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Abstract

In this paper we propose a family of robust estimates for isotonic regression: isotonic M-estimators.

We show that their asymptotic distribution is, up to an scalar factor, the same as that of Brunk ’s classi-

cal isotonic estimator. We also derive the influence function and the breakdown point of these estimates.

Finally we perform a Monte Carlo study that shows that the proposed family includes estimators that

are simultaneously highly efficient under gaussian errors and highly robust when the error distribution

has heavy tails.
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1 Introduction

Let x1, . . . , xn be independent random variables collected along observation points t1 ≤ . . . ≤ tn according
to the model

xj = µ(tj) + uj , (1)

where the uj ’s are i.i.d. symmetric random variables with distribution G. In isotonic regression the trend
term µ(t) is monotone non-decreasing, i.e., µ(t1) ≤ . . . ≤ µ(tn), but it is otherwise arbitrary. In this set-
up, the classical estimator of µ(t) is the function g which minimizes the L2 distance between the vector of
observed and fitted responses, i.e, it minimizes,

n∑

j=1

[xj − g(tj)]
2 (2)

in the class G of non-decreasing piecewise continuous functions. It is trivial but noteworthy that Equation
(2) posits a finite dimensional convex constrained optimization problem. Its solution was first proposed by
Brunk (1958) and has received extensive attention in the Statistical literature (see e.g., Robertson, Wright
and Dyskra (1988) for a comprehensive account). It is also worth noting that any piecewise continuous
non-decreasing function which agrees with the optimizer of (2) at the tj ’s will be a solution. For that reason,
in order to achieve uniqueness, it is traditional to restrict further the class G0 to the subset of piecewise
constant non-decreasing functions. Another valid choice consists in the interpolation at the knots with non-
decreasing cubic splines or any other piecewise continuous monotone function, e.g., Meyer (1996). We will
call this estimator the L2 isotonic estimator.
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The sensitivity of this estimator to extreme observations (outliers) was noted by Wang and Huang (2002),
who propose minimizing instead using the L1 norm, i.e. , minimizing

n∑

j=1

|xj − g(tj)| .

This estimator will be call here L1 Isotonic estimator. Wang and Huang (2002) developed the asymptotic
distribution of the trend estimator at a given observation point t0 and obtained the asymptotic relative
efficiency of this estimator compared with the classical L2estimator. Interestingly, this efficiency turned out
to be 2/π = 0.637, the same as in the i.i.d. location problem.

In this paper we will propose instead a robust isotonic M-estimator aimed at balancing robustness with
efficiency. Specifically we shall seek the minimizer of

n∑

j=1

ρ

(
xj − g(tj)

σ̂n

)
(3)

where σ̂n is a an estimator of the error scale previously obtained and ρ satisfies the following properties

A1 (i) ρ(x) is non-decreasing in |x|, (ii) ρ(0) = 0, (iii) ρ is even, (iv) ρ(x) is strictly increasing for x > 0 and
(v) ρ has two continuous derivatives and ψ = ρ′ is bounded and monotone non-decreasing.

Clearly, the L2 choice corresponds to taking ρ(x) = x2 while the L1 option is akin to opting for ρ(x) = |x|.
These two estimators do no require the scale estimator σ̂n.

Note that the class of M-estimators satisfying A1 does not include estimators with a redescending choice
for ψ. We believe that the strict differentiability conditions on ρ required in A1 are not strictly necessary,
but they make the proofs for the asymptotic theory simpler. Moreover, some functions ρ which are not twice
differentiable everywhere such as |x| or the Hubers’ functions defined below in (7) can be approximated by
functions satisfying A1.

The asymptotic distribution of the L2 isotonic estimators at a given point was found by Brunk (1970) and
Wright (1981) and the one of the L1 estimator by Wang (2002). They prove that the distribution of these
estimators conveniently normalized converge to the distribution of the slope at zero of the greatest convex
minorant of the two-sided Brownian Motion with parabolic drift. In this paper, we prove a similar result
for isotonic M-estimators. The focus of this paper is on estimation of the trend term at a single observation
point t0. We do not address the issue of distribution of the whole stochastic process {µ̂n(t), t ∈ T }. Recent
research along those lines are given by Kulikova and Lopuhaä (2006) and a related result with smoothing
was also obtained simultaneously in Pal and Woodroofe (2006).

This article is structured as follows. In Section 2 we propose the robust isotonic M-estimator. In Section
3 we obtain the limiting distribution of the isotonic M-estimator when the error scale is known. In Section
4 we prove that under general conditions the M-estimators with estimated scale have the same asymptotic
distribution than when the scale is known. In Section 5 we define an influence function which measures the
sensitivity of the isotonic M-estimator to an infinitesimal amount of pointwise contamination. In Section 6
we calculate the breakdown point of the isotonic M-estimators. In Section 8 we compare by Monte Carlo
simulations the finite sample variances of the estimators for two error distributions: normal and Student
with three degrees of freedom. In Section 7 we analyze two real dataset using The L2 and the isotonic
M-estimators. Section 9 is an Appendix containing the proofs.
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2 Isotonic M-Estimators

In similarity with the classical setup, we consider isotonic M-estimators that minimize the objective function
(3) within the class G0 of piecewise constant non-decreasing functions. As in the L2 and L1 cases, the isotonic
M-estimator is a step function with knots at (some of) the tj ’s. In Robertson and Waltman (1968) it is
shown that maximum-likelihood-type estimation under isotonic restrictions can be calculated via min-max
formulae. Assume first that we know that the scale parameter (e.g. , the MAD, of the uts) is σ0. Since we
are considering M-estimators with ψ non-decreasing (see A1), they can be view as the maximum likelihood
estimators corresponding to errors with density

g(u) =
exp

(
− 1

σ0

∫ u
0 ψ(v/σ0)dv

)
∞∫

−∞

[
exp

(
− 1

σ0

∫ u
0
ψ(v/σ0)dv

)
du

]

Then we can compute the isotonic M-estimator at a point t using the min-max calculation formulae

µ̂n(t) = max
u≤t

min
v≥t

µ̂n(u, v) = min
v≥t

max
u≤t

µ̂n(u, v), (4)

where µ̂n(u, v) is the unrestricted M-estimator which minimizes

∑

j∈C(u,v)

ρ

(
xj − µ

σ0

)
, (5)

where C(u, v) = {j : 1 ≤ j ≤ n;u ≤ tj ≤ v}. Alternatively, if ρ is convex and differentiable, as we are
assuming, the terms µ̂n(u, v) in (4) can be represented uniquely as a zero of

Sn(u, v, µ) =
∑

j∈C(u,v)

ψ

(
xj − µ

σ0

)
. (6)

In particular, when ρ(u) = − log(g(u))+ log(g(0)), where g is a probability density, the isotonic M-estimator
coincides with the maximum likelihood estimator when is u is assumed to have density g. In particular if g
is the N(0, σ2

0) density, the MLE is the M-estimator which defined by ρ(u) = u2 and therefore it coincides
with the classical L2 estimator. When g is the density of a double exponential distribution, the MLE is
the M-estimator defined by ρ(u) = |u|, and therefore it coincides with the L1 isotonic estimator. In these
two cases the estimators are independent of the value of σ0. One popular family of ψ functions to define
M-estimators is the Huber family

ψHk (u) = sign(u)min(|u|, k). (7)

Clearly, when σ0 is replaced by σ̂n, equations (4)-(6) still holds with σ0 replaced by σ̂n. Since ψ is non-
decreasing, the function Sn(u, v, µ) defined in equation (6) is non-increasing as a function of µ. This entails
the fundamental identities given below

Sn(u, v, a) > 0 if and only if µ̂n(u, v) > a, (8)

Sn(u, v, a) < 0 if and only if µ̂n(u, v) < a. (9)

These identities will be very useful in the development of the asymptotic distribution.
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3 Asymptotic Distribution

In this section we derive the asymptotic distribution of the isotonic M-estimator µ̂n(t0) of µ(t0). We first
make the sample size n explicit in the formulation of the model by postulating

xn,i = µ(tn,i) + un,i, (10)

where the errors {un,i, 1 ≤ i ≤ n} form a triangular array of i.i.d. random variables with distribution G and
{tn,i, 1 ≤ i ≤ n} is a triangular array of observation points. Their exact location is described by the function
Hn(t) = n−1

∑n
i=1 1(tn,i ≤ t). The values tn,j may be fixed or random but we will assume that there exists

a continuous distribution function H which has as support a finite closed interval such that

sup
t

|Hn(t)−H(t)| = oP (n
−1/3). (11)

Without loss of generality we shall assume in the sequel it is the interval [0, 1].
We will study the asymptotic distribution of µ̂n(t0) where t0 is an interior point of [0, 1]. The classical L2

isotonic estimator µ̂n(t0), with t0 at the boundary of the support of H, is known to suffer from the so-called
spiking problem (e.g., Sun and Woodroofe, 1999), i.e., µ̂n(t0) is not even consistent. We further make the
following assumptions.

A2 The function H is continuously differentiable in a neighborhood of t0 with h(t0) = H ′(t0) > 0.

A3 For a fixed t0, we assume the function µ(t) has two continuous derivatives in a neighborhood of t0, and
µ′(t0) > 0.

A4 The error distribution G has a density g symmetric and continuous with g(0) > 0.

We consider first the case where σ0 is known. Our first aim is to show that isotonic M-estimation is
asymptotically a local problem. Specifically, we will see in Lemma 1 that µ̂n(t0) depends only on those xj
corresponding to observation points tj lying in a neighborhood of order n1/3 about t0. This result is similar
to Prakasa Rao (1969), Lemma 4.1, who stated it in the context of density estimation. Our treatment here
will parallel that of Wright (1981), who worked on the asymptotics of the L2 isotonic regression estimator
when the smoothness of the underlying trend function µ(·) is specified via the number of its continuous
derivatives.

Specifically, since H ′(t0) > 0 we may choose for an arbitrary c and n sufficiently large, positive numbers
αl(n) and αu(n) for which

H(t0)−H(t0 − αl(n)) = H(t0 + αu(n))−H(t0) = 2cn−1/3.

With this, define the localized version of the isotonic M-estimator as

µ∗
n(t0) = max

t0−αl(n)<u≤t0
min

t0≤v<t0+αu(n)
µ̂n(u, v). (12)

Then we have the following Lemma

Lemma 1 Assume A1-A4 and (11). Then if µ̂n(t0) is defined by (4), we have,

lim
c→∞

lim sup
n→∞

P[µ̂n(t0) 6= µ∗
n(t0)] = 0. (13)
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Is is also noteworthy that the estimator in Equation (12) is not computable, for αl and αu depend on the
distribution H which is generally unknown. For computational purposes this implies that the calculation
of these estimators will indeed be global for fixed sample sized. Lemma 1 is, however, crucial to study the
asymptotic properties of µ̂n(t).

Given an stochastic process {Z(v),−∞ < v < ∞}, we denote by “slogcm[Z(t)]” the random variable
that corresponds to the slope at zero of the greatest convex minorant of Z(t). The following theorem gives
the asymptotic distribution of µ̂n(t0).

Theorem 1 Assume A1-A4 and (11), Let µ̂n(t0) be given by (4), then

[
1

2
µ′(t0)H

′(t0)σ
2
0

EG(ψ
2(u/σ))

[EG(ψ′(u/σ))]2

]−1/3

n1/3 (µ̂n(t0)− µ(t0)) ⇒ slogcm
(
W(v) + v2

)
, (14)

where W(v) is a two-sided standard Brownian motion.

Remark 1 Notice that in the case of the L2 isotonic estimator the function ρ(x) = x2, so ψ(x) = 2x and
ψ′(x) = 2 so that EG(ψ

′(u)) = 2 and σ2
ψ = σ2

2u = 4σ2. Then the standardizing constant is given by

1

2
µ′(t0)H

′(t0)
EG(ψ

2(u))

(EG(ψ′(u)))2
=

1

2
µ′(t0)H

′(t0)σ
2,

as it is known for the L2 isotonic estimator.

Remark 2 In the case of L1 isotonic regression notice that in the function ρ(x) = |x|, so ψ(x) =sign(x)
for x 6= 0 or else is left undefined. Our method is thus not applicable as the assumptions on ψ do not hold.
However, consider a sequence of functions ψm(x) for which

ψm(x) =





−1 x ≤ −1/m

mx −1/m+ 1/m2 < x < 1/m− 1/m2

1 x ≥ 1/m

, (15)

and so that there is continuity of the first 3 derivatives everywhere; for a construction of such type of functions
it is enough to consider quartic splines (e.g., De Boor, 2001). In this setup we get

lim
m→∞

EG(ψ
2
m(u)) = 1

lim
m→∞

EGψ
′
m(u) = lim

m→∞
m

[
G(1/m− 1/m2)−G(−1/m+ 1/m2)

]
= 2G′(0).

Letting m→ ∞ and n→ ∞ so that m/n→ ∞, we obtain

lim
n→∞

1

2
µ′(t0)H

′(t0)
EG(ψ

2
n(u))

(EG(ψ′
n(u)))

2
=

1

8

µ′(t0)

[G′(0)]2
H ′(t0),

as it is known in the case of L1 isotonic regression (see Wang and Huang, 2002).

Remark 3 A similar construction to Equation (15) may be applied to the functions ψHk in the Huber’s
family.
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4 Robust Isotonic M-Estimators with a Previous Scale Estimator

We will consider now the more realistic case where σ0 is not known and it is replaced by an estimator σ̂n
previously calculated. Then, in order to obtain an scale equivariant estimator we should replace σ0 in (5)
and (6) by a robust scale equivariant estimator σ̂n. In Remarks 4 and 5 below we give some possible choices
for σ̂n.

In the next Theorem it is shown that under suitable regularity conditions, it can be proved that if σ̂n
converges to σ0 fast enough, both isotonic M-estimators, the one using the fixed scale σ0 and the one using
the scale σ̂n, have the same asymptotic distribution. Making explicit the scale in the notation, denote the
isotonic M-estimator of µ(t) based on a fixed scale σ by µ̂n(t, σ). Then

µ̂n(t, σ) = min
u≤t

max
v≥t

µ̂n(u, v, σ) = max
u≤t

min
v≥t

µ̂n(u, v, σ),

where µ̂n(u, v, σ) solves

Sn(u, v, σ) :=
∑

j∈C(u,v)

ψ

(
xj − µ̂n(u, v, σ)

σ

)
= 0 (16)

over C(u, v) := {j : 1 ≤ j ≤ n;u ≤ tj ≤ v}.
We need the following Additional Assumptions:

A5 There exists k > 0 such that ψ′(u) > 0 for |u| < k and ψ′(u) = 0 if |u| > k.

A6 The estimator σ̂n satisfies n1/3(σ̂n − σ0) = oP (1).

Then we have the following Theorem:

Theorem 2 Assume A1-A6 Then

n1/3|µ̂n(t, σ0)− µ̂n(t, σ̂n)| = oP (1).

Assume also that (11) holds, then both estimators have the same asymptotic distribution.

Remark 4 In the context of nonparametric regression Ghement, Ruiz and Zamar (2008) propose to use as
scale estimator σ̂n given by

σ̂n =
1√
2
s(x2 − x1, ..., xn − xn−1),

where s is an M-estimator of scale, i.e., s(u1, ..., un) is defined as the value s satisfying

1

n

∑

i=1

χ
(ui
s

)
= b (17)

where χ(u) is a function which is even, non-decreasing for u ≥ 0, bounded and continuous. The right hand
side is generally taken so that if u is N(0,1), Eχ (u) = b. This condition makes the estimator converging
to the standard deviation when applied to a random sample of the N(0,1) distribution. A popular family of
functions χ to compute scale M-estimators is the bisquare family given by

χc(u) =

{
1−

(
1− (uc )

2
)3

if |u| ≤ c,
1 if |u| > c.

(18)
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Ghement et al. (2008) prove that if µ(t) is continuous under general conditions on χ Condition A6 is
satisfied with σ0 defined by

EGχc

(
u

σ0

)
= b. (19)

Remark 5 An alternative scale estimator, which does not require the continuity of µ, is provided by

σ̂n =
1

Φ−1(3/4)
median(|û1|, ..., |ûn|)

where û1, ..., ûn are the residuals corresponding to the L1isotonic estimator. We conjecture but we do not
have a proof that this estimator converges also with rate n−1/2 to σ0 =medianG(|u|)/Φ−1(3/4).

5 Influence Function

In order to obtain the influence function of the isotonic M-estimator at a given point t we need to assume
that the pair (x, t) is random. In this case the isotonic regression model assumes that x = µ(t) + u, where u
is independent of t and µ(t) is non-decreasing. We assume that the error term u has a symmetric density g,
and that the observation point t has a distribution with density h.

We start assuming that σ0 is known and suppose that we want to estimate µ(t0). Given an arbitrary
distribution Λ of (t, x), the isotonic M-estimating functional of µ(t0) which we henceforth denote by Tt0(Λ)
is defined in three steps as follows. First for r, s ≥ 0 let m(t0, r, s,Λ) be defined as the value m satisfying

∞∫

−∞

∫ t0+s

t0−r

ψ

(
(x−m)

σ0

)
dΛ = 0.

Let
m−(t0, r,Λ) = min

s≥0
m(t0, r, s,Λ),

and then Tt0(Λ) is defined by
Tt0(Λ) = max

r≥0
m−(t0, r,Λ).

Let Λn be the empirical distribution of {(xn,j , tn,j), 1 ≤ j ≤ n}, then if µ̂n(t) is the estimator defined in (4),
we have

µ̂n(t) = Tt(Λn).

It is immediate that if Λ0 is the joint distribution corresponding to model (1) we have Tt0(Λ0) = µ(t0),
so that the isotonic M-estimator is Fisher-consistent. Consider now the contaminated distribution

Λε,t∗,x∗ = (1− ε)Λ0 + εδ(t∗,x∗),

where δ(t∗,x∗) represents a point mass at (t∗, x∗). In this case we define the influence function of Tt0 by

IF∗(Tt0 , t
∗, x∗) = lim

ε→0

(Tt0(Λε,t∗x∗)− Tt0(Λ0))
2

ε
. (20)

Then, we have the following Theorem:
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Theorem 3 Consider the isotonic regression model given in (1) and let Tt0 be an isotonic M-estimating
functional, where t0 is an interior observation point. Then, under assumptions A1-A4 we have

IF∗(Tt0 , t
∗, x∗) =





2µ′(t0)σ0 |ψ((x− µ(t0))/σ0)|
h(t0)EG(ψ′(u/σ0))

if t∗ = t0,

0 if t∗ 6= t0.
(21)

Notice that in the numerator of (20) appears the square of the bias instead of the plain bias as in the
classical definition of Hampel (1974). Therefore for the isotonic M-estimator Tt0 the bias caused by a point
mass contamination (t0, x

∗) is of order ε1/2 instead of the usual order of ε.
Alternatively, it is also of interest to know what happens when we are estimating µ(t0) and contamination

takes place at a point t∗ 6= t0. According to (21), the influence function in this case is zero. This occurs
because in this case for ε sufficiently small Tt0(Λε,t∗x∗) = Tt0(Λ0).

It is easy to show that when we use a scale σ̂n → σ0 defined by a continuous functional, the influence
function of the isotonic M-estimator is still given by (21).

6 Breakdown Point

Roughly speaking the breakdown point of an estimating functional Tt0 of µ(t0) is the smallest fraction of
outliers which suffices to drive |Tt0 | to infinity. More precisely, consider the contamination neighborhood
VΛ0,ε of the distribution Λ0 of size ε defined as

VΛ0,ε = {Λ : Λ = (1− ε)Λ0 + εΛ∗},
where Λ∗ is an arbitrary distribution of (x, t) such that t takes values in [0, 1] and x in R. The asymptotic
breakdown point of Tt0 at Λ0 is defined by

ε∗(Tt0 ,Λ0) = inf

{
ε : sup

Λ∈VΛ0ε

|Tt0(Λ)| = ∞
}
.

We start considering the case that σ0 is known. Then we have the following theorem.

Theorem 4 Consider the isotonic regression model given in (1) and let Tt0 be an isotonic M-estimating
functional where t0 is an interior observation point. Then under assumptions A1-A4 we have

ε∗(Tt0 ,Λ0) ≥ min

{
H(t0)

1 +H(t0)
,
1−H(t0)

2−H(t0)

}
.

In the special case when H is uniform, this becomes

ε∗(Tt0 ,Λ0) ≥ min

{
t0

1 + t0
,
1− t0
2− t0

}
(22)

which takes a maximum value of 1/3 at t0 = 1/2.

In the case that σ0 is replaced by an estimator σ̂n derived from a continuous functional S, it can be
proved that the breakdown point of Tt0 satisfies

ε∗(Tt0 ,Λ0) ≥ min

{
H(t0)

1 +H(t0)
,
1−H(t0)

2−H(t0)
, ε∗(Λ0)

}
.

Ghement et al. (2008) showed that if σ̂n is defined as in Remark 4, where s is defined by (17)-(19) with
c = 0.7094 and b = 3/4,then ε∗(Λ0) = 0.5 . Moreover in this case σ0 coincides with the standard deviation
when the error has a normal distribution.

8



Figure 1: Infant Mortality Data. The solid line corresponds to the classical isotonic regression and the
dashed line to the isotonic M-estimate

7 Examples

Example 1 In this section we consider data on Infant Mortality across Countries. The dependent variable,
the number of infant deaths per each thousand births is assumed decreasing in the country’s per capita income.
These data are part of the R package “faraway” and was used in Faraway (2004). The manual of this package
only mentions that the data are not recent but it does not give information on the year and source. In Figure
1 we compare the L2 isotonic regression estimator with the isotonic M-estimator computed with the Huber’s
function with k = 0.98 and σ̂n as in Remark 2, where s is defined by (17)-(19) with c = 0.7094 and b = 3/4.
There are four countries with mortality above 250: Saudi Arabia (650), Afghanistan (400), Libya (300) and
Zambia (259). These countries, specially Saudi Arabia and Libya due to their higher relative income per
capita, exert a large impact on the L2 estimator. The robust choice, on the other hand, appears to resistant
to these outliers and provides a good fit.

Example 2 We reconsider the Global Warming dataset first analyzed in the context of isotonic regres-
sion by Wu, Woodroofe and Mentz (2001) from a classical perspective and subsequently analyzed from
a Bayesian perspective in Alvarez and Dey (2009). The original data is provided by Jones et al. (see
http//cdiac.esd.ornl.gov/trends/temp/jonescru/jones.html) containing annual temperature anomalies from
1858 to 2009, expressed in degrees Celsius and are relative to the 1961-1990 mean. Even though the global
warming data, being a time series, might be affected by serial correlation, e.g. Fomby and Vogelsang (2002),

9



Figure 2: World Annual Weather Anomalies

we opted for simplicity as an illustration to ignore that aspect of the data and model it as a sequence of i.i.d.
observations.

In Figure 2 we plot the L2 isotonic estimator, which for these data is identical to the isotonic M-estimate
with k=0.98. Visual inspection of the plot shows a moderate outlier corresponding to the year 1878 (shown as
a solid circle). That apparent outlier, however, has no effect on the estimator due to the isotonic character
of the regression.The fact that the L2 and the isotonic M-estimates coincide for these data seems to indicate
that the phenomenon of Global Warming is not due to isolated outlying anomalies, but it is due instead to
a steady increasing trend phenomenon. In our view, that validates from the point of view of robustness, the
conclusions of other authors on the same data (e.g. Wu, Woodroofe and Mentz (2001), and Álvarez and Dey
(2009)) who have rejected the hypothesis of constancy in series of the worlds annual temperatures in favor
of an increasing trend.
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8 Monte Carlo results

Interestingly the limiting distribution of the Isotonic M -estimator is based on the ratio

EG(ψ
′(u/σ0))

2

EG(ψ2(u/σ0))

as in the the i.i.d. location problem (e.g. Maronna, Martin and Yohai, 2006). The slower convergence rate,
however, entails that the respective asymptotic relative efficiencies are those of the location situation taken
to the power 2/3. Specifically, note that from Theorem 1 for any isotonic M-estimator

avar
{
n1/3 [µ̂n(t0)− µ(t0)]

}
(23)

=

[
1

2
µ′(t0)H

′(t0)
EG[ψ(u)

2]

[EGψ′(u)]2

]2/3
var[slogcm

(
W(v) + v2

)
], (24)

where avar stands for asymptotic variance and var for variance.
In order to determine the finite sample behavior of the isotonic M-estimators we have performed a Monte

Carlo study. We took i.i.d. samples from the model (1) with trend term µ(t) = 10 + 5t2 and where the
distribution G is N(0,1) and Student with three degrees of freedom. The values {ti = i/(n+ 1), 1 ≤ i ≤ n}
corresponds to a uniform limiting distribution H(t) = t for 0 < t < 1.

We estimated µ(t0) at t0 = 1/2, the true value of which is µ(t0) = 11.25 using three isotonic estimators:
the L2 isotonic estimator, the L1 isotonic estimator and the same isotonic M-estimator that was used in the
examples. We performed N = 500 replicates at two sample sizes, n = 100 and 500. Dykstra and Carolan
(1998) have established that the variance of the random variable “slogcm

(
W(v) + v2

)
” is approximately

1.04. Using this value, we present in Table 1 sample mean square errors (MSE) times n2/3 as well as the
corresponding asymptotic variances.

Estimator n = 100 n=500 avar
Normal Student3 Normal Student3 Normal Student3

L2 1.93 3.78 1.85 3.65 1.92 3.98
L1 2.38 2.89 2.67 2.76 2.59 2.89
M 2.04 2.86 2.11 2.51 2.06 2.53

Table 1. Sample MSE and avar for Isotonic Regression Estimators.

We note that for both distributions, the empirical MSEs for n = 500 are close to the avar values.
We also see that under both distributions the M-estimator is more efficient that the L1 one, that the M-
estimator is more efficient than the L1 one for both distributions and that the L1 estimator is slightly less
efficient than the L2 estimator for the normal case but much more efficient for the Student distribution. In
summary, the isotonic M-estimate seems to have a good behavior under both distributions.

9 Appendix

9.1 Proof of Lemma 1

Without loss of generality we can assume that σ0 = 1. Given c > 0, for sufficiently large n there exist
positive numbers βl(n) and βu(n) for which

H(t0)−H(t0 − βl(n)) = H(t0 + βu(n))−H(t0) = cn−1/3.
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As in Wright (1981), we first argue that

P[µ̂n(t0) 6= µ̂∗
n(t0)] ≤ P(Ω1n) + P(Ω2n),

where

Ω1n =

{
min
v≥t0

µ̂n(t0 − βl(n), v] < max
u≤t0−αl(n)

µ̂n[u, t0 − βl(n)]

}
, (25)

Ω2n =

{
max
u≤t0

µ̂n[u, t0 + βu(n)) > min
v≥t0+αu(n)

µ̂n[t0 + βu(n), v]

}
. (26)

To see this, note that the complement of Ω2n is the set in which, for all u ≤ t0 and all v ≥ t0 + βu(n) we
have that {µ̂n[u, t0 + βu(n)) ≤ µ̂n[t0 + βu(n), v]}. Since ψ is non-decreasing we can write

µ̂n[u, t0 + βu(n)) ≤ µ̂n[u, v].

This in turn entails that in Ωc2n

µ∗
n(t0) = max

u≤t0
min

t0≤v<t0+αu(n)
µ̂n[u, v].

Using the fact that the maximum and the minimum may be reversed in computing these estimators (e.g.
Robertson and Waltman, 1968) and a similar argument for Ω1n in equation (25) one can show that

P{Ωc1n ∩Ωc2n} ≤ P{µ∗
n(t0) = µ̂n(t0)}.

So we need to prove that
lim
c→∞

lim sup
n→∞

P(Ω1n) = lim
c→∞

lim sup
n→∞

P(Ω2n) = 0.

We will prove limc→∞ lim supn→∞ P(Ω1n) = 0. The result for Ω2n can be obtained in a similar manner.
Let

Λ1n =

{
min
v≥t0

µ̂n(t0 − βl(n), v] < µ(t0 − βl(n))

}
, (27)

Λ2n =

{
max

u≤t0−αl(n)
µ̂n[u, t0 − βl(n)] > µ(t0 − βl(n))

}
. (28)

Since
P(Ω1n) ≤ P(Λ1n) + P(Λ2n),

it will be enough to prove that
lim
c→∞

lim sup
n→∞

P(Λin) = 0, i = 1, 2. (29)

Since the proofs of (29) for i = 1 and 2 are similar, (29) will be only proved for i = 1. By the fundamental
identity (9) we have

Λ1n =

{
min
v≥t0

Sn (t0 − βl(n), v, µ(t0 − βl(n))) < 0

}
. (30)

12



In the sequel in order to simplify notation we will omit the subindex n writing xn,j = xj , tn,j = tj and
un,j = uj making it explicit only when there is a risk of confusion. We can write

Sn (t0 − βl(n), v, µ(t0 − βl(n))) =
∑

j∈C(t0−βl(n),v)

ψ (xj − µ(t0 − βl(n))

=
∑

j∈C(t0−βl(n),v)

ψ (xj − µ(tj) + µ(tj)− µ(t0 − βl(n))

=
∑

j∈C(t0−βl(n),v)

ψ (uj + (µ(tj)− µ(t0 − βl(n))) ,

and by a Taylor expansion we get

Sn (t0 − βl(n), v, µ(t0 − βl(n))) =
∑

j∈C(t0−βl(n),v)

[
ψ(uj) + ψ′(uj + a∗j )(µ(tj)− µ(t0 − βl(n))

]
,

where 0 ≤ a⋆j ≤ µ(tj)− µ(t0 − βl(n). Put τ = supψ′, then

Sn (t0 − βl(n), v, µ(t0 − βl(n))) ≤
∑

j∈C(t0−βl(n),v)

ψ(uj) + τ
∑

j∈C(t0−βl(n),v)

(µ(tj)− µ(t0 − βl(n)).

Thus, since µ(t) is increasing we get

min
v≥t0

Sn (t0 − βl(n), v, µ(t0 − βl(n))) ≤ min
v≥t0

∑

j∈C(t0−βl(n),v)

ψ(uj)+τ
∑

j∈C(t0−βl(n),t0)

(µ(tj)−µ(t0−βl(n)). (31)

Put nl(v) := #{j : t0 − βl(n) ≤ tnj ≤ v}. As nl(v) ≥ nl(t0), we obtain

min
v≥t0

1

nl(v)
Sn (t0 − βl(n), v, µ(t0 − βl(n))) (32)

≤ min
v≥t0

1

nl(v)

∑

j∈C(t0−βl(n),v)

ψ(uj) +
τ

nl(t0)

∑

j∈C(t0−βl(n),t0)

(µ(tj)− µ(t0 − βl(n)). (33)

Therefore the event Λ1n defined in (30) is included in the event ∆n defined by

∆n =



max
v≥t0

1

nl(v)

∑

j∈C(t0−βl(n),v)

−ψ(uj) >
τ

nl(t0)

∑

j∈C(t0−βl(n),t0)

(µ(tj)− µ(t0 − βl(n))



 .

The equation above can be rewritten in terms of integrals with respect to the empirical distribution of the
t’s as

max
v≥t0

1

nl(v)

∑

j∈C(t0−βl(n),v)

−ψ(uj) > τ

∫ t0

t0−βl(n)

|µ(s) − µ(t0 − βl(n))|dHn(s). (34)

Since ui, . . . , un are i.i.d., relabelling the uj ’s on the left hand side we get that

P(Λ1n) ≤ P(∆∗
n), (35)
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where

∆∗
n =



 max
nl(t0)≤k≤n

1

k

∑

nl(t0)≤j≤k

−ψ(uj) > 2τ

∫ t0

t0−βl(n)

|µ(s)− µ(t0 − βl(n))|dHn(s)



 . (36)

Adding and subtracting dH(s) we can write

∫ t0

t0−βl(n)

[µ(s)− µ(t0 − βl(n))]dHn(s) =

∫ t0

t0−βl(n)

[µ(s)− µ(t0 − βl(n))]dH(s)

+

∫ t0

t0−βl(n)

[µ(s)− µ(t0 − βl(n))]d(Hn(s)−H(s)). (37)

Using (11), for n large enough, the second term in the above equation is bounded by

∣∣∣∣∣

∫ t0

t0−βl(n)

[µ(s)− µ(t0 − βl(n))]dHn(s)−H(s))

∣∣∣∣∣ ≤ 2 (µ(t0)− µ(t0 − βl(n)) sup
t

|Hn(t)−H(t)|

≤ 2µ′(t0)βl(n)n
−1/3o(1),

and since by the inverse function theorem βl(n) = c[H ′(t0)]
−1n−1/3[1 + o(1)], we obtain that for some

constant A which does not depend on c we can write
∣∣∣∣∣

∫ t0

t0−βl(n)

[µ(s)− µ(t0 − βl(n))]d(Hn(s)−H(s))

∣∣∣∣∣ ≤ Acn−2/3o(1). (38)

Consider now the first term in the right hand side of Equation (37). Using (11) we have

∫

(t0−βl(n),t0]

[µ(s)− µ(t0 − βl(n))]dH(s)

=

∫ t0

t0−βl(n)

[µ(t0)− µ(t0 − βl(n))]dH(s)−
∫ t0

t0−βl(n)

[µ(t0)− µ(s)]dH(s)

= [µ(t0)− µ(t0 − βl(n))][H(t0)−H(t0 − βl(n))]−
∫ t0

t0−βl(n)

[µ(t0)− µ(s)]dH(s)

≤
(
µ(t0)− µ(t0 − βl(n))

βl(n)

)(
H(t0)−H(t0 − βl(n))

βl(n)
]

)
βl(n)

2

= µ′(t0)[1 + o(1)]H ′(t0)[1 + o(1)]βl(n)
2

= µ′(t0)[H
′(t0)]

−1c2n−2/3[1 + o(1)].

Therefore
∫ t0

t0−βl(n)

[µ(s)− µ(t0 − βl(n))]dHn(s)

≤ µ′(t0)c
2[H ′(t0)]

−1n−2/3(1 + o(1)) + 2µ′(t0)c[H
′(t0)]

−1n−2/3o(1)

≤ µ′(t0)c
⋆[H ′(t0)]

−1n−1/3
{
n−1/3[1 + o(1)] + 2n−1/3o(1)

}
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with c⋆ = max(c, c2). Then, for some constant B which does not depend on c we can write
∫ t0

t0−βl(n)

[µ(s)− µ(t0 − βl(n))]dHn(s) ≤ Bc⋆n−1/3. (39)

From (30), (34), (35), (36), (37), (38) and (39) we derive that there exists a constant D independent of c
such that for n large enough and c > 1

P(Λ1n) ≤ P



 max
nl(t0)≤k≤n

1

k

∑

1≤j≤k

−ψ(uj) > Dc2n−1/3



 . (40)

At this point, we use the Hàjek-Renyi Maximal Inequality (e.g., Shorack, 2000) which asserts that for a
sequence y1, . . . , yn of independent random variables with mean 0 and finite variances and for a positive
non-decreasing real sequence {bk, k ∈ N},

P

{
max
m≤k≤n

∣∣∣∣∣

∑k
j=1 yj

bk

∣∣∣∣∣ ≥ λ

}
≤ 1

λ2

{
m∑

k=1

E(y2k)

b2m
+

n∑

k=m+1

E(y2k)

b2k

}
. (41)

Using this inequality from (40) we get that

P(Λ1n) ≤ P



 max
nl(t0)≤k≤n

∑

1≤j≤k

−ψ(uj)
k

> Dc2n−1/3



 ≤

EG(ψ
2(u))

(
1

n2

l (t0)
+
∑n

k=nl(t0)
1
k2

)

D2c4n−2/3
. (42)

Approximating the Riemann sum we obtain

n∑

k=nl(t0)

k−2 ≤ 1

nl(t0)
(43)

and since by (11) nl(t0) = cn2/3(1 + o(1)), for n large enough we have

nl(t0)
−1 ≤ 2c−1n−2/3. (44)

From (42), (43) and (44) we derive that for n large enough

P(Λ1n) ≤
2EG(ψ

2(u))

D2c4n−2/3nl(t0)

≤ 4EG(ψ
2(u))

D2c5
.

Then the Lemma follows immediately.

9.2 Proof of Theorem 1

Without loss of generality we can assume that σ0 = 1.Since αl(n) = αu(n) = 2c[H ′(t0)]
−1n−1/3[1 + o(1)],

and c is arbitrary, we will consider the localized estimator

µ̂cn(t0) = max
t0−cn−1/3<u≤t0

min
t0≤v<t0+cn−1/3

µ̂n(u, v)

= max
u≤t0

min
v≥t0

µ̂cn(u, v), (45)
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where µ̂cn(u, v) is defined as the root of

Scn(u, v, µ) =
∑

j∈D(u,v)

ψ(xj − µ) (46)

over D(u, v) = {j : 1 ≤ j ≤ n; t0 − cn−1/3 < u ≤ tj ≤ v < t0 + cn−1/3}. Note that the localized estimator
depends on the tj ’s that lie on a neighborhood about t0 which shrinks at a rate n−1/3. To proceed with the
development of the asymptotic distribution let now wj = n1/3(tj − t0), r = n1/3(u− t0) and s = n1/3(v− t0).
With this notation, µ̂cn(u, v) is a root of the partial sums in the parametrization

Ṡcn(r, s, µ) =
∑

j∈B(r,s)

ψ(xj − µ) = 0, (47)

where B(r, s) = {j : 1 ≤ j ≤ n; r ≤ wj ≤ s; r, s ∈ [−c, c]}. So that the relabelling implies µ̂cn(u, v) ≡ µ̇cn(r, s).
Consequently,

µ̂cn(t0) = max
r≤0

min
v≥0

µ̇cn(r, s).

Now a Taylor expansion of µ(tj) around t0 for any j ∈ B(r, s) gives

µ(tj) = µ(t0) + µ′(t0)(tj − t0) + o(|tj − t0|)
= µ(t0) + µ′(t0)n

−1/3wi + oj(n
−1/3)

which entails that
xj = µ(t0) + µ′(t0)n

−1/3wj + uj + oj(n
−1/3).

Using the equivariance of M-estimators, the monotonicity of ψ and the fact that ψ
′′

is bounded, it can be
proved that

µ̇cn(r, s) = µ(t0) + µ̃cn(r, s) + ors(n
−1/3),

where µ̃cn(r, s) solves

S̃cn(r, s, µ) =
∑

j∈B(r,s)

ψ(n−1/3µ′(t0)wj + uj − µ) = 0 (48)

and ∣∣∣ors(n−1/3)
∣∣∣ ≤ K1c

2n−2/3.

Thus, using that the wj are bounded over −c ≤ r ≤ wi ≤ s ≤ c we have

µ̂cn(t0) = µ(t0) + max
−c≤r≤0

min
0≤v≤c

µ̃cn(r, s) + o(n−1/3).

This entails that
n1/3[µ̂cn(t0)− µ(t0)] = max

r≤0
min
v≥0

n1/3µ̃cn(r, s) + o∗rs(1),

where ∣∣∣o∗rs(n−1/3)
∣∣∣ ≤ K2c

2.

Then, we only need to obtain the asymptotic distribution of

∆n,c = n1/3 max
r≤0

min
s≥0

µ̃cn(r, s).
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Let µ̃c∗n (r, s) be the solution of ∑

j∈B(r,s)

ψ(uj − µ) = 0.

Since |n−1/3µ′(t0)wj | ≤ n−1/3µ′(t0)c we have that

µ̃cn(r, s) = µ̃c∗n (r, s) + dnrs, (49)

where
|dnrs| ≤ K3cn

−1/3. (50)

We will approximate now nrs as follows

nrs
n

=
1

n
#{1 ≤ j ≤ n : r ≤ 0 ≤ wj ≤ s}

=
1

n
#{1 ≤ j ≤ n : t0 − rn−1/3 ≤ t0 ≤ tj ≤ t0 + sn−1/3}

= Hn(t0 + sn−1/3)−Hn(t0 − rn−1/3)

= [Hn(t0 + sn−1/3)−H(t0 + sn−1/3)]

+ [H(t0 + sn−1/3)−H(t0 − rn−1/3)]− [Hn(t0)−H(t0)]

= H ′(t0)(s− r)n−1/3 + o(n−1/3)

= n−1/3H ′(t0)(s− r)[1 + o(1)], (51)

and therefore
nrs = n2/3H ′(t0)(s− r)[1 + o(1)], (52)

n1/2
rs = n1/3H ′(t0)

1/2(s− r)1/2(1 + o(1)) (53)

and
n1/2

nrs
=

1

n
1/3
rs H ′(t0)1/2(s− r)1/2(1 + o(1))

. (54)

Then, taking nrs → ∞ and applying the law of large numbers is easy to show that µ̃c∗n (r, s) → µ0 a.s. and
therefore by (49) and (50) µ̃c∗n (r, s) →p µ0 too. Since µ̃cn(r, s) satisfies (48), by a Taylor expansion of S̃cn(r, s)
we get

∑

B(r,s)

ψ(uj)−
∑

B(r,s)

ψ′(uj)(µ̃
c
n(r, s)− n−1/3µ′(t0)wj)

+
∑

B(r,s)

ψ′′(ε∗j )(µ̃
c
n(r, s)− n−1/3µ′(t0)wj)

2

= 0.

From here we obtain

µ̃cn(r, s)

=

∑
j∈B(r,s) ψ(uj) + µ′(t0)n

−1/3
∑
j∈B(r,s) wjψ

′(uj) + n−2/3µ′(t0)
2
∑
j∈B(r,s) w

2
jψ

′′(ε∗j )∑
j∈B(r,s) ψ

′(uj)− µ̃cn(r, s)
∑

j∈B(r,s) ψ
′′(ε∗j )

2 − 2n−1/3µ′(t0)
∑

j∈B(r,s) wjψ
′′(ε∗j )
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and then

n1/3µ̃cn(r, s)

=

n1/3

n2/3

∑
j∈B(r,s) ψ(uj) + µ′(t0)

1
n2/3

∑
j∈B(r,s) wjψ

′(uj) + n−1/3µ′(t0)
2 1
n2/3

∑
j∈B(r,s) w

2
jψ

′′(ε∗j )
1

n2/3

∑
j∈B(r,s) ψ

′(uj)− µ̃cn(r, s)
1

n2/3

∑
j∈B(r,s) ψ

′′(ε∗j )
2 − 2n−1/3µ′(t0)

1
n2/3

∑
j∈B(r,s) wjψ

′′(ε∗j )
. (55)

By (48), the Law of the Large Numbers, |wj | ≤ c and ψ′′ bounded we have

n−1/3µ′(t0)
2 1

n2/3

∑

j∈B(r,s)

w2
jψ

′′(ε∗j ) → 0,

2n−1/3µ′(t0)
1

n2/3

∑

j∈B(r,s)

wjψ
′′(ε∗j ) → 0,

µ̃cn(r, s)
1

n2/3

∑

j∈B(r,s)

ψ′′(ε∗j )
2 → 0

and
1

n2/3

∑

j∈B(r,s)

ψ′(uj) → (s− r)H ′(t0)EG(ψ
′(u)) a.s..

Then, (55) entails

(s− r)EG(ψ
′(u))H ′(t0) n

1/3µ̃cn(r, s) =
1

n1/3

∑

j∈B(r,s)

ψ(uj) + µ′(t0)
1

n2/3

∑

j∈B(r,s)

wjψ
′(uj) + ors(1). (56)

Let

Bn(s) =





µ′(t0)

n1/3EG(ψ2(u))1/2H ′(t0)1/2
∑

j∈B(0,s)

ψ(uj) if s > 0

µ′(t0)

n1/3EG(ψ2(u))1/2H ′(t0)1/2
∑

j∈B(s,0)

−ψ(uj) if s < 0,
. (57)

By (53) and the Central Limit Theorem we have that for any set of finite numbers s1, s2, ..., sr,−c ≤ si ≤ c,
the random vector (Bn,s1 , ..., Bn,sr) converges in distribution to N(0, Σ) where Σ = (σij) with

σij =





si ∧ sj if si ≥ 0, sj ≥ 0

−si ∧ −sj if si ≤ 0, sj ≤ 0

0 if si ≥ 0, sj ≤ 0

.

Moreover, using standard arguments, it can be proved that Bn(s) is tight. Then, we have

Bn(s)
D⇒ B(s), (58)

where B is a two sided Brownian motion
As for the second term in the right hand side of (56) define

Λn(s) =





1

n2/3

∑
0≤wj≤s

ψ′(uj)wj if s > 0

1

n2/3

∑
s≤wj≤0

−ψ′(uj)wj if s < 0
. (59)
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For s > 0 we can write

Λn(s) =
1

n

n∑

j=1

n2/3ψ′(uj)(tj − t0)1(t0 ≤ tj ≤ t0 + sn−1/3) (60)

and then

E(Λn(s)) = EG(ψ
′(uj))

∫ t0+sn
−1/3

t0

n2/3(t− t0)dHn (61)

Integrating by parts we get

∫ t0+sn
−1/3

t0

n2/3(t− t0)dHn = n1/3s2Hn(t0 + sn−1/3)−
∫ t0+sn

−1/3

t0

n2/3Hn(t)dt (62)

and by (11) we have
n1/3s2Hn(t0 + sn−1/3) = n1/3s2H(t0 + sn−1/3) + o(1). (63)

We can write

∫ t0+sn
−1/3

t0

n2/3Hn(t)dt =

∫ t0+sn
−1/3

t0

n2/3H(t)dt+

∫ t0+sn
−1/3

t0

n2/3(Hn(t)−H(t))dt,

and by(11) we get
∣∣∣∣∣

∫ t0+sn
−1/3

t0

n2/3(Hn(t)−H(t))dt

∣∣∣∣∣ ≤ sn−1/3n1/3 sup
t
n1/3 |Hn(t)−H(t)| = o(1). (64)

Therefore by (62), (63) and (64) we get

∫ t0+sn
−1/3

t0

n2/3(t− t0)dHn = n1/3s2Hn(t0 + sn−1/3)−
∫ t0+sn

−1/3

t0

n2/3Hn(t)dt + o(1)

=

∫ t0+sn
−1/3

t0

n2/3(t− t0)dH + o(1)

=

∫ t0+sn
−1/3

t0

n2/3(t− t0)H
′(t)dt+ o(1)

= H ′(t0)

∫ t0+sn
−1/3

t0

n2/3(t− t0)dt+ o(1)

= H ′(t0)
s2

2
+ o(1),

and for (61) we get that for s > 0

E(Λn(s)) = EG(ψ
′(uj))H

′(t0)
s2

2
+ o(1). (65)

Now we compute the variance of Λn(s). From (60) we have

Λn(s) =
1

n

n∑

j=1

n2/3ψ′(uj)(tj − t0)1
(
t0 ≤ tj ≤ t0 + sn−1/3

)
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var(Λn(s)) =
var(ψ′(u))

n

n∑

j=1

n1/3(tj − t0)
21(t0 ≤ tj ≤ t0 + sn−1/3)

= n1/3var(ψ′(u))

∫ t0+sn
−1/3

t0

(tj − t0)
2dHn

≤ var(ψ′(u))n1/3s2n−2/3sn−1/3

= var(ψ′(u))s3n−2/3

= o(1)

Then by (65) we obtain

Λn(s) →p EG(ψ
′(uj))µ

′(t0)H
′(t0)

s2

2
for s > 0. (66)

Similarly we can prove that

Λn(s) →p EG(ψ
′(uj))µ

′(t0)H
′(t0)

s2

2
for s < 0. (67)

Therefore from (56), (57), (58), (59), (66) and (67) we get that

(s− r)
EG(ψ

′(u))

EG(ψ2(u))1/2
H ′(t0)

1/2 n1/3µ̃cn(r, s)
D⇒ (B(s)−B(r)) +

EG(ψ
′(uj))

EG(ψ2(u))1/2
µ′(t0)H

′(t0)
1/2 s

2 − r2

2
.

Now the rest of the proof is as in Wright (1981).

9.3 Proof of Theorem 2

We require the following Lemma

Lemma 2 Assume A1-A5 Then,

∣∣∣∣
∂

∂σ
µ̂n(u, v, σ)

∣∣∣∣ ≤ k, for all u ≤ v. (68)

Proof

Taking the first derivative of Equation (16) with respect to σ yields

∑

j∈C(u,v)

ψ′

(
xj − µ̂n(u, v, σ)

σ

){
− 1

σ2
(xj − µ̂(u, v, σ))− 1

σ

∂µ̂n(u, v, σ)

∂σ

}
= 0,

and then

∂

∂σ
µ̂n(u, v, σ) = −

∑
j∈C(u,v) ψ

′

(
xj − µ̂n(u, v, σ)

σ

)
xj − µ̂n(u, v, σ)

σ

∑
j∈C(u,v) ψ

′

(
xj − µ̂n(u, v, σ)

σ

) .
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Let D(u, v) = C(u, v) ∩ {j : |xj − µ̂n(u, v, σ)|/σ ≤ k}. Then by A5 we obtain

∣∣∣∣
∂

∂σ
µ̂n(u, v, σ)

∣∣∣∣ ≤

∑
D ψ

′

(
xj − µ̂n(u, v, σ)

σ

) ∣∣∣∣
xj − µ̂n(u, v, σ)

σ

∣∣∣∣
∑
D ψ

′

(
xj − µ̂n(u, v, σ)

σ

)

≤ k.

Therefore ∣∣∣∣
∂

∂σ
µ̂n(u, v, σ)

∣∣∣∣ ≤ k.

Proof of Theorem 2

By the mean value theorem

µ̂n(u, v, σ̂n) = µ̂n(u, v, σ0) +
∂

∂σ
µ̂n(u, v, σ

∗
n)(σ̂n − σ),

where σ∗
n is some intermediate point between σ and σ̂n. Hence, by Lemma 2 we have

max
u≤t

min
v≥t

µ̂n(u, v, σ̂n)− k|σ̂n − σ0| ≤ max
u≤t

min
v≥t

µ̂n(u, v, σ)

≤ max
u≤t

min
v≥t

µ̂n(u, v, σ̂n) + k|σ̂n − σ0|

and A6 implies
n1/3|µ̂n(t, σ̂n)− µ̂n(t, σ0)| ≤ kn1/3|σ̂n − σ0| = oP (1).

9.4 Proof of Theorem 3

Without loss of generality we can assume that σ0 = 1. We consider first the case t∗ = t0. Assume that
x∗ < µ(t0). Then δ(t0,x∗) represents a contamination model where an outlier is placed at the observation
point t0 with value x∗ which is below the trend µ(t0) at the point. Let k = k(ε) be the value such that

Tt0(Λε,t0,x∗) = m−(t0, t0 − k,Λ0) = m(t0, t0 − k, t0,Λ0).

It is immediate that
µ(t0 − k) = Tt0(Λε) = m(t0, t0 − k, t0,Λ0). (69)

Then m(t0 − k, t0,Λ0) should be the value of m satisfying

εψ(x0 −m) + (1− ε)

∫ t0

t0−k(ε)

∫ ∞

−∞

ψ(µ(t) + u−m)h(t)g(u) dt du = 0, (70)

and, since by (69) m = µ(t0 − k), we have

εψ(x0 − µ(t0 − k(ε))) + (1− ε)

∫ t0

t0−k(ε)

∫ ∞

−∞

ψ(µ(t) + u− µ(t0 − k(ε))h(t)g(u)dtdu = 0. (71)
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Applying the Mean Value Theorem to the first term of (71) we can find 0 ≤ ε∗ < ε such that

ψ(x∗ − µ(t0 − k(ε)))

= ψ(x∗ − µ(t0))− ψ′(x∗ − µ(t0)− k(ε∗)µ′(t0 − k(ε∗))k(ε). (72)

As for the second term in (71) we also have that

∫ t0

t0−k(ε)

∞∫

−∞

ψ(µ(t) + u− µ(t0 − k(ε))h(t)g(u)dtdu

=

∫ x∗

t0−k(ε)

∞∫

−∞

ψ(u)h(t)g(u)dtdu

+

∫ t0

t0−k(ε)

∞∫

−∞

(µ(t) − µ(t0 − k(ε))g(u)h(t)ψ′(u + γ)dudt,

where 0 ≤ γ ≤ µ(t0)− µ(t0 − k(ε)). Since ψ is odd and g even,
∫∞

−∞
ψ(u)g(u)du = 0, so that the first term

above vanishes. As for the second term, notice that

∫ t0

t0−k(ε)

∞∫

−∞

(µ(t) − µ(t0 − k(ε))g(u)h(t)ψ′(u)dudt

=

[∫ t0

t0−k(ε)

(µ(t)− µ(t0 − k(ε))h(t)dt

]


∞∫

−∞

ψ′(u+ γ)g(u)du


 . (73)

The first integral factor in the right hand side of the above display can be further approximated. By the
Mean Value Theorem, there exists ξ(t) such that t0 − k(ε) ≤ ξ(t) ≤ t0 and

∫ t0

t0−k(ε)

(µ(t)− µ(t0 − k(ε))h(t)dt =

∫ t0

t0−k(ε)

µ′(ξ(t))(t − t0 + k(ε))h(t)dt

≈
∫ t0

t0−k(ε)

µ′(t0)(t− t0 + k(ε))h(t)dt

=
µ′(t0)h(t0)

2

[
(t− t0 + k(ε))2

]t0
t0−k(ε)

=
1

2
µ′(t0)h(t0)k

2(ε). (74)

From expressions (72)-(74) we obtain that Equation (71), can be written as

ε [ψ(x∗ − µ(t0))− ψ′(x∗ − µ(t0)− k(ε∗)µ′(t0 − k(ε∗))k(ε)]+(1−ε)1
2
µ′(t0)h(t0)k

2(ε)

∞∫

−∞

ψ′(u)g(u+γ)du = 0.
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Dividing both sides of this equation by ε and using that k(ε) → 0 and γ → 0 when ε→ 0 we obtain

lim
ε→0

k2(ε)

ε
= − 2ψ(x∗ − µ(t0))

h(t0)µ′(t0)
∞∫

−∞

ψ′(u)g(u)du

. (75)

Finally, according to (69) and using the Mean Value Theorem, we can write

lim
ε→0

(Tt0(Λε,t0,x∗)− Tt0(Λ0))
2

ε
= lim

ε→0

(µ(t0 − k(ε))− µ(t0))
2

ε

= lim
ε→0

µ′2(t∗(ε))k2(ε)

ε
,

where t∗(ε) → t0. Then using equation (75) we obtain that

IF∗(Tt0 , t0, x
∗) = lim

ε→0

(Tt0(Λε,t0,x∗)− Tt0(Λ0))
2

ε

= −2µ′(t0)ψ(x0 − µ(t0))

h(t0)EG(ψ′(u))

=
2µ′(t0) |ψ(x0 − µ(t0))|

h(t0)EG(ψ′(u))
.

The proof in the case the that x∗ < µ(t0) is similar
We consider now the case t∗ > t0. To prove this part of the theorem is enough to show that there exists

ε∗ > 0, so that ε ≤ ε∗ implies
Tt0(Λε,t∗,x∗) = Tt0(Λ0) = µ(t0),

and to prove this is enough to show that

min
s≥0

m(t0, r, s,Λε,t∗,x∗) = m(t0, r, 0,Λε,t∗,x∗) = m(t0, r, 0,Λ0). (76)

When x∗ ≥ µ(t0), this is immediate. Consider the case that x∗ < µ(t0)
Clearly for 0 ≤ s < t∗

m(t0, r, s,Λε,t∗,x∗) = m(t0, r, s,Λ0) (77)

> m(t0, r, 0,Λ0).

It is also easy to show that s > t∗ implies

m(t0, r, s,Λε,t,x∗) ≥ m(t0, r, t
∗,Λε,t∗,x∗) (78)

and for r < 0 and for all s
m(t0, r, s,Λε,t,x∗) < m(t0, 0, s,Λε,t,x∗). (79)

Then, using (77)-(79) and the fact that m(t0, 0, 0,Λ0) = m(t0, 0, 0, ,Λε,t∗,x∗), in order to prove (76), it is
enough to show that

m(t0, 0, t
∗,Λε,t∗,x∗) > m(t0, 0, 0,Λ0). (80)

Recall that m(t0, 0, s,Λε,t∗,x∗) is the solution of

εψ (x∗ −m) 1(t0 ≤ t∗ ≤ t0 + s) + (1− ε)V (s,m) = 0,
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where

V (s,m) =

∫ ∞

−∞

∫ t0+s

t0

ψ (µ(t) + u−m) dΛ0(t, u).

Clearly V (t∗,m(t0, 0, t
∗,Λ0)) = 0 and since m(r, t,Λ0) and V (r, t,m) are both increasing in t we get

V (r, t∗,m(0, 0,Λ0) < 0.Then, since ψ is bounded, we can find ε∗, so that for ε < ε∗ we have

εψ (x∗ −m) 1(t0 ≤ t∗ ≤ t0 + s) + (1− ε)V (s,m(0, 0,Λ0)) < 0,

and therefore m(0, t∗,Λε,t∗,x∗) > m(0, 0,Λ0). Then (80) holds and this proves the Theorem for the case
t∗ > t0. The proof for the case t∗ < t0 is similar.

10 Proof of Theorem 4.

Without loss of generality we can assume that σ0 = 1. It is easy to see that the least favorable contaminating
distribution is Λ∗ concentrated at δt0,x0

where x0 tends to −∞ or to ∞.
A necessary and sufficient condition for ε < ε∗ is that the equation

εψ(x0 −m) + (1− ε)

∫ t0

0

∫ ∞

−∞

ψ(µ(t) + u−m)h(t)g(u)dtdu = 0 (81)

have a bounded solution m solution for all x0 < µ(t0) and that the equation

εψ(x0 −m) + (1− ε)

∫ 1

t0

∫ ∞

−∞

ψ(µ(t) + u−m)h(t)g(u)dtdu = 0 (82)

have a solution for all x0 > µ(t0).
Taking x0 → −∞ we find that a sufficient condition for the existence of a bounded solution of (81) for

all x0 < µ(t0) is that
−εk + (1− ε)kH(t0) ≥ 0,

and this is equivalent to

ε ≤ H(t0)

1 +H(t0)
. (83)

Taking x0 → ∞ we obtain that a sufficient condition for the existence of solution of (82) for all x0 > µ(t0)
is that

εk − (1− ε)k(1−H(t0)) ≤ 0,

and this equivalent to

ε ≤ 1−H(t0)

2−H(t0)
. (84)

The theorem follows from (81) and (82).
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