2

)
q(y) dy +

∫
|∇ log q(y)|2 q(y) dy; (5)

cf. [1], [5]. Since
∫
|∇ log pθ(x)|

2 pθ(x) dx = d (θ ∈ R
d) in the standard normal case, where

q = pθ, it follows that

Eθ (H(f, x) + d) = Eθ

(
2∆ log f(x) + |∇ log f(x)|2 + d

)
= dH(f, pθ). (6)

That is, the modified Hyvärinen score H(f, x)+ d respresents an unbiased estimate of the
distance dH(f, pθ) of f from the unknown “true” density pθ , for any density f > 0 on
R
d satisfying suitable regularity conditions.
The purpose of this note is to expand on this aspect of unbiased risk estimation by

tying it to scoring rules. Local proper scoring rules are constructed as gradients of concave
functionals [3], [4], and then shown to generalize SURE in that they furnish unbiased
estimates of modified Bregman type distances. The development is related to (parts of)
work by Dawid and Lauritzen [1]. See also [2], [7].

2 Local proper scoring rules and unbiased risk estimation

We restrict the discussion of scoring rules to the setting relevant for this note, and refer to
[3] for general information. Let P denote the class of all probabilitiy densities with respect
to the Lebesgue measure on R

d such that the following conditions hold for every p ∈ P :
(P1) p ∈ C2; (P2) p > 0 everywhere on R

d; (P3) for every m > 0 and i, j ∈ {1, . . . , d}

lim
|x|→∞

|x|m
(
p(x) + |∂xi

p(x)|+ |∂2xixj
p(x)|

)
= 0;

(P4) there exists a = a(p) > 0 such that for i, j ∈ {1, . . . , d} ,

lim
|x|→∞

|x|−a

(
| log p(x)|+

[
∂xi

p(x)

p(x)

]2
+

|∂2xixj
p(x)|

p(x)

)
= 0.

The class P is quite large, being convex and comprising, e.g., all normal and logistic
distributions.

A scoring rule is a mapping S : P × R
d → R assigning a numerical score, S(p, x), to

the density forecast, p, when the observation that materializes is x. We write S(p, q) =∫
S(p, x) q(x) dx = Eq S(p, ·) for the expected score when the density forecast is p and

the probability measure underlying x is q(x)dx. The scoring rule S is (strictly) proper
relative to P if S(q, q) ≤ S(p, q) for all p, q ∈ P (with equality only if p = q ). The
scoring rule S is local (of order two, for the class P ) if there exists a real function s such
that

S(p, x) = s
(
x, log p(x),∇ log p(x),∇2 log p(x)

)
(p ∈ P, x ∈ R

d),

∇2f(x) denoting the Hessian matrix of second-order partial derivatives of a function
f : Rd → R at x.

The classical example of a (strictly) proper local scoring rule is the logarithmic score,
S(p, x) = − log p(x). Another example is the Hyvärinen score (2). The latter can be
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regarded as being local of order two, in the obvious sense, and the former as local of order
zero. Local scoring rules of any order m ≥ 0 were recently investigated in [7], in the case
d = 1. Hereafter, “local” always is understood as “local of order two.”

The following result lifts the construction of local proper scoring rules in [2] from
the one- to the higher-dimensional case d ≥ 1. Let K denote the class of the kernels
k : Rd × R

d → R satisfying the following conditions: (K1) k ∈ C2; (K2) there are
constants C, r ∈ (0,∞) such that whenever k∗ stands for the function k = k(x, y) or any
of its partial derivatives up to order two, then |k∗(x, y)| ≤ C (1 + |x|+ |y|)r (x, y ∈ R

d).
With any k ∈ K we associate a functional Φ = Φk : P → R defined by

Φ(p) =

∫

Rd

k(x,∇ log p(x)) p(x) dx (p ∈ P). (7)

In view of the growth and decay conditions (K2), (P4), and (P3), the integral in (7)
exists and is finite for every p ∈ P. Let ∇yk denote the partial gradient referring to the
argument y ∈ R

d of k = k(x, y), and recall that divg(x) stands for the trace of the total
derivative at x of a function x 7→ g(x) mapping R

d into itself.

Theorem 2.1 Let k ∈ K, and suppose that the associated functional Φ is concave on P.
Then

S(p, x) = k(x,∇ log p(x)) −
1

p(x)
div

[
p(x)∇yk (x,∇ log p(x))

]
(8)

is a local proper scoring rule relative to P. It is strictly proper if Φ is strictly concave.
Furthermore, if y 7→ k(x, y) is concave on R

d for every x ∈ R
d, then the functional Φ is

concave on P.

The Proof follows similar lines as in the case d = 1, see [2, Sections 4.1, 5.1]. We only
indicate that the tangent construction in [2, Section 4.1] yields the scoring rule (8). To
compute the (weak) gradient of Φ at q ∈ P, let pt = (1− t)q+ tp where p ∈ P, t ∈ [0, 1].
Formal differentation ignoring all technicalities gives

d

dt
[Φ(pt)] =

∫
∂

∂t
[Kpt pt] dx =

∫
[Kpt] (p − q) dx+

∫ [
∂

∂t
Kpt

]
pt dx, (9)

wherein we put Kpt(x) = k(x,∇ log pt(x)) and omitted the argument x of the integrands.
For the last integral in (9) we get by the divergence theorem, assuming the boundary
integral vanishes,

∫ 〈
∇yk (· ,∇ log pt) ,∇

(
p− q

pt

)〉
pt dx = −

∫
div

[
pt∇yk (· ,∇ log pt)

]
p− q

pt
dx. (10)

Setting t = 0 in (9) and (10) and noting that p0 = q we find that

d

dt
[Φ(pt)]

∣∣∣∣
t=0

=

∫ {
k(· ,∇ log q)−

1

q
div

[
q∇yk (· ,∇ log q)

]}
(p − q) dx . (11)

Thus, the gradient of Φ at q is given by the expression in curly brackets in (11). The scor-
ing rule resulting from the tangent construction, S(q, ·), differs from this gradient only by
a correction term which can be shown to vanish. The negligibility of the boundary integral
in (10), and all the technicalities (existence of integrals, exchangeability of differentiation
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and integration, etc.) can be settled similarly as in [2, Section 4.1], using the assumptions
made about the classes P and K. �

Any convex combination of a scoring rule S as in Theorem 2.1 with the logarithmic
score yields a local proper scoring rule. In the case d = 1, scoring rules of this form
exhaust the class of all local proper scoring rules [2], [7]. The complete characterization
in the case d > 1 remains open.

Examples. Let k ∈ K be a kernel of the form k(x, y) = k(y) = ψ(|y|), where ψ is a
concave C2 -function on [0,∞) with ψ(0) = ψ′(0) = 0. Then y 7→ k(y) is concave on R

d,
and the corresponding scoring rule (8) is proper. Explicitly we have

S(p, · ) = ψ(|σ|) −
ψ′(|σ|)

|σ|

(
|σ|2 +∆ log p

)
−

[
ψ′′(|σ|)−

ψ′(|σ|)

|σ|

]〈
σ

|σ|
,
(
∇2 log p

) σ

|σ|

〉

where σ = ∇ log p. For ψ(t) = −t2 we obtain the Hyvärinen score (2); putting ψ(t) =
− log cosh t yields another interesting example parallel to [2, Example 5.3].

A local scoring rule S that is proper relative to P gives rise to a Bregman type
divergence measure dS(p, q) = S(p, q)− S(q, q) on P ×P. The following representation of
dS is closely related to [7, Eq. (53)].

Theorem 2.2 Suppose that S is of the form (8) for some kernel k ∈ K such that
y 7→ k(x, y) is concave on R

d for every x ∈ R
d. Then the divergence dS admits the

representation

dS(p, q) (12)

= Eq

{
k(· ,∇ log p) − k(· ,∇ log q) +

〈
∇q

q
−

∇p

p
, ∇yk (·,∇ log p)

〉}
(p, q ∈ P).

Proof. Let p, q ∈ P. By the assumptions on P and K, the divergence theorem applied to
the scalar function u(x) = q(x)/p(x) and the vector field v(x) = p(x)∇yk (x,∇ log p(x))
gives

lim
r→∞

−

∫

|x|≤r

q

p
div

[
p ∇yk (·,∇ log p)

]
dx (13)

= lim
r→∞

∫

|x|≤r

〈
∇q

q
−

∇p

p
, ∇yk (·,∇ log p)

〉
q dx.

The relation (12) follows on writing dS(p, q) = Eq{S(p, · )− S(q, · )}, substituting (8) and
using (13), and observing that

∫
q−1div (q∇yk (·,∇ log q)) q dx = 0. �

Note that the expression in curly brackets in (12) is nonnegative because for a concave
function f on R

d one has f(y1) − f(y2) ≥ 〈y1 − y2,∇f(y1)〉 (y1, y2 ∈ R
d). For the

Hyvärinen score, where k(x, y) = −|y|2, that expression becomes |∇ log p−∇ log q|2, and
dS becomes the Hyvärinen divergence (3).

To clarify the connection with SURE we note that the partial integration in (13) was
used conversely by Stein and Hyvärinen, to pass from the risk representation (12) to an
expression of the form Eq{S(p, · ) − S(q, · )}. In the latter, the scoring rule S(p, · ) may
serve as an unbiased estimate of Eq S(p, · ), while the term Eq S(q, · ) is the same for all
candidates p, hence can be ignored if the focus is on risk comparison. In nonparametric
density estimation, e.g., risk comparison of competing estimates is applied for bandwidth
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selection, using cross-validation. Briefly, if p̂n = p̂n(· |x1, . . . , xn) is an estimate of the
unkown density q ∈ P underlying the i. i. d. observations x1, . . . , xn that is symmetric
in the xi , the cross-validated expression R̂n(p̂n−1) = n−1

∑n
i=1

S(p̂n,−i , xi) is an unbi-
ased estimate of Rn−1(p̂n−1, q), where Rn(p̂n, q) = Eq S(p̂n, q) denotes the modified risk
ignoring the term Eq S(q, · ) = S(q, q), which depends only on q.

The possibility of risk estimation is of course not confined to the local scoring rules con-
sidered here, as any proper scoring rule S, whether local or not, gives rise to a divergence
measure dS. Therefore, cross-validatory estimation of the (modified) risk generally is fea-
sible, although exact unbiasedness as with the local scoring rules may not be achievable
when global terms are involved. For example, unbiased estimation of the term

∫
p(x)2 dx

entering the quadratic score [3] does not seem possible.
The particular interest of the scoring rules of the form (8) ensues from the fact that

they do not require the knowledge of the normalizing constants of the probability densities,
which may be unknown or hard to obtain in complex settings [5], [7]. This advantage can
be combined with other desirable features such as improved robustness by working, for
instance, with the log cosh scoring rule mentioned above.

Acknowledgement

The author thanks Tilmann Gneiting, Steffen Lauritzen, and Matthew Parry for comments
on earlier drafts of the paper.

References

[1] A P Dawid and S L Lauritzen (2005). The geometry of decision theory. In Proc. 2nd
Int. Symp. Inf. Geom. Appl. 22-28. Univ. Tokyo

[2] W Ehm and T Gneiting (2011). Local proper scoring rules of order two. Preprint,
arXiv:1102.5031v1

[3] T Gneiting and A E Raftery (2007). Strictly proper scoring rules, prediction, and
estimation. J. Amer. Statist. Assoc. 102, 359-378

[4] A D Hendrickson and R J Buehler (1971). Proper scores for probability forecasters.
Ann. Math. Statist. 42, 1916-1921

[5] A Hyvärinen (2005). Estimation of non-normalized statistical models using score
matching. J. Mach. Learn. Res. 6, 695-709

[6] A Hyvärinen (2008). Optimal approximation of signal priors. Neural Computation
20, 3087-3110

[7] M Parry, A P Dawid and S Lauritzen (2011). Proper local scoring rules. Preprint,
arXiv:1101.5011v1

[8] C M Stein (1981). Estimation of the mean of a multivariate normal distribution.
Ann. Statist. 9, 1135-1151

5



Author address:
Institute for Frontier Areas of Psychology and Mental Health
Wilhelmstr. 3a, 79098 Freiburg, Germany

e–mail: ehm@igpp.de

6


	1 Introduction: SURE and the Hyvärinen score
	2 Local proper scoring rules and unbiased risk estimation

