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Abstract. In parametric models a sufficient condition for local identification is that

the vector of moment conditions is differentiable at the true parameter with full rank

derivative matrix. We show that there are corresponding sufficient conditions for non-

parametric models. A nonparametric rank condition and differentiability of the moment

conditions with respect to a certain norm imply local identification. It turns out these

conditions are slightly stronger than needed and are hard to check, so we provide weaker

and more primitive conditions. We extend the results to semiparametric models. We

illustrate the sufficient conditions with endogenous quantile and single index examples.

We also consider a semiparametric habit-based, consumption capital asset pricing model.

There we find the rank condition is implied by an integral equation of the second kind

having a one-dimensional null space.
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1. Introduction

There are many important models that give rise to conditional moment restrictions.

These restrictions often take the form

E[ρ(Y,X, α0)|W ] = 0,

where ρ(Y,X, α) has a known functional form but α0 is unknown. Parametric models

of this form are well known from the work of Hansen (1982), Chamberlain (1987), and

others. Nonparametric versions are motivated by the desire to relax functional form

restrictions. Identification and estimation of linear nonparametric conditional moment

models have been studied by Newey and Powell (1988, 2003), Hall and Horowitz (2005),

Blundell, Chen, and Kristensen (2007), Darolles, Fan, Florens, and Renault (2011), and

others.

The purpose of this paper is to derive identification conditions for α0 when ρ may

be nonlinear in α. Models with nonlinear ρ are important. They include models with

conditional quantile restrictions, as discussed in Chernozhukov and Hansen (2005) and

Chernozhukov, Imbens, and Newey (2007). Allowing ρ to be nonlinear in α is also

important for economic structural models and for semiparametric models, as further

discussed below. In this paper we focus on conditions for local identification of these

models. It should be possible to extend these results to provide global identification

conditions by linking the local conditions with global conditions.

In parametric models there are easily interpretable rank conditions for local identifi-

cation; see Fisher (1966) and Rothenberg (1971). A sufficient condition for local iden-

tification from solving a set of equations is that the equations are differentiable at the

true value with full rank derivative matrix. We show a nonparametric analog of this

result. If a nonparametric rank condition holds and the equations are differentiable at

the true value with respect to a certain norm then the unknown function is locally iden-

tified. However, the conditions of this result are sensitive to the choice of norm for the

derivative and are not primitive. For these reasons we add Hilbert space structure that

leads to more primitive sufficient conditions. We also consider semiparametric models,
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providing conditions for identification of a vector of real parameters. These conditions

are based on ”partialling out” the nonparametric part and allow for identification of the

parametric part even when the nonparametric part is not identified.

The usefulness of these conditions is illustrated by three examples. One example gives

primitive conditions for local identification of the nonparametric endogenous quantile

models of Chernozhukov and Hansen (2005) and Chernozhukov, Imbens, and Newey

(2007). Another gives conditions for local identification of a semiparametric index model

with endogeneity. There we give conditions for identification of parametric components

when nonparametric components are not identified. The third example give conditions

for local identification of a semiparametric consumption capital asset pricing model with

habit formation.

In relation to previous literature, the nonparametric rank condition is a local version

of identification conditions for linear conditional moment restriction models that were

considered in Newey and Powell (1988, 2003). Chernozhukov, Imbens, and Newey (2007)

also suggested the nonparametric rank condition and differentiability as sufficient condi-

tions for local identification but did not use the right norm in defining differentiability.

Florens and Sbai (2010) recently gave local identification conditions for games but their

conditions do not seem to apply to the kind of conditional moment restrictions that arise

in instrumental variable settings and are a primary subject of this paper. Also, the mod-

els we consider belong to the difficult class of nonlinear ill-posed inverse problems, that

have not received much treatment in the mathematics literature.

Section 2 presents a general nonparametric local identification result and relates it

to sufficient conditions for identification in parametric models. Section 3 gives more

easily interpretable conditions for local identification and applies these to the endogenous

quantile model. Section 4 provides conditions for identification in semiparametric models

and applies these to the endogenous index model. Section 5 discusses the asset pricing

example and Section 6 briefly concludes.
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2. Nonparametric Models

To help explain the nonparametric results and give them context we give a brief de-

scription of sufficient conditions for local identification in parametric models. Let α be a

p×1 vector of parameters and m(α) a J×1 vector of moment conditions with m(α0) = 0

for true value α0. Also let |·| denote the Euclidean norm in either ℜp or ℜJ depending

on the context. We say that α0 is locally identified if there is a neighborhood of α0 such

that m(α) 6= 0 for all α 6= α0 in the neighborhood. Let m′ denote the derivative of m(α)

at α0 when it exists. Sufficient conditions for local identification can be stated as follows:

If m(α) is differentiable at α0 and rank(m′) = p then α0 is locally identified.

This result follows from two observations: 1) By rank(m′) = p, for h ∈ ℜp the Eu-

clidean norm |h| is equivalent to the norm |m′h|; 2) By m′ being the derivative at α0

there is a neighborhood of α0 such that for all α 6= α0 in that neighborhood

|m(α)−m′(α− α0)|
|m′(α− α0)|

=
|m(α)−m(α0)−m′(α− α0)|

|m′(α− α0)|
< 1. (2.1)

This inequality implies m(α) 6= 0.

To extend these observations to provide sufficient conditions for local identification of

nonparametric models we will let α denote a function with true value α0 and m(α) a

function of the object of interest. The true value of the object of interest satisfies

m(α0) = 0,

where we will be precise about the meaning of the equality in the discussion to fol-

low. Conditional moment restrictions are an important example where ρ(Y,X, α) is a

finite dimensional residual vector depending on an unknown function α and m(α) =

E[ρ(Y,X, α)|W ].

To be precise we impose some mathematical structure. Assume that α ∈ A, a Banach

space with norm ‖·‖A . Let B be a Banach space with a norm ‖·‖B and assume that m

maps A into B, i.e. m : A 7→ B. The restrictions of the model are that ‖m(α0)‖B = 0.

Definition: α0 is locally identified for N ⊆ A, with α0 ∈ N , if for all α ∈ N ,

‖m(α)‖B = 0 ⇒ ‖α− α0‖A = 0.
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This local identification concept is more general than the one introduced by Cher-

nozhukov, Imbens and Newey (2007). Note that local identification is defined rela-

tive to a set N . Often there will be ǫ > 0 such that N is a subset of an open ball

{α : ‖α− α0‖A < ǫ}. The set N may be strictly smaller than an open ball due to other

restrictions being imposed on N . For example, one could restrict N to be a bounded

set in a Sobolev space. Or one could restrict N to only include α that are bounded

functions. This restriction is useful for local identification in conditional moment models

as further discussed below.

To formulate a nonparametric rank condition we will use a nonparametric version of

the derivative. We will be specific below about what we require of this derivative but for

now we just specify it to be a linear mapping m′ : A 7→ B. Under the conditions we give,
m′ will be a Gâteaux derivative at α0, that can be calculated as

m′h =
∂

∂t
m(α0 + th)|t=0 (2.2)

for h ∈ A and t a scalar. The result of this calculation can be used as a candidate for

checking the conditions given below.

The following condition is a nonparametric rank condition.

Assumption 1 (Rank): There is a continuous linear mapping m′ : A 7→ B and a set

N ′ containing α0 such that for all α ∈N ′,

‖m′(α− α0)‖B = 0 ⇒ ‖α− α0‖A = 0. (2.3)

This condition means that on N ′ the only α with m′(α− α0) = 0 is α = α0. In other

words, on the domain {α−α0 : α ∈N ′} the null space of the linear operator m′ is 0. If α

were finite dimensional this condition would be equivalent to a full rank derivative matrix

(as long as N ′ is open and nonempty). This motivates our interpretation of Assumption

1 as being like the rank condition for local identification in parametric models.

A similar condition is used to characterize identification in linear conditional moment

models. For example, consider the linear conditional moment restriction where Y =

α0(X) +U and E[U |W ] = 0. Let ρ(Y,X, α) = Y − α(X). Here m(α) = E[Y − α(X)|W ]

so that equation (2.2) is satisfied with m′h = −E[h(X)|W ]. In this case Assumption
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1 requires that E[α(X) − α0(X)|W ] 6= 0 for any α ∈N ′ with α − α0 6= 0. This is the

completeness condition discussed in Newey and Powell (2003) with α restricted to N ′.

Similarly to local identification, the rank condition is defined in terms of a set N ′. In

general there is a trade-off between different sets N ′. With smaller N ′ it is easier to verify

rank but the identification result is weaker. For example, in the linear conditional moment

model we could let N ′ = {α ∈ A : ‖α− α0‖A < ∞}, where ‖h‖A = {E[h(X)2]}1/2, and
X and W are continuous random variables. Then Assumption 1 requires completeness

of the conditional distribution of X given W . Sufficient conditions for completeness can

be found in Newey and Powell (2003), Chernozhukov, Imbens, and Newey (2007), and

Andrews (2011). If we consider the same mean square norms for ‖·‖A and ‖·‖B but restrict

α− α0 to be a bounded function of X , then Assumption 1 requires that the conditional

distribution of X given W be bounded complete, which is weaker than completeness.

See, for example, Mattner (1993), Chernozhukov and Hansen (2005), Blundell, Chen

and Kristensen (2007), D’Haultfoeuille (2010), and Andrews (2011) for discussions of

completeness and bounded completeness.

As for parametric models, the rank condition and differentiability will imply local

identification. We base differentiability on the following definition.

Definition: The map m(α) is differentiable on N ′′ at α0 for the norm ‖·‖ if for all

δ > 0 there is ε > 0 such that for all α ∈ N ′′ with 0 < ‖α− α0‖ < ε,

‖m(α)−m(α0)−m′(α− α0)‖B
‖α− α0‖

< δ.

This condition is the same as Frechet differentiability only we do not require that the

domain of m(α) be a Banach space with norm ‖·‖, i.e. we do not require that all Cauchy

sequences converge in the metric implied by ‖·‖. This condition does depend on ‖·‖,
which is important, because different norms are not equivalent in nonparametric models.

The rank condition and differentiability for the norm ‖h‖ = ‖m′h‖B are sufficient for

local identification in nonparametric models.
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Theorem 1: If Assumption 1 is satisfied and m(α) is differentiable on N ′ at α0 for

the norm ‖m′h‖B then there is ε > 0 such that α0 is locally identified for N = N ′ ∩ {α :

‖m′(α− α0)‖B < ε}.
Differentiability is actually a stronger assumption than is needed for local identifica-

tion result. Intuitively, it is sufficient that an inequality analogous to equation (2.1)

be satisfied. For this reason we also consider identification when we just impose that

inequality.

Assumption 2: (Derivative) There is a set N ′′ containing α0 such that for all α ∈
N ′′ with α 6= α0,

‖m(α)−m(α0)−m′(α− α0)‖B
‖m′(α− α0)‖B

< 1.

The rank and derivative conditions are sufficient for local identification.

Theorem 2: If Assumptions 1 and 2 are satisfied then α0 is locally identified for

N=N ′ ∩ N ′′.

In linear conditional moment restriction models Assumption 2 will automatically be

satisfied and m(α) will be differentiable for any norm. That is because in the linear case

m(α)−m(α0)−m′(α− α0) = 0.

Therefore Theorem 2 includes previous identification results for linear conditional mo-

ment restrictions as a special case.

It is important to note that Theorems 1 and 2 just provide sufficient, and not neces-

sary, conditions for local identification. In particular, Assumption 1 may not be needed

for identification in nonlinear models, although its absence may affect the attainable

convergence rate of estimators, as occurs in parametric models, see Sargan (1983).

3. Local Identification in Hilbert Spaces

In Hilbert spaces we can give more primitive conditions for local identification of non-

linear models. This will be based on a lower bound for the rank norm ‖m′(α− α0)‖2B.
Assumption 3: (A, ‖·‖A) and (B, ‖·‖B) are separable Hilbert spaces and either a)

there is a set N ′, an orthonormal basis {φ1, φ2, ...}, and a positive, nonincreasing sequence
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(µ1, µ2, ...) such that for all α ∈ N ′,

‖m′(α− α0)‖2B ≥
∞
∑

j=1

µ2
j〈α− α0, φj〉2;

or b) N ′ = A and m′ is a compact linear operator with positive singular values (µ1, µ2, ...).

The hypothesis in b) that m′ is a compact operator is not very strong; e.g. see Kress

(1999). It implies that there is an orthonormal basis {φj : j = 1, . . . } for A with

‖m′(α− α0)‖2B =
∞
∑

j=1

µ2
j〈α− α0, φj〉2,

where µ2
j are the eigenvalues and φj the eigenfunctions of the self-adjoint operator m

′∗m′,

so that condition a) is satisfied when µj > 0 for all j. The assumption that the singular

values are all positive is quite strong and implies the rank condition for N ′ = A. In the

linear conditional moment restriction model this condition implies (L2-) completeness of

the conditional expectation E[·|W ]. Part a) differs from part b) by imposing a lower

bound on ‖m′(α− α0)‖2B only over a subset N ′ of A and by allowing the basis {φj}
to be different from the eigenfunction basis of the operator m′∗m′. In principle this

allows us to impose restrictions on α−α0, like boundedness and smoothness, which help

the rank condition to hold. Assumption 3 a) is a natural extension of the reverse link

condition in Chen and Reiß (2010), that is used to establish the rate of convergence for

the linear nonparametric instrumental variables (NPIV) problem. It has been used in

Chen and Pouzo (2008) for the convergence rates of their estimators of functions identified

by nonlinear nonparametric conditional moment restrictions. Here we demonstrate that

Assumption 3 a) is useful also for local identification.

It is difficult to show that m(α) is differentiable for the norm ‖m′h‖B even when it is

easy to show differentiability for ‖h‖A. It also seems often impossible to make ‖m′h‖B
equivalent to ‖h‖A by restricting h. For these reasons we follow a different approach

where we strengthen the assumption of differentiability of m(α) for the norm ‖h‖A and

forge a link between the norms ‖h‖A and ‖m′h‖B using Assumption 3. The following

condition strengthens differentiability of m(α) for the norm ‖h‖A.
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Assumption 4: There are constants L ≥ 0 and r > 1 and a set N ′′ such that for all

α ∈N ′′,

‖m(α)−m(α0)−m′(α− α0)‖B ≤ L ‖α− α0‖rA .

This condition is like Holder continuity of the derivative and L = 0 corresponds to the

case that m(α) is linear in α. Let 〈·, ·〉 denote the inner product on A and for any q > 1

define

‖h‖q =




∞
∑

j=1

µ
−2/(q−1)
j 〈h, φj〉2





1/2

.

The following is an identification result based on Theorem 1.

Theorem 3: If Assumptions 3 and 4 (with L > 0) are satisfied then for any C > 0

and any q with 1 < q < r there is ǫ > 0 such that α0 is locally identified for

N = N ′ ∩ N ′′∩{α : ‖m′(α− α0)‖B < ǫ, ‖α− α0‖q ≤ C}.

We can also base a result on the inequality of Assumption 2 rather than differentiability.

Theorem 4: If Assumptions 3 and 4 (with L > 0) are satisfied then α0 is locally

identified on

N = N ′∩N ′′∩{α : ‖α− α0‖r < L−1/(r−1)}.

These results can be explained in a straightforward way. In conditional moment re-

striction models the operator m′ often will not have a continuous inverse, i.e. there will

be an ill-posed inverse problem. Under Assumption 3 that corresponds to µj → 0 as

j → ∞. A consequence of this is that the norms ‖m′h‖B and ‖h‖A are not equivalent.

However, ‖h‖A is generally a natural norm to use in the remainder of Assumption 4, as

is illustrated in the quantile example below. Therefore, to obtain sufficient conditions for

local identification it is useful to forge a link between the norms ‖m′h‖B and ‖h‖A. The
bounds on ‖h‖q or ‖h‖r allow us to forge such a link. Implicitly these bounds restrict

the higher-order Fourier coefficients of h to go to zero at certain rates, so that smallness

of ‖m′h‖B implies that ‖h‖A is small. In this way the link leads to a small remainder in

the derivative expansion, which in turn leads to Assumption 2.
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The bounds on ‖α− α0‖q in Theorems 3 and 4 require that the Fourier coefficients

〈α− α0, φj〉 of the deviations α−α0 vanish faster as j grows than µ
1/(q−1)
j . This bound is

a ”source condition” under Assumption 3 b) and is similar to conditions used by Florens,

Johannes and Van Bellegem (2010) and others. Under Assumption 3 a) it is similar to

norms in generalized Hilbert scales, for example, see Engl, Hanke, and Neubauer (1996)

and Chen and Reiß (2010). Theorems 3 and 4 also remain valid if we impose uniform

bounds on the size of Fourier coefficients, corresponding to a hyperrectangle instead of

an ellipsoid.

To illustrate the usefulness of the results, we consider an endogenous quantile example

where 0 < τ < 1 is a scalar and

ρ(Y,X, α) = 1(Y ≤ α(X))− τ

Here we have

m(α) = E[1(Y ≤ α(X))|W ]− τ.

Let fY (y|X,W ) denote the conditional density of Y given X and W.

Proposition 5: If fY (y|X,W ) is continuously differentiable with |dfY (y|X,W )/dy| ≤
L1, X has conditional pdf fX(x|W ) given W and marginal pdf f(x) satisfying fX(x|W ) ≤
L2f(x), and m′h = E[fY (α0(X)|X,W )h(X)|W ] satisfies Assumption 3, then α0 is locally

identified for

N = N ′∩{α : α : ‖α− α0‖2 < (L1L2)
−1}.

This result gives a precise link between a neighborhood on which α0 is locally identified

and the bounds L1 and L2. Also, here the neighborhood is defined in terms of ‖α− α0‖2
which is a strong norm. This result corrects Theorem 3.2 of Chernozhukov, Imbens, and

Newey (2007) and has more primitive conditions than the global identification character-

ization of Chernozhukov and Hansen (2005). Horowitz and Lee (2007) impose analogous

bounds on a strong norm in their paper on convergence rates of nonparametric endoge-

nous quantile estimators.



[10] CHEN, CHERNOZHUKOV, LEE, AND NEWEY

4. Semiparametric Models

In this section, we consider local identification in possibly nonlinear semiparametric

models, where α can be decomposed into a p × 1 dimensional parameter vector β and

nonparametric component g, so that α = (β, g). Let | · | denote the Euclidean norm for β

and G the parameter space for g, where we assume that G is a Banach space with norm

‖·‖G , such as a Hilbert space. We focus here on the model

E[ρ(Y,X, β0, g0)|W ] = 0,

where ρ(y, x, β, g) is a J × 1 vector of residuals. Here m(α) = E[ρ(Y,X, β, g)|W ] will

be considered as an element of the Hilbert space B of J × 1 random vectors with inner

product

〈a, b〉 = E[a(W )T b(W )].

The differential m′(α− α0) can be expressed as

m′(α− α0) = m′
β(β − β0) +m′

g(g − g0),

where m′
β is the derivative of m(β, g0) = E[ρ(Y,X, β, g0)|W ] with respect to β at β0 and

m′
g is the Gateaux derivative of m(β0, g) with respect to g at g0. To give conditions for

local identification of β0 in the presence of the nonparametric component g it is helpful

to partial out g. Let M̄ be the closure of the linear span M of m′
g(g − g0) for g ∈ N ′

g

where N ′
g will be specified below. In general M̄ 6= M because the linear operator m′

g

does not have closed range (due to the ill-posed inverse problem). For the jth unit vector

ej let

ζ∗j = arg min
ζ∈M̄

E[{m′
β(W )ej − ζ(W )}T{m′

β(W )ej − ζ(W )}],

which exists by standard Hilbert space results, and satisfies

E[{m′
β(W )ej − ζ∗j }Tm′

g(g − g0)] = 0 for all g ∈ N ′
g.

Define Π to be the p× p matrix with

Πjk := E
[

{

m′
β(W )ej − ζ∗j (W )

}T {

m′
β(W )ek − ζ∗k(W )

}

]

, (j, k = 1, ..., p).

The following condition is important for local identification of β0.
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Assumption 5: The mapping m′ : ℜp ×N ′
g −→ B is continuous and linear and Π is

nonsingular.

This assumption is similar to those imposed in Ai and Chen (2003, assumption 4.1(i))

and Chen and Pouzo (2009, assumption 2.10), who used it for establishing the n−1/2-

normality of the sieve minimum distance estimator for the parametric part. Nonsingu-

larity of Π can be shown to be equivalent to finiteness of the semiparametric variance

bound for β0, when E[ρ(Y,X, α0)ρ(Y,X, α0)
T |W ] is bounded with smallest eigenvalue

bounded away from zero; see, e.g., Chamberlain (1992). In the local identification anal-

ysis considered here it leads to local identification of β0 without identification of g when

m(β0, g) is linear in g. It allows us to separate conditions for identification of β0 from

conditions for identification of g, via the following result:

Lemma 6: If Assumption 5 is satisfied then there is ε > 0 such that for all (β, g) ∈
ℜp ×N ′

g,

ε(|β − β0|+
∥

∥

∥m′
g(g − g0)

∥

∥

∥

B
) ≤ ‖m′(α− α0)‖B .

An implication of Lemma 6 is that if Assumption 5 is satisfied then Assumption 1 for

m′
g will imply Assumption 1 for m′. In this way Assumption 5 is a critical condition that

allows us to specify conditions for local identification of β0. One other condition is also

useful for this purpose.

Assumption 6: For every ε > 0 there is a neighborhood B of β0 and a set N ′′′
g such

that for all g ∈ N ′′′
g with probability one E[ρ(Y,X, β, g)|W ] is continuously differentiable

in β on B and

sup
g∈N ′′′

g

√

E[sup
β∈B

|∂E[ρ(Y,X, β, g)|W ]/∂β − ∂E[ρ(Y,X, β0, g0)|W ]/∂β|2] < ε.

It turns out that Assumptions 5 and 6 will be sufficient for local identification of β0

when m(β0, g) is linear in g, i.e. for m(β, g) = 0 to imply β = β0 when (β, g) is in

some neighborhood of (β0, g0). This works because Assumption 5 removes the effect of

unknown g on local identification of β0 by partialling out g.

Theorem 7: If Assumptions 5 and 6 are satisfied and m(β0, g) is linear in g then

there is a neighborhood B of β0 and a set Ng containing g0 such that β0 is locally identified
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for N = B ×Ng. If, in addition, Assumption 1 is satisfied for m′
g and N ′

g replacing m′

and N ′ then α0 = (β0, g0) is locally identified for N = B × (Ng ∩ N ′
g).

This result is more general than Florens, Johannes, and Van Bellegem (2008) and

Santos (2010) in allowing for nonlinearities in β.

For semiparametric models that are nonlinear in g we can give local identification

results based on differentiability of m(β0, g) with respect to g or on the more primitive

conditions of Section 3. For brevity we will focus on a result based on Theorem 4.

Theorem 8: If Assumptions 3 and 4 are satisfied with α = g, m(α) = m(β0, g),

m′ = m′
g, N ′ = N ′

g,N ′′ = N ′′
g and Assumptions 5 and 6 are satisfied then there is a

neighborhood B of β0 and δ > 0 such that α0 = (β0, g0) is locally identified for N =

B ×Ng, where

Ng = N ′
g ∩ N ′′

g ∩ N ′′′
g ∩ {g : ‖g − g0‖r < δ}.

An interesting and potentially important example is a single index model with endo-

geneity. This model is given by

Y = g0(X1 +XT
2 β0) + U, E[U |W ] = 0, (4.4)

where β0 is a vector of unknown parameters, g0(·) is an unknown function, and W are

instrumental variables. The scale of the parametric part is not identified separately, and

hence, we normalize the coefficient of X1 to 1. Here

m(α)(W ) = E[Y − g(X1 +XT
2 β)|W ].

Let V = X1 +XT
2 β0 and for differentiable g0(V ) let

m′
β = −E[g′0(V )X2|W ].

Let ζ∗j denote the projection of m′
βej = −E[g′0(V )X2j |W ] on the mean-square closure of

the set {E[h(V )|W ] : E[h(V )2] < ∞} and Π the matrix with Πjk = E[(m′
βej−ζ∗j )(m

′
βek−

ζ∗k)].

Proposition 9: Consider the model of (4.4). If a) g0(V ) is continuously differentiable

with bounded derivative g′0(V ) satisfying |g′0(Ṽ )− g′0(V )| ≤ Cg|Ṽ − V | for some Cg > 0,

b) E[|X2|4] < ∞, and c) Π is nonsingular then there is a neighborhood B of β0 and δ > 0
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such that for

N δ
g = {g : g(v) is continuously differentiable and sup

v
|g′(v)− g′0(v)| ≤ δ}

β0 is locally identified for N = B ×N δ
g . Furthermore, if there is N ′

g such that E[g(V )−
g0(V )|W ] is bounded complete on the set {g(V )− g0(V ) : g ∈ N ′

g} then (β0, g0) is locally

identified for N = B × (N δ
g ∩N ′

g).

Since this model includes as a special case the linear simultaneous equations model the

usual rank and order conditions are still necessary for Π to be nonsingular for all possible

models, and hence are necessary for identification. Relative to the linear nonparametric

model in Newey and Powell (1988, 2003) the index structure lowers the requirements

for identification by requiring that m′
gh = −E[h(V )|W ] be complete on N ′

g rather than

requiring completeness of E[r(X)|W ]. For example, it may be possible to identify β0 and

g0 with only two instrumental variables, one of which is used to identify g0 and nonlinear

functions of the other being used to identify β0.

To further explain we can give more primitive conditions for nonsingularity of Π. The

following result gives a necessary condition for Π to be nonzero (and hence nonsingular)

as well as a sufficient condition for nonsingularity of Π.

Proposition 9A: Consider the model of (4.4). If Π is nonsingular then the condi-

tional distribution of W given V is not complete. Also, if there is a measurable function

T (W ) such that the conditional distribution of V given W depends only on T (W ) and

for every λ 6= 0, E[g′0(V )λ′X2|W ] is not measurable with respect to T (W ) then Π is

nonsingular.

To explain the conditions of this result note that if there is only one variable in W

then the completeness condition (of W given V ) can hold and hence Π can be singular.

If there is more than one variable in W then generally completeness (of W given V ) will

not hold, because completeness would be like identifying a function of more than one

variable (i.e. W ) with one instrument (i.e. V ). If W and V are joint Gaussian and V

and W are correlated then completeness holds (and hence Π is singular) when W is one

dimensional but not otherwise. In this sense having more than one instrument in W is
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a necessary condition for nonsingularity of Π. Intuitively, one instrument is needed for

identification of the one dimensional function g0(V ) so that more than one instrument is

needed for identification of β.

The sufficient condition for nonsingularity of Π is stronger than noncompleteness. It

is essentially an exclusion restriction, where E[g′0(V )X2|W ] depends on W in a different

way than the conditional distribution of V depends on W . This condition can be shown

to hold if W and V are Gaussian, W is two dimensional, and E[g′0(V )X2|W ] depends on

all of W .

5. Semiparametric CCAPM Models

Consumption capital asset pricing models (CCAPM) provide interesting examples of

nonparametric and semiparametric moment restrictions, see Gallant and Tauchen (1989),

Hansen, Heaton, Lee, and Roussanov (2007), Chen and Ludvigson (2009), and others.

In this section, we illustrate our results by applying them to identification of a particular

semiparametric specification. These results could easily be extended to other specifica-

tions. Newey and Powell (1988), Chen and Ludvigson (2009), Lewbel and Linton (2010),

and Escanciano and Hoderlein (2010) have analyzed nonparametric marginal utility spec-

ifications.

To describe the model let Ct denote consumption level at time t and ct ≡ Ct/Ct−1 be

consumption growth. Suppose that the marginal utility of consumption at time t is given

by

MUt = C−γ0
t g0(Ct/Ct−1) = C−γ0

t g0(ct),

where g0(c) is an unknown positive function. For this model the intertemporal marginal

rate of substitution is

δ0MUt+1/MUt = δ0c
−γ0
t+1 g0(ct+1)/g0(ct),

where 0 < δ0 < 1 is the rate of time preference. Let Rt+1 = (Rt+1,1, ..., Rt+1,J)
T be a

J × 1 vector of gross asset returns. A semiparametric CCAPM equation is then given by

E[Rt+1δ0c
−γ0
t+1{g0(ct+1)/g0(ct)}|Wt] = e, (5.5)
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where Wt ≡ (Zt, ct) is a vector of variables observed by the agent at time t, and e is a

J×1 vector of ones. This corresponds to an external habit formation model with only one

lag as considered by Chen and Ludvigson (2009). We focus here on consumption growth

ct = Ct/Ct−1 to circumvent the potential nonstationarity of the level of consumption, as

has long been done in this literature, e.g. Hansen and Singleton (1982).

As discussed in the previous Section, local identification of β0 = (δ0, γ0)
T and g0

will follow from nonsingularity of a matrix and from identification of the nonparametric

part at β0. Identification of β0 is straightforward while nonparametric identification is

interesting, so we focus first on the nonparametric part. We consider two approaches,

based on an integral equation of the first and second kind respectively. While our results

are specific to the semiparametric model of equation (5.5), both approaches are applicable

to a broad class of semiparametric consumption based asset pricing models, such as

models with durable good consumption, housing, etc..

5.1. Identification via integral equation of first-kind. Let h(ct+1, ct) = g(ct+1)/g(ct).

If g0 is known to be bounded and bounded away from zero then it is sufficient for iden-

tification of h that at least one of the ”adjusted” conditional expectation operators

E∗
j [h(ct+1, ct)|Wt] =

E[Rt+1,jc
−γ0
t+1h(ct+1, ct)|Wt]

E[Rt+1,jc
−γ0
t+1 |Wt]

be boundedly complete. Since identifying h0(ct+1, ct) identifies g0 only up to scale we

also normalize g0 to satisfy E[g0(ct)
2] = 1. Let Ḡ denote the set of positive functions g

that are bounded, bounded away from zero, and satisfy E[g(ct)
2] = 1.

Assumption 7a: E∗
j [·|Wt] is boundedly complete for some j and g0 ∈ Ḡ.

An alternative scale normalization is also interesting. If g0(c
∗) = 1 for some c∗, then g0

is identified by g0(ct+1) = h0(ct+1, c
∗). We could directly impose this scale normalization

in equation (5.5) and then g0(ct+1) is identified when at least one of the ”return adjusted”

conditional expectation operators

E∗
j [g(ct+1)|Zt, ct = c∗] =

E[Rt+1,jc
−γ0
t+1g(ct+1)|Zt, ct = c∗]

E[Rt+1,jc
−γ0
t+1 |Zt, ct = c∗]
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is boundedly complete. This identification condition is consistent with existing findings

that ct is a “weak instrument” and that one needs other more powerful instruments Zt

for strong identification and reliable estimation of CCAPM; see, e.g., Stock and Wright

(2000). In fact, Chen and Ludvigson (2009) find that all the empirical results of their

semiparametric habit formation CCAPM remain virtually unchanged when ct is dropped

from the conditioning set Wt = (Zt, ct).

5.2. Identification via integral equation of second-kind. Multiplying g0(ct) through

CCAPM equation (5.5) we see that identification of g0(c) (up to scale) just requires a

unique solution (up to scale) of

E[δ0Rt+1c
−γ0
t+1 g(ct+1)|Wt]− g(ct)e = 0. (5.6)

This is a vector homogenous linear integral equation of the second kind. It will identify

g0(c) (up to scale) if and only if the intersection of its null space N with Ḡ is a single-

ton. A one-dimensional null space N is thus sufficient for identification of g0, since the

E[g0(ct)
2] = 1 normalization will reduce that to a singleton. This condition is analogous

to the well known rank condition for identification in parametric simultaneous equations

models, which requires a one-dimensional null space for the restriction matrix multiplied

by the matrix of structural coefficients (see Fisher, 1966, Theorem 2.3.1).

Assumption 7b: N is one dimensional and g0 ∈ Ḡ.
The following reasoning suggests that one-dimensional N is a weak condition that

is generic. Note first that N = ∩J
j=1 Nj where Nj is the null space of the operator

E[δ0Rt+1,jc
−γ0
t+1 g(ct+1)|Wt]−g(ct). Furthermore, for any finite valued, measurable function

T (Zt), by iterated expectations it follows that

Nj ⊆ N T
j = {g : E[δ0Rt+1,jc

−γ0
t+1 g(ct+1)|T (Zt), ct]− g(ct) = 0}.

If E[δ0Rt+1,jc
−γ0
t+1 g(ct+1)|T (Zt) = τ, ct] is a compact operator thenN T

j is finite dimensional

(see e.g. Kress, 1999, Chapter 3). Therefore, Nj ⊆ ∩TN T
j has finite dimension, where

the intersection is over all measurable functions T. Furthermore, if Zt is continuously

distributed then there will be an infinite number of distinct such T . Generically the

intersection of an infinite number of finite dimensional spaces is the linear space that is
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common to each, which is just constant multiples of g0(c), so that Nj is one dimensional.

It follows that generically N will be one-dimensional, and hence g0(c) identified (up to

scale).

Many overidentifying restrictions may be present in this model. The argument given

for generic identification holds if J = 1 and Zt consists of one continuous variable. Larger

J and more instrumental variables in Zt constitute overidentifying restrictions.

The identification condition in Assumption 7B is interesting because it shows that

Assumption 1 need not reduce to completeness of a conditional expectation. Instead,

the rank condition holds if an integral equation of the second kind has a one-dimensional

null space. Lewbel and Linton (2010) and Escanciano and Hoderlein (2010) also consider

identification of nonparametric marginal utility of consumption, MUt = α0(Ct), using an

integral equation of the second kind, but their formulations and conditions are different

from ours.

Imposing the scale normalization g0(c
∗) = 1 gives another view of identification from

an integral equation of the second kind. With that normalization (5.6) becomes the

integral equation of the first kind discussed in the previous subsection, namely

E[δ0Rt+1c
−γ0
t+1 g0(ct+1)|W ∗

t ]− e = 0 with W ∗
t ≡ (Zt, ct = c∗).

Turning to the identification of parametric component β0 = (δ0, γ0)
T , let

mβ1(Wt) = E[Rt+1c
−γ0
t+1 g0(ct+1)|Wt], mβ2(Wt) = −δ0E[Rt+1 ln(ct+1)c

−γ0
t+1 g0(ct+1)|Wt].

Let M̄ be the mean square closure of the linear span of

{E[Rt+1δ0c
−γ0
t+1 g(ct+1)|Wt]− g(ct)e : E[g(ct)

2] < ∞}.

Define

ζ∗j = arg min
ζ∈M̄

E[{mβj(Wt)− ζ(Wt)}T{mβj(Wt)− ζ(Wt)}],

and let matrix Π be a 2× 2 symmetric matrix with

Πjk = E[{mβj(Wt)− ζ∗j (Wt)}T{mβk(Wt)− ζ∗j (Wt)}], (j, k = 1, 2).

Nonsingularity of Π leads to local identification of β0 = (δ0, γ0)
T .
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The matrix Π appears to be nonsingular quite generally as long as Wt includes other

variables Zt in addition to ct. Similarly to the index example the instrument ct is used

in identifying g0 so that addition instruments will be useful for identifying β. It should

be possible to formulate necessary and sufficient conditions similar to those for the index

model but for brevity we leave this to future work.

To help Assumption 6 be satisfied it is useful to impose a dominance condition. For

any ∆ > 0 define

Dt = (1 + |Rt+1|)[2 + | ln(ct+1)|] sup
γ∈[γ0−∆,γ0+∆]

c−γ
t+1.

We can now give a local identification result for this model. Let Ḡ denote the set of

functions g(c) that are bounded and bounded away from zero.

Proposition 10: If Π is nonsingular, g0(·) ∈ Ḡ, 0 < δ0 < 1, and E[D2
t ] < ∞ then

there is a neighborhood B of β0 and ε > 0 such that for

N ε
g = {g : E[E[D2

t |Wt]|g(ct+1)− g0(ct+1)|2] < ε, g ∈ Ḡ},

β0 is locally identified for N = B×N ε
g . Furthermore, if Assumption 7A or 7B is satisfied

then (β0, g0) is locally identified for N = B ×N ε
g .

6. Conclusion

We provide sufficient conditions for local identification for a general class of semi-

parametric and nonparametric conditional moment restriction models. We find that the

choice of norms and neighborhoods are important for local identification of nonparamet-

ric models. We provide new examples to illustrate the usefulness of our identification

results.

7. Appendix

Let Proj(b|M) denote the orthogonal projection of an element b of a Hilbert space on

a closed linear subset M of that space.
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Lemma A1: If a) M is a closed linear subset of Hilbert space H;b) bj ∈ H (j =

1, . . . , p), c) the p× p matrix Π with Πjk = 〈bj − Proj(bj |M), bk − Proj(bk|M)〉 is non-

singular then for b = (b1, . . . , bp) there exists ε > 0 such that for all a ∈ ℜp and ζ ∈ M,

∥

∥

∥bTa+ ζ
∥

∥

∥ ≥ ε (|a|+ ‖ζ‖) .

Proof: Let b̄j = Proj(bj |M), b̃j = bj − b̄j , b̄ = (b̄1, ..., b̄p)
′, and b̃ = (b̃1, ..., b̃p)

′. Note

that for ε1 =
√

λmin(Π)/2,

∥

∥

∥bTa+ ζ
∥

∥

∥ =

√

∥

∥

∥b̃Ta + ζ + b̄Ta
∥

∥

∥

2
=

√

∥

∥

∥b̃Ta
∥

∥

∥

2
+

∥

∥

∥ζ + b̄Ta
∥

∥

∥

2

≥ (
∥

∥

∥b̃Ta
∥

∥

∥ +
∥

∥

∥ζ + b̄Ta
∥

∥

∥)/
√
2 = (

√
aTΠa+

∥

∥

∥ζ + b̄Ta
∥

∥

∥)/
√
2

≥ ε1 |a|+
∥

∥

∥ζ + b̄Ta
∥

∥

∥ /
√
2.

Also note that for any C∗ ≥
√

∑

j

∥

∥

∥b̄j
∥

∥

∥

2
it follows by the triangle and Cauchy-Schwartz

inequalities that
∥

∥

∥b̄Ta
∥

∥

∥ ≤
∑

j

∥

∥

∥b̄j
∥

∥

∥ |aj | ≤ C∗ |a| .

Choose C∗ big enough that ε1/
√
2C∗ ≤ 1. Then by the triangle inequality,

∥

∥

∥ζ + b̄Ta
∥

∥

∥ /
√
2 ≥

(

ε1/
√
2C∗

) ∥

∥

∥ζ + b̄Ta
∥

∥

∥ /
√
2 = ε1

∥

∥

∥ζ + b̄Ta
∥

∥

∥ /2C∗

≥ ε1
(

‖ζ‖ −
∥

∥

∥b̄Ta
∥

∥

∥

)

/2C∗ ≥ ε1 (‖ζ‖ − C∗ |a|) /2C∗

= (ε1/2C
∗) ‖ζ‖ − ε1 |a| /2.

Then combining the inequalities, for ε = min{ε1/2, ε1/2C∗},
∥

∥

∥bTa + ζ
∥

∥

∥ ≥ ε1 |a|+ (ε1/2C
∗) ‖ζ‖ − ε1 |a| /2

= (ε1/2) |a|+ (ε1/2C
∗) ‖ζ‖ ≥ ε (|a|+ ‖ζ‖) .Q.E.D.

Proof of Theorem 1: Choosing δ = 1 in the definition of differentiability, it follows

that there is an ε > 0 such that for all α ∈N ′ with 0 < ‖m′(α− α0)‖B < ε,

‖m(α)−m′(α− α0)‖B
‖m′(α− α0)‖B

=
‖m(α)−m(α0)−m′(α− α0)‖B

‖m′(α− α0)‖B
< 1.

This can only be the case if m(α) 6= 0. Therefore, m(α) 6= 0 for all α ∈ N with α 6= α0

Q.E.D.
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Proof of Theorem 2: For α ∈ N it follows by Assumptions 1 and 2 that

‖m(α)−m′(α− α0)‖B
‖m′(α− α0)‖B

=
‖m(α)−m(α0)−m′(α− α0)‖B

‖m′(α− α0)‖B
< 1.

The conclusion then follows as in the proof of Theorem 1. Q.E.D.

Proof of Theorem 3: Assumption 3 implies Assumption 1 and

‖m′h‖2B ≥
∞
∑

j=1

µ2
j 〈h, φj〉2 ,

where 〈h, φj〉 are the Fourier coefficients satisfying h =
∑∞

j=1 〈h, φj〉φj and the inequality

is an equality under Assumption 3 b). Also, by the Holder inequality, for any q > 1 and

aj = |〈h, φj〉|,

(
∑

j

a2j )
1/2 =





∑

j

µ
−2/q
j a

2−2/q
j µ

2/q
j a

2/q
j





1/2

≤




∑

j

µ
−2/(q−1)
j a2j





(q−1)/2q 



∑

j

µ2
ja

2
j





1/2q

.

Therefore we have

‖h‖
A
≤

(

‖h‖q
)1−1/q ‖m′h‖1/q

B
. (7.7)

Let N ′′′ = N ′′ ∩ {‖α− α0‖q ≤ C}. Then, by Assumption 4, for α ∈ N ′′′ we have

‖m(α)−m(α0)−m′(α− α0)‖B ≤ L ‖α− α0‖r(1−1/q)
q ‖m′(α− α0)‖r/qB

≤ LCr(1−1/q) ‖m′(α− α0)‖r/qB .

Since r/q > 1 it follows that m(α) is differentiable on N ′′′ at α0 for the norm ‖m′h‖B, so
the conclusion follows by Theorem 1. Q.E.D.

Proof of Theorem 4: By Assumption 4 and equation (7.7) with q = r it follows that

for α ∈ N with α 6= α0,

‖m(α)−m′(α− α0)‖B ≤ L ‖α− α0‖r−1
r ‖m′(α− α0)‖B

< ‖m′(α− α0)‖B ,

implying m(α) 6= 0 by Theorem 2. Q.E.D.
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Proof of Proposition 5: Let F (y|X,W ) = Pr(Y ≤ y|X,W ),m(α) = E [1(Y ≤ α(X))|W ]−
τ , and m′h = E [fY (α0(X)|X,W )h(X)|W ], so that by iterated expectations,

m(α) = E [F (α(X)|X,W )|W ]− τ.

Then by a mean value expansion, and by fY (y|X,W ) continuously differentiable

|F (α(X)|X,W )− F (α0(X)|X,W )− fY (α0(X)|X,W )(α(X)− α0(X))|

= |[fY (ᾱ(X)|X,W )− fY (α0(X)|X,W )] [α(X)− α0(X)]|

≤ L1 [α(X)− α0(X)]2 .

Then for L1L2 = L

|m(α)−m(α0)−m′(α− α0)| ≤ L1E
[

{α(X)− α0(X)}2|W
]

≤ LE[{α(X)− α0(X)}2] = L ‖α− α0‖2A .

Therefore,

‖m(α)−m(α0)−m′(α− α0)‖B ≤ L ‖α− α0‖2A ,

so that Assumption 4 is satisfied with r = 2 and N ′′ = A. The conclusion then follows

from Theorem 4. Q.E.D.

Proof of Lemma 6: Apply Lemma A1 with B there equal to B from the text, M̄ in

Lemma A1 equal to the closed linear span of M′ = {m′
g(g− g0) : g ∈ N ′

g}, bj = m′
βej for

the jth unit vector ej , and a = β − β0. Then for all (β, g) ∈ ℜp ×N ′
g we have

m′(α− α0) = b′a+ ζ, b′a = m′
β(β − β0), ζ = m′

g(g − g0) ∈ M̄.

The conclusion then follows by the conclusion of Lemma A1. Q.E.D.

Proof of Theorem 7: Let ε be from the conclusion of Lemma 6 and let B and

Ng = N ′′′
g be as in Assumption 6 with

sup
g∈Ng

E[sup
β∈B

|∂E[ρ(Y,X, β, g)|W ]/∂β − ∂E[ρ(Y,X, β0, g0)|W ]/∂β|2] < ε2.
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Then bym(β0, g) linear in g and expanding each element ofm(β, g)(W ) = E[ρ(Y,X, β, g)|W ]

in β, it follows that for each (β, g) ∈ B ×Ng, if β 6= β0,

‖m(α)−m′(α− α0)‖B
=

∥

∥

∥m(β, g)−m(β0, g)−m′
β(β − β0)

∥

∥

∥

B
=

∥

∥

∥

[

∂m(β̃, g)/∂β −m′
β

]

(β − β0)
∥

∥

∥

B

≤
∥

∥

∥m′
β(β̃, g)−m′

β

∥

∥

∥

B
|β − β0| < ε |β − β0| ≤ ε(|β − β0|+

∥

∥

∥m′
g(g − g0)

∥

∥

∥

B
)

≤ ‖m′(α− α0)‖B .

where β̃ is a mean value depending on W that actually differs from row to row of

m′
β(β̃, g) = ∂E[ρ(Y,X, β̃, g)|W ]/∂β.

Thus, ‖m(α)−m′(α− α0)‖B < ‖m′(α− α0)‖B, implying m(α) 6= 0, giving the first

conclusion.

To show the second conclusion, suppose β = β0 and g ∈ Ng ∩ N ′
g with g 6= g0. Then

‖m′(α− α0)‖B =
∥

∥

∥m′
g(g − g0)

∥

∥

∥

B
> 0,

while ‖m(α)−m′(α− α0)‖B = 0, so m(α) 6= 0 follows as in the proof of Theorem 1.

Q.E.D.

Proof of Theorem 8: Let ε be from the conclusion of Lemma 6. Then similarly to

the proof of Theorem 7, for all g ∈ N ′′
g ∩N ′′′

g .

‖m(α)−m′(α− α0)‖B
≤

∥

∥

∥m(β, g)−m(β0, g)−m′
β(β − β0)

∥

∥

∥

B
+

∥

∥

∥m(β0, g)−m′
g(g − g0)

∥

∥

∥

B

≤ ε |β − β0|+ L ‖g − g0‖rA ,

where the last inequality is strict if β 6= β0 and L is from Assumption 4. Choose δ =

(ε/L)1/(r−1). Then for g ∈ N ′
g it follows as in the proof of Theorem 4 that for g 6= g0

with ‖g − g0‖r < δ

L ‖g − g0‖rA ≤ L ‖g − g0‖r−1
r

∥

∥

∥m′
g(g − g0)

∥

∥

∥

B
< ε

∥

∥

∥m′
g(g − g0)

∥

∥

∥

B
.
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Combining this inequality with the previous one, it then follows from Lemma 6 that for

α 6= α0, implying either β 6= β0 or g 6= g0,

‖m(α)−m′(α− α0)‖B < ε(|β − β0|+
∥

∥

∥m′
g(g − g0)

∥

∥

∥

B
≤ ‖m′(α− α0)‖B .

The conclusion then follows by Theorem 2. Q.E.D.

Proof of Proposition 9: The proof will proceed by verifying the conditions of The-

orem 7. Note that Assumption 5 is satisfied. We now check Assumption 6. Note

that for any δ > 0 and g ∈ N δ
g , g(X1 + XT

2 β) is continuously differentiable in β with

∂g(X1 +XT
2 β)/∂β = g′(X1 +XT

2 β)X2. Also, for ∆ a p× 1 vector and B̄ a neighborhood

of zero it follows by boundedness of g′0 and the specification of N δ
g that

E[sup
∆∈B̄

∣

∣

∣g′(X1 +XT
2 (β +∆))X2

∣

∣

∣ |W ] ≤ CE[|X2| |W ] < ∞ a.s.

Therefore, by the dominated convergence theorem m(α)(W ) = E[Y − g(X1 +XT
2 β)|W ]

is continuously differentiable in β a.s. with

∂m(α)(W )/∂β = −E[g′(X1 +XT
2 β)X2|W ].

Next consider any ε > 0 and let B and δ satisfy

B = {β : |β − β0|2 < ε2/4C2
gE[|X2|4]}, δ2 < ε2/4E[|X2|2].

Then for g ∈ N δ
g we have, for v(X, β) = X1 +X ′

2β,

E[sup
β∈B

∣

∣

∣∂m(α)(W )/∂β −m′
β(W )

∣

∣

∣

2
]

= E[sup
β∈B

|E[{g′(v(X, β))− g′0(V )}X2|W ]|2] ≤ E[|X2|2 sup
β∈B

|g′(v(X, β))− g′0(V )|2]

≤ 2E[|X2|2 sup
β∈B

|g′(v(X, β))− g′0(v(X, β))|2] + 2E[|X2|2 sup
β∈B

|g′0(v(X, β))− g′0(V )|2]

≤ 2δ2E[|X2|2] + 2C2
gE[|X2|4] sup

β∈B
|β − β0|2 < ε2.

Thus Assumption 6 is satisfied. The other conditions of Theorem 7 are assumed to be

satisfied so the conclusion follows from Theorem 7. Q.E.D.
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Proof of Proposition 9A: Suppose first that the conditional distribution of W given

V is complete. Note that by the projection definition of for all h(V ) with finite mean-

square we have

0 = E[{−E[g′0(V )X2j|W ]− ζ∗j (W )}E[h(V )|W ]] = E[{−E[g′0(V )X2j |W ]− ζ∗j (W )}h(V )].

Therefore,

E[−E[g′0(V )X2j |W ]− ζ∗j (W )|V ] = 0.

Completeness of the conditional distribution ofW given V then implies that−E[g′0(V )X2j |W ]−
ζ∗j (W ) = 0, and hence Πjj = 0. Since this is true for each j we have Π = 0, Π is singular.

Next, consider the second hypothesis and λ 6= 0. Let ζ∗λ(W ) denote the projection of

−E[g′0(V )λ′X2|W ] on M̄. Since E[h(V )|W ] = E[h(V )|T (W )] it follows that ζ∗λ(W ) is

measurable with respect to T (W ). Since E[g′0(V )λ′X2|W ] is not measurable with respect

to T (W ), we have −E[g′0(V )λ′X2|W ]− ζ∗λ(W ) 6= 0, so that

λ′Πλ = E[{−E[g′0(V )λ′X2|W ]− ζ∗λ(W )}2] > 0.

Since this is true for all λ 6= 0, it follows that Π is p.d., and hence nonsingular. Q.E.D.

Proof of Proposition 10: The proof will proceed by verifying the conditions of

Theorem 7 for the linear in g version of the moment condition from eq. (5.6). For

bounded h let

m′
gh = E[δ0Rt+1c

−γ0
t+1h(ct+1)|Wt]− h(ct)e

and m′(α− α0) = mβ(W )′(β − β0) +m′
g(g − g0). Let A be the set of functions g(·) with

norm

‖g‖A =
√

E[{E[D2
t |Wt] + 1}g(ct)2].

Note that δ20 |Rt+1|2 c−2γ0
t+1 ≤ CD2

t . Then by the Cauchy-Schwartz inequality we have

∥

∥

∥E[δ0Rt+1c
−γ0
t+1h(ct+1)|Wt]− h(ct)e

∥

∥

∥

2

B

≤ CE[E[δ0R
′
t+1c

−γ0
t+1h(ct+1)|Wt]E[δ0Rt+1c

−γ0
t+1h(ct+1)|Wt] + h(ct)

2]

≤ CE[E[D2
t |Wt]E[h(ct+1)

2|Wt] + CE[h(ct)
2] ≤ C ‖h‖2A .

It also follows similarly that ‖mβ(W )‖
B
< ∞. Therefore m′(α−α0) is continuous so that

Assumption 5 is satisfied.
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We now check Assumption 6. Let β = (δ, γ) and for bounded g let Ht+1(β, g) =

δRt+1c
−γ
t+1g(ct+1). Note that Ht+1 is twice continuously differentiable in β and that there

is a neighborhood B of β0 such that

sup
β∈B

∣

∣

∣

∣

∣

∂Ht+1(β, g)

∂β

∣

∣

∣

∣

∣

≤ Dtg(ct+1),

|E[∂Ht+1(β, g)/∂β − ∂Ht+1(β, g0)/∂β|Wt]|2 ≤ E[D2
t |Wt]E[|g(ct+1)− g0(ct+1)|2|Wt],

|E[∂Ht+1(β, g0)/∂β − ∂Ht+1(β0, g0)/∂β|Wt]|2 ≤ E[D2
t |Wt]E[g0(ct+1)

2|Wt] |β − β0|2 .

By E[D2
t ] < ∞ we have E[Dt|Wt] exists a.s. implying that E[Ht+1(β, g)|Wt] is continu-

ously differentiable on B with probability one with

∂E[Ht+1(β, g)|Wt]

∂β
= E[∂Ht+1(β, g)/∂β|Wt].

By g0(ct+1) bounded we also have
∣

∣

∣

∣

∣

∂E[Ht+1(β, g)|Wt]

∂β
− ∂E[Ht+1(β0, g0)|Wt]

∂β

∣

∣

∣

∣

∣

2

= |E[∂Ht+1(β, g)/∂β − ∂Ht+1(β0, g0)/∂β|Wt]|2

≤ 2E[D2
t |Wt]{E[|g(ct+1)− g0(ct+1)|2|Wt] + |β − β0|2}.

Note that by iterated expectations,

E[E[D2
t |Wt]E[|g(ct+1)− g0(ct+1)|2|Wt]] = E[E[D2

t |Wt]|g(ct+1)− g0(ct+1)|2].

Then choosing Ng and B so that

E[E[D2
t |Wt]|g(ct+1)− g0(ct+1)|2] < ε/4, |β − β0|2 < ε/4E[D2

t ],

we have

E[sup
β∈B

∣

∣

∣∂m(α)(W )/∂β −m′
β(W )

∣

∣

∣

2
]

≤ 2E[E[D2
t |Wt]E[|g(ct+1)− g0(ct+1)|2|Wt]] + 2E[E[D2

t |Wt]]ε/4E[D2
t ] < ε.

so E[E[D2
t |Wt]|g(ct+1) − g0(ct+1)|2] < ε/4 and B, choosing ε small enough in the the

conditions of Proposition 10 it follows that Assumption 6 is satisfied. The first conclusion

then follows by the first conclusion of Theorem 7.

To show the second conclusion it suffices to show that m′
g satisfies the rank condition

under Assumption 7A or 7B. Consider first Assumption 7A. Consider a g ∈ Ḡ with
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m′
g(g − g0) = 0. Then m′

gg = m′
gg0 = 0. Divide m′

gg = 0 by g(ct) and m′
gg0 = 0 by g0(ct)

to obtain

E[δ0Rt+1c
−γ0
t+1 g(ct+1)/g(ct)|Wt] = e = E[δ0Rt+1c

−γ0
t+1 g0(ct+1)/g0(ct)|Wt].

Since 0 < δ0 < 1 and E[Rt+1,jc
−γ0
t+1 |Wt] is positive random variable,

E∗
j [{g(ct+1)/g(ct)} |Wt] =

E[Rt+1,jc
−γ0
t+1 g(ct+1)/g(ct)|Wt]

E[Rt+1,jc
−γ0
t+1 |Wt]

=
E[Rt+1,jc

−γ0
t+1 g0(ct+1)/g0(ct)|Wt]

E[Rt+1,jc
−γ0
t+1 |Wt]

.

By Assumption 7A (bounded completeness for some j), it follows that g(ct+1)/g(ct) =

g0(ct+1)/g0(ct) almost surely. Square both sides and integrate both sides with respect

the distribution of ct+1 and to obtain g(ct)
−2 = g0(ct)

−2. Since g(ct) > 0 it follows that

g(ct) = g0(ct).

Consider next Assumption 7B. Then for m′
g(g − g0) = 0 we have m′

gg = 0 so g(ct) =

Kg0(ct) by m′
g having a one-dimensional null space containing g0. Squaring and integrat-

ing both sides with respect the distribution of ct gives K2 = 1. Since g(ct) is restricted

to be positive it follows that K = 1. Q.E.D.
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