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A NOTE ON THE DE LA GARZA PHENOMENON
FOR LOCALLY OPTIMAL DESIGNS

By HOLGER DETTE! AND VIATCHESLAV B. MELAS?
Ruhr-Universitat Bochum and St. Petersburg State University

The celebrated de la Garza phenomenon states that for a polyno-
mial regression model of degree p — 1 any optimal design can be based
on at most p design points. In a remarkable paper, Yang [Ann. Statist.
38 (2010) 2499-2524] showed that this phenomenon exists in many
locally optimal design problems for nonlinear models. In the present
note, we present a different view point on these findings using results
about moment theory and Chebyshev systems. In particular, we show
that this phenomenon occurs in an even larger class of models than
considered so far.

1. Introduction. Nonlinear regression models are widely used for mod-
eling dependencies between response and explanatory variables [see Seber
and Wild (1989) or Ratkowsky (1990)]. It is well known that an appropri-
ate choice of an experimental design can improve the quality of statistical
analysis substantially, and therefore the problem of constructing optimal
designs for nonlinear regression models has found considerable attention in
the literature. Most authors concentrate on locally optimal designs which
assume that a guess for the unknown parameters of the model is available
[see Chernoff (1953), Ford, Torsney and Wu (1992), He, Studden and Sun
(1996), Fang and Hedayat (2008)]. These designs are usually used as bench-
marks for commonly used designs. Additionally, they serve as a basis for
constructing optimal designs with respect to more sophisticated optimality
criteria which address for a less precise knowledge about the unknown pa-
rameters [see Pronzato and Walter (1985) or Chaloner and Verdinelli (1995),
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Dette (1997), Miiller and Pézman (1998)]. It is a well-known fact that the
numerical or analytical calculation of optimal designs simplifies substantially
if it is known that the optimal design is saturated, which means that the
number of different experimental conditions coincides with the number of
parameters in the model [see, e.g., He, Studden and Sun (1996), Dette and
Wong (1996), Imhof and Studden (2001), Imhof (2001), Melas (2006), Fang
and Hedayat (2008) among many others].

So, the ideal situation appears if the optimal design is in the sub-class of
all saturated designs. In a celebrated paper, de la Garza (1954) proved that
for a (p — 1)th-degree polynomial regression model, any optimal design can
be based on at most p points. Khuri et al. (2006) considered a nonlinear
regression model and introduced the terminology of the de la Garza phe-
nomenon, which means that for any design there exists a saturated design,
such that the information matrix of the saturated design is not inferior to
that of the given design under the Loewner ordering. In a remarkable paper,
Yang (2010) derived sufficient conditions on the nonlinear regression model
for the occurrence of the de la Garza phenomenon and demonstrated that
this situation appears in a broad class of nonlinear regression models. These
results generalize recent findings of Yang and Stufken (2009) for nonlinear
models with two parameters.

However, some care is necessary if these results are applied as indicated
in the following simple example of homoscedastic linear regression on the
interval [0,1]. Here the information matrix of the design which advises the
experimenter to take all n observations at the point 0 is given by

0
xT'x, = ("8 0>

while any other design (using the experimental conditions 1, ..., z,) yields
an information matrix
n
D
i=1

T _ =

X2 Xo = n n
DL L

=1 =1

It is easy to see that the matrix XJ Xy — X{ X; is indefinite (i.e., it has
positive and negative eigenvalues) whenever one of the x; is positive. Con-
sequently, the design corresponding to X{ X; cannot be improved. On the
other hand, it is also easy to see that for any k€ {1,...,|n/2| — 1} the
information matrix of the design, which takes observations at x; =--- =
Tp—or =0 and at x,_ox41 =+ =x, = 1/2 can be improved (with respect
to the Loewner ordering) by the information matrix corresponding to the
design x1 =--- =z, =0 and x,,_p+1 =--- =2, = 1. Thus, there exist de-
signs where a “real” improvement is possible, while other designs cannot be
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improved. Note that the results in Yang (2010) do not provide a classification
of the two types of designs.

It is the purpose of the present paper to present a more detailed view point
on these problems, which clarifies this—on a first glance—contradiction. In
contrast to the method used by Yang (2010), which is mainly algebraic,
our approach is analytic and based on the theory of Chebyshev systems
and moment spaces [see Karlin and Studden (1966b)]. In particular, we will
demonstrate that the de la Garza phenomenon appears in any nonlinear
regression model, where the functions in the Fisher information matrix form
a Chebyshev system. Additionally, we will solve the problem described in the
previous paragraph and we will identify the sufficient conditions stated in
Yang (2010) as a special case of an extended Chebyshev system. Therefore,
our results generalize the recent findings of Yang (2010) in a nontrivial way
and, additionally, provide—in our opinion—a more transparent and more
complete explanation of the de la Garza phenomenon for optimal designs in
nonlinear regression models.

The remaining part of this paper is organized as follows. Section 2 provides
a brief introduction in the problem, while Section 3 contains our main results.
Finally, the new results are illustrated in a rational regression model, where
the currently available methodology cannot be used to establish the de la
Garza phenomenon.

2. Locally optimal designs. Consider the common nonlinear regression
model

(2.1) Y =n(z,0) +e¢,

where 6 € © C R? is the vector of unknown parameters, and different obser-
vations are assumed to be independent. The errors are normally distributed
with mean 0 and variance 0. The variable 2 denotes the explanatory vari-
able, which varies in the design space [A, B] C R. We assume that 7 is a
continuous and real valued function of both arguments (z,6) € [4,B] x ©
and differentiable with respect to the variable 6. A design is defined as
a probability measure £ on the interval [A, B] with finite support [see Kiefer
(1974)]. If the design & has masses w; at the points x; (i=1,...,k) and n
observations can be made by the experimenter, this means that the quan-
tities w;n are rounded to integers, say n;, satisfying Zle n; =n, and the
experimenter takes n; observations at each location x; (i =1,...,k). The
information matrix of an approximate design ¢ is defined by

ey wen=[ (Guwn)(grwn) e

and it is well known [see Jennrich (1969)] that under appropriate assump-
tions of regularity the covariance matrix of the least squares estimator is
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approximately given by o2 M~1(¢,0)/n, where n denotes the total sam-
ple size and we assume that the observations are taken according to the
approximate design &.

An optimal design maximizes an appropriate functional of the informa-
tion matrix and numerous criteria have been proposed in the literature to
discriminate between competing designs [see Silvey (1980), Pazman (1986)
or Pukelsheim (2006) among others]. Note that in nonlinear regression mod-
els the information matrix (and as a consequence the corresponding optimal
designs) depend on the unknown parameters and are therefore called locally
optimal designs [see Chernoff (1953)]. These designs require an initial guess
of the unknown parameters in the model and are used as benchmarks for
many commonly used designs.

Most of the available optimality criteria satisfy a monotonicity property
with respect to the Loewner ordering, that is

(2.3) M(&1,0) < M(&,0) = P(M(&,0)) < P(M(S2,0)),

where the parameter 0 is fixed, £1,&» are two competing designs and ¢
denotes an information function in the sense of Pukelsheim (2006). For this
reason, it is of interest to derive a complete class theorem in this general
context which characterizes the class of designs, which cannot be improved
with respect to the Loewner ordering of their information matrices. We
call a design & admissible if there does not exist a design &, such that
M(&,0) # M(&2,0) and

(2.4) M(&,0) < M(&2,0).

As pointed out in Yang (2010) for many nonlinear regression models the
information matrix defined in (2.2) has a representation of the form

(2.5) M(&,0) = P(0)C(&,0)PT(0),

where P(6) is a nonsingular p X p matrix, which does not depend on the
design &, the matrix C' is defined by

B B
/ Uy () de(z) - /A Wiy () dé()

A
(2.6) c,0)=

s LT
/ V() de(x) - / W, () de ()
A A

and Wiy, Wi9,..., ¥, are functions defined on the interval [A, B]. Note that
these functions usually depend on the parameter 6, but for the sake of sim-
plicity we do not reflect this dependence in our notation. Obviously the
inequality (2.4) is satisfied if and only if the inequality

(2.7) C(&1.0) < C(&2,0)

is satisfied.
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3. Chebyshev systems and complete class theorems. In the following
discussion, we make extensive use of the property that a system of functions
has the Chebyshev property. Following Karlin and Studden (1966b), a set
of k+ 1 continuous functions uy,...,u:[A4, B] - R is called a Chebyshev
system (on the interval [A, B]) if the inequality

uo(zo) wup(zy) ... wo(zk)

(3.1) ul(sz) ul(.xl) ul(zxk) >0

wn(wo) up(xn) .. wya)

holds for all A <xy< 1 <--- <xp < B. Note that if the determinant in (3.1)
does not vanish then either the functions ug, w1, ..., ur_1,us or the functions
UQ, UL, - -+, Up—1, —ug form a Chebyshev system. The Chebyshev property has
widely been used to determine explicitly c-optimal designs [see He, Studden
and Sun (1996), Dette et al. (2003) or Dette et al. (2008) among many
others]. On the other hand, its application to other optimality criteria has
not been studied intensively. In the following discussion, we will demonstrate
that this property will essentially be the reason for the occurrence of the de la
Garza phenomenon. In particular, we will show that it is essentially sufficient
to obtain a complete class theorem for the design problems associated with
the nonlinear regression model (2.1).

For this purpose, we define the index I(£) of a design £ on the interval
[A, B] as the number of support points, where the boundary points A and
B (if they occur as support points) are only counted by 1/2. Recall the
definition of the matrix C' in (2.6) and denote by Wq,..., U, the different
elements among the functions {¥;; | 1 < j,j <p}, which are not equal to the
constant function. Throughout this paper, we assume

U, ="y, for some [ € {1,...,p} and
Ui # Wy for all (i,7) # (1,1)
[see Yang (2010)]. Additionally, we put ¥o(x) =1 and assume either that
{Up,¥y,...,¥s_1} and

(3.2)

(3.3)
{‘1107 \1117 ey ‘Ilk—la ‘Ilk}

are Chebyshev systems or that

{\If(), ‘111, ceey \Ifkfl} and
(3.4)
{\IJ()) ‘Illa ey \Ijkflv _‘Ilk}

are Chebyshev systems then the following result characterizes the class of
admissible designs.
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THEOREM 3.1. (1) If the functions Vo(x) =1,Pq,..., Vi1, Uy satisfy
(5.2) and (3.3), then for any design & there exists a design £ with at most
% support points, such that M(£%,0) > M (&,0). If the index of the design &
satisfies

k

I(§)<§

then the design €T is uniquely determined in the class of all designs n satis-
Jying

B B
(3.5) /A\I/i(:v)dn(x):/A Ui(x)de(m),  i=0,... k-1,

and coincides with the design &. Otherwise [in the case I(§) > g], the fol-
lowing two assertions are valid.

(1a) If k is odd, then &' has at most % support points and T can be
chosen such that its support contains the point B.
(1b) If k is even, then £ has at most %—I— 1 support points and €T can be
chosen such that the support of €T contains the points A and B.
(2) If the functions Wo(x) =1,Vy,..., Vi1,V satisfy (3.2) and (3.4),
then for any design & there exists a design £~ with at most % support
points, such that M(£~,0) > M(€,0). If the index of the design & satisfies

k

I(§)<§

then the design £ is uniquely determined in the class of all designs n satis-

fying (3.5) and coincides with the design &. Otherwise [in the case I1(§) > 5],

the following two assertions are valid.

(2a) If k is odd, then £~ has at most % support points and £~ can be
chosen such that its support contains the point A.

(2b) If k is even, then £~ has at most g support points.

PROOF. We only present a proof of the first part (1) of the theorem, the

second part follows by similar arguments. For i =0,...,k let
B
a(©) = [ W) deta)

denote the ith “moment” and define

di(€) = (do(€), ..., di(€))"

as the vector of all “moments” up to the order k. Consider two designs &;
and & with

de1(61) =dp_1(&) and  di(€1) < di(&2),
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then for any vector z = (z1,...,2,)7 € RP we have for some [ € {1,...,p}
Z1(C(62,0) — C(&1,0))z > 2 (dy,(&2) — di(£1)) > 0,
which means that
C(&2,0) > C(&1,0).
Now let for a fixed vector of “moments” dj,_1(€)
d;f = sup{dy(n) | n design on [A, B] with d_1(n) = dj_1(£)}

denote the maximum of the kth “moment” over the set of all designs with
fixed “moments” up to the order k— 1. Due to the compactness of the design

space and the continuity of the functions Wy, ..., ¥y, there exists a design £+
such that

(3.6) dj(€r) =d;j(€);  j=0,....,k—1,

(3.7) d(§7) = d" > di(€).

This shows (by the argument at the beginning of the proof and the discussion
at the end of the previous section)

(3.8) M(ET,0)> M(E,0).

Moreover, it follows from Chapter II, Section 6 of Karlin and Studden
(1966Db) that the point dj(£7) is a boundary point of the “moment space”

My, = {dy(n) | design on [A, B]}.

Consequently, we obtain from Theorem 2.1 in Karlin and Studden (1966b)
that the design £ is based on at most % support points, which proves the
first part of the statement.

We now consider the cases (1a) and (1b). The vector dj_1(€) is either
a boundary point or an interior point of the (k — 1)th moment space Mj_.
The first case is characterized by an index satisfying I(£) < k/2 and there
exists a unique measure £ with “moments” up to the order k specified by
d},l(g ). To prove this statement regarding uniqueness suppose that 1(§) < %
and that there exists a further design, say é , with this property. A sim-
ple counting argument shows that the total number of distinct points, say
x1,...,x; among the support points of both representations is at most k. If
it would be less than k we could take additional support points with cor-
responding vanishing weights and thus without less of generality, we can
assume that the number of distinct points is equal to k. Therefore, there
would exist k different points

AS$0<JJ1<---<$1€_1SB
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such that
=0,
where the matrix U is given by
\Ifo(xo) \Ifo(xl) e \Ifo(xk_l)
- \111(3:0) \111(3:1) e \Ifl(xk_l)
U 1(zo) Wg1(w1) ... Yp_1(wp-1)
and the vector p # 0 has components
wi, v € suppé, ; & supp&,
D -
wj —wi, T Esupp&Nsupp,
0) €Z; ¢ Supp£7 T ¢ Supp£

(here w; and @; denote the weights of the designs & and £, resp.). Because u #
0 it follows from here that det ¥ = 0 which is impossible by the definition of
Chebyshev systems. Consequently, a design with moments specified by (3.5)
is uniquely determined and therefore we take £ = é , which has at most %
support points [see Theorem 2.1 in Karlin and Studden (1966b), page 42].

If the index of the design ¢ satisfies I(£) > k/2 it follows from the dis-
cussion in Chapter II, Section 6 in Karlin and Studden (1966b) that the
design ¢T defined by (3.6) and (3.7) is the upper principal representation of
the vector Jk_l(f ), which means that its index is precisely % and its support
includes the point B. Note that for this argument we require condition (3.3).

Consequently, if k£ =2m + 1 is odd, the upper principal representation £+
has index m + % and precisely m + 1 support points including the point B.
On the other hand, if k= 2m is even, £ has m + 1 support points and the
boundary points A and B of the design interval are support points because
the index of the design ¢1 is m.

The proof of part (2) of Theorem 3.1 is similar [where the upper principal
representation has to be replaced by the lower principal representation using
condition (3.4)] and omitted. [J

REMARK 3.2. (a) Note that Theorem 2.1 in Karlin and Studden [(1966b),
Chapter I1] refers to moment spaces corresponding to not necessarily bounded
measures and the inclusion of the constant function in the system under
consideration guarantees its application to a moment space corresponding
to probability measures as required in the proof of Theorem 3.1. An alter-
native explanation can be given by the generalized equivalence theorem as
stated in Pukelsheim (2006). It follows from this result that for an optimal
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design (with respect to the commonly used criteria) there exist some con-
stants, say a; € R, i =1,..., k, such that for all support points of the optimal
design the identity

k
Z a;V;(z)=c
i=1

is satisfied, where ¢ denotes a constant (e.g., for the D-optimality criterion ¢
is the number of parameters). Since an optimal design is admissible, the
inclusion of the constant function guarantees that the index of these designs
is at most k/2. Note that this is a sufficient but, generally speaking, not
necessary condition.

(b) Note that it follows from the proof of Theorem 3.1 that the conditions
(3.6) and (3.7) imply (3.8), that is, the superiority of the information ma-
trix of the design £ with respect to the Loewner ordering. In many cases
(e.g., polynomial regression models), the converse direction is also true and
in these cases it follows from the proof of Theorem 3.1 that a design ¢ with
index I(§) < % can only be “improved” (with respect to the Loewner order-
ing of the corresponding information matrices) by itself. In fact we are not
aware of any case where the converse direction does not hold.

(c) Note also that Theorem 3.1 provides a solution to the problem in-
dicated in the example of the Introduction. In the linear regression model
we have k =2, therefore we can use the given design &; (concentrating all
observations at x = 0) as an “improvement” of ;. However, because the
index of & is 1/2 < 1 the design &; can only be improved by itself (see the
previous remark). In particular, there does not exist a design £ which takes
observations at x =1 and improves £; in the sense M (&) > M(&;).

(d) It is also worthwhile to mention that a design improving the given
design ¢ is not necessarily unique. Consider, for example, again the linear
regression model on the interval [0,1] and the design ¢ which has equal
masses at the points 0 and 3/4. The information matrix of £ is given by

M<§>=<§ 332)

Now define for any p € [%, %] a design §;’ with masses p and 1 — p at the

points 0 and ﬁ, respectively. Then it follows that
1 3
MEH=|4
8  64(1—p)
and M(&5) > M(€) for any p € [3,3]. Note that the choice p =2 gives the
upper principal representation £ = 5;/8 with index 1 and support points 0

and 1, while for p € [, 3) we have index I(§}) =3/2.
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In the remaining part of this section, we will relate the result of The-
orem 3.1 to the recent findings of Yang (2010). Note that—in contrast to
Theorem 1 and 2 of Yang (2010)—our Theorem 3.1 does not require the
differentiability of the functions W;. Moreover, in some cases it provides
a better description of the admissible designs. For a more detailed expla-
nation, we note that a Chebyshev system of functions {ug,...,ux} is called
an extended Chebyshev system, if and only if for any ag,...,a; € R with
Zf:o a? # 0 the function

k
Z a;u;(z)
=0

has at most k zeros counted with multiplicities in the interval [A, B]. Note
that this definition is equivalent to the definition given in Karlin and Studden
(1966b). It is in fact proved in Karlin and Studden [(1966b), Section 1.2] for
the case of system w;(t) =t',i=0,...,n. And the argument can be applied
for general case. Moreover, by definition, an extended Chebyshev system is
always a Chebyshev system.

A simple way of constructing an extended Chebyshev system is the follow-
ing [see Karlin and Studden (1966b), page 19]. Let wo,...,wy be functions
on the interval [A, B] which are either positive or negative. We now consider
the new functions

ug(z) = wo(z),

Ul (l‘) = Wo (.1‘) : w1 (tl) dtl,
(3.9) /"‘

. x to te—1
uk(a:):wo(x)/ wl(tl)/A ’U)Q(tg)"'/ wi(tg) dty - - - diy.

A A

A direct calculation shows that the Wronskian determinant of the functions
ug, - - ., Ug is given by

up(z) up(x uéﬁ(m)
Wi (uo, - .-, ug) = ul'(x) u/l(x) Uy .(33)

(3.10)
= (wo ()" (w1 (2))* -+ (g1 (x))*wy ()

and it is shown in Chapter XI in Karlin and Studden (1966b) that the
set {ug,...,ux} of k times differentiable function is an extended Chebyshev
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system if and only if
Wi (ug,...,ug) >0

for all x € [A, B]. On the other hand, this representation provides a construc-
tive method for checking if a given system of k times differentiable functions
{ug,...,ur} is a Chebyshev system on the interval [A, B]. To be precise,
define wo(z) = up(z) and recursively differential operators

(3.11) Dﬁfri<i>; i=0,....k

dx \ w;
(312) Wj41 = (Dij—l"'DO)uj—l—l; jIO,l,...,k‘—l.
Consequently, the set {ug, ..., u} is a Chebyshev system if the functions wy,

..., wy, calculated by (3.11) and (3.12) are all positive on the interval [A, B].

REMARK 3.3. Yang (2010) constructed a triangle array of functions
{firx | t=1,... k;t <1<k} from the functions ¥y,...,¥; induced by the
nonlinear regression model (2.1) using the recursion

Ui (x), t=1,...,k,
. /
ftfl,tfl(x)
It is now easy to see that the functions ws,...,w; obtained from (3.11)

and (3.12) with wo =1, u; =V, (j=1,...,k) are precisely the functions fj
defined by Yang (2010). As a consequence, we will obtain the main result of
Yang (2010) as a special case of our Theorem 3.1 (note that our assumptions
regarding the differentiability are slightly weaker than in this reference).

THEOREM 3.4. Let Vy,..., Yy denote the k different functions in the
information matriz (3.1) corresponding to the nonlinear regression model
which are not equal to the constant function. Assume that V; is (j + 1)
times continuously differentiable, define wog=1 and for j=0,...,k—1

wjy1 =DjDj_1---DoWjq
and assume that condition (3.2) is satisfied. If

F(z) =wi(z)- - wi(z) #0
for all x € [A, B], then for any given design & there exists a design 5, such
that 1(§) <%

M(E,0) > M(£,0).

If the index of the design & satisfies I1(§) < g then é 1s uniquely determined
in the class of all designs n with moments specified by (3.5) and coincides
with the design &. Otherwise [in the case I1(£) > g/ the following assertions
are valid.
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(la) If k is odd and F(x) <0 on the interval [A, B], then the design £ has
at most (k+1)/2 support points and & can be chosen such that the
point A is a support point. ~

(1b) If k is odd and F(x) >0 on the interval [A, B], then the design £ has
at most (k+1)/2 support points and & can be chosen such that the
point B 1s a support point. ~

(2a) If k is even and F(x) <0 on the interval [A, B], then the design & has
at most k/2 support points. .

(2b) If k is even and F(xz) > 0 on the interval [A, B], then the design §
has at most k/2+ 1 support points and & can be chosen such that the
points A and B are support points.

PROOF. Let us define ¥y(z) =1 and note that
W (o, ..., V)
Wi (Wo,..., V1)
Thus if F(z) > 0 then condition (3.3) is fulfilled and if F'(x) < 0, then

condition (3.4) is fulfilled. Now Theorem 3.4 is an immediate corollary of
Theorem 3.1. [

F(z)=

REMARK 3.5. Note that if the constant function appears among the
different functions {¥;; | 1 <i < j <p} in the information matrix (3.1) it is
not counted in Theorem 3.4 or Theorem 2 of Yang (2010) (see the proof of
Theorems 3 and 5-7 in this reference).

A number of interesting applications of Theorem 3.4 are given in Yang
(2010). Note that in all examples considered there the functions under con-
sideration generate a special type of Chebyshev systems, namely extended
Chebyshev systems that can be generated by formulas (3.7). This follows
from Remark 3.3 and the discussion before Theorem 3.4. Note that several
other interesting examples for the case of two parameters are given in Yang
and Stufken (2009). All these examples are based on Lemma 1 from that
paper and the conditions of this lemma are in fact imply that the system of
the three functions (corresponding to different elements of the information
matrix) is an extended Chebyshev system. Thus, these examples can also
be considered as particular cases of Theorem 3.1.

The main advantage of Theorem 3.1 consists in the fact that the de la
Garza phenomenon can be established by proving that the system under
consideration is a Chebyshev system. For this purpose, several methods are
available which differ from the approach presented in Yang (2010) and in
the next section we will consider an example illustrating the usefulness of
Theorem 3.1.
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4. An application to rational regression models. In this section, we present
a class of nonlinear regression models where Theorem 3.4 [or Theorem 2 in
Yang (2010)] is not directly applicable, but the de la Garza phenomenon
can be established by an application of Theorem 3.1. For this purpose, we
consider rational regression models of the form

x,0
(4.1 (e 6) = SE—HEB

where
P(:L‘, 9(1)) =0 +60qx+---+ 913:“_1),
Q(x79(2)) =1 + 0[+1,{L‘ + 4 95+lx8

are polynomials of degree [ — 1 and s, respectively, with corresponding pa-
rameters

09(1) = (91,...,91)T, 9(2) = (9l+17~'7‘91+s)T'

It is shown in He, Studden and Sun (1996) that the information matrix for
this model can be written in the form

M(E,0) = B(9)C(¢,0)B(0),

where 6 = (01,...,0,.5)", B denotes an appropriate matrix [see He, Studden
and Sun (1996)], the matrix C' is given by

B
C(€,0) = /A [1/Q*(@)]h(x)h(x)T dé(x),

h(z) = (1,z,...,2P~1)T denotes the vector of monomials with p =1+ s and
Q(x) is a polynomial of degree s. Therefore, it follows that the different
functions in the information matrix are given by

Vi(2) =1/Q%(x),..., Ui(a) = 2" 1/Q*(x),

where k = 2p — 1. Define ¥o(z) =1, then it is well known [see Karlin and
Studden (1966a)] that under the conditions:

(a) Q(z) does not vanish in the interval [A, BJ;
(b) [Q*(z)]*~Y does not vanish in the interval [A, B]

the functions W, ¥y, ..., Vg, 1 generate a Chebyshev system on the interval
[A, B] and Theorem 3.1 is applicable here.

However, we will give an alternative proof of this property which yields—
as a by-product—a constructive condition under which the condition (b) is
fulfilled. Assume that Q*(z) > 0 for all z € [A, B] and note that a Chebyshev
system remains a Chebyshev system after multiplication of all functions by
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a positive function. Thus, in order to apply Theorem 3.1 it is sufficient to
prove that the functions

Lz, 2%, 2?72 —Q%(x)

generate a Chebyshev system on the interval [A, B]. The following lemma
provides a sufficient condition for this property.

LEMMA 4.1.  Assume that the polynomial Q(x) has only real Toots which
are either all smaller than A or larger than B. If s > 1—1, then the functions

2 2p—2 4
Lz, ..., eQ*(z),

generate a Chebyshev system on the interval [A, B], where € = +1 if the roots
are smaller than A and e = —1 if the roots larger than B.

PROOF. Based on the assumptions about @Q(z), the polynomial Q*(z)
can be written as cH?il(a: — ), where «; are not necessary distinct. Clearly,
(Q*(z))*) = > a1 ljen, ( — ), where Ay is the set of all possible sub-
sets of {1,...,4s} with 4s — k elements. Define zpi, and zpax as the smallest
and largest root of Q(x), then all derivatives of Q*(x) of even order less than
4s — 1 are positive outside of the interval [Tmin,ZTmax]. Define ug(x) =1,
ui(z) =2, ... ugp—2(x) = 2272 ug,—1(z) = Q*(z). By formulas (3.11) and
(3.12), we can easily calculate that wo(z) =1,wj(z) =4,j=1,...,2p — 2,
wap—1(x) = [Q*(x)]®~V). Thus, if s >1— 1 it follows that way,_1(z) is ne-
gative for = < xyi, and positive for A > x > xpax. Therefore (note that
[Q*(2)]®P~Y has no roots in the interval [A, B]), we have ws,_1(x) >0 for
all x € [A, B]. Now the assertion of Lemma 4.1 follows from the formula
for the Wronskian determinant in (3.10) and the fact that a positive Wron-
skian determinant is sufficient for the Chebyshev property of the functions
UQgy -« ., U2p—1- O

The following result is now an immediate consequence of Lemma 4.1 and
Theorem 3.1 (note that we do not repeat the statement of uniqueness of the
latter result).

THEOREM 4.2. Consider the rational regression model (4.1). Assume
that s > 1 —1 and that the polynomial Q(x) has only real roots, which are
either all smaller than A or larger than B. Then for any design & there
exists a design & with at most p support points, such that M(,0) < M(é, 0).
Moreover:

(1) if the index of & satisfies 1(§) >p — % and all roots of the polynomial

Q are smaller than A, then € can be chosen such that the support of €
contains the point A,
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(2) if the index of & satisfies I(§) > p — % and all roots of the polynomial

Q are larger than B, then §~ can be chosen such that the support 0f§~
contains the point B.

REMARK 4.3. (a) Theorem 4.2 is an extension of Theorem 5 in He,
Studden and Sun (1996) who investigated only locally D-optimal designs.

(b) Note that Yang (2010) considered the classical weighted polynomial
regression model where the different functions in the information matrix are
given by ¥;(z) = A(z)z' "1, j=1,...,2p— 1, where A is a positive function
on the interior of the design space, which is called efficiency function [see
Dette and Trampisch (2010)]. His findings can be generalized in the following
way. If there exists a function g(z) such that

dz

for some constants ¢; € R\ {0}, j=1,...,2p — 1, then one can denote

az (4 )j (0@ D5@) =6 ola) >0 €[4 B

T
‘I’l(l‘):/ g(t)dt, \Ifj:\lfjfl, jzl,...,2p—1,
0

and obtains a system of functions satisfying the assumptions of Theorem 3.4.
In particular, in Theorem 9 of Yang (2010) for the case A(z) = exp(z?) the
function g(x) = \(z) = exp(2?) is appropriate, while the case A\(z) = (1 —
)T (1 +2)t a > —1,8 > —1 requires the choice g(z) = (1 —2)%(1+x)".
Moreover, the differential equation (4.2) shows that there are many other
efficiency functions for which the de la Garza phenomenon in the weighted
polynomial regression model occurs. For example, if A(z) =1/(1+z)", A>
—1,n > 2p — 2 one could use

g(@) =1/(1+ )"+

and it follows that for the weighted polynomial regression model with this
efficiency function any optimal design can be based on at most p points.
However, for the rational model of the form (4.1) such a technique seem-
ingly does not work. The alternative way is to prove that the functions
1,z,...,2% \(x)~! generate a Chebyshev system and to use the new Theo-
rem 3.1 to establish the de la Garza phenomenon. Such a method has been
realized for the rational model (4.1) in the proof of Theorem 4.2.
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