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ASYMPTOTIC BEHAVIOUR OF APPROXIMATE
BAYESIAN ESTIMATORS

By THOMAS. A. DEAN* AND SUMEETPAL S. SINGH*
University of Cambridge

Although approximate Bayesian computation (ABC) has become
a popular technique for performing parameter estimation when the
likelihood functions are analytically intractable there has not as yet
been a complete investigation of the theoretical properties of the re-
sulting estimators. In this paper we give a theoretical analysis of
the asymptotic properties of ABC based parameter estimators for
hidden Markov models and show that ABC based estimators satisfy
asymptotically biased versions of the standard results in the statisti-
cal literature.

1. Introduction. One of the most fundamental problems in statistics
is that of parameter estimation. Suppose that one has a collection of prob-
ability laws Py parametrised by a collection of parameter vectors § € ©.
Suppose further that one has data Z generated by a process distributed ac-
cording to some law Py~ where the exact value of 8* € © is unknown. The
problem of parameter estimation is to infer the value of the unknown param-
eter vector 8* from the data Z. Many standard methods for estimating the
value of #* are based upon using the likelihood function pg(Z ). For example
Bayesian approaches use the likeilhood to reweight some prior distribution
to obtain a posterior distribution on the space of parameter vectors that
represents ones sense of certainty of any given parameter vector being equal
to 0*. Alternatively one may take a frequentist approach and estimate 6*
with the parameter vector which maximises the value of the corresponding
likelihood (ie. maximum likelihood estimation (MLE)).

Of course these apprpaches all rely on one being able to compute the

likelihood functions py(Z), either exactly or numerically. However, in a wide
range of applications this is not possible, either because no analytic expres-

*T.A. Dean and S.S. Singh’s research is funded by the Engineering and Physical Sci-
ences Research Council (EP/G037590/1) whose support is gratefully acknowledged. This
AMS 2000 subject classifications: Primary 62M09; secondary 62B99, 62F12, 65C05

Keywords and phrases: Parameter Estimation, Hidden Markov Model, Maximum Like-
lihood, Approximate Bayesian Computation, Sequential Monte Carlo

1


http://arxiv.org/abs/1105.3655v1

2 DEAN ET AL.

sion for the likelihoods exists or else because computing them is compu-
tationally intractable. Despite this one is often still able, in such cases, to
generate random variables distributed according to the corresponding laws
Pg. This has led to the development of methods in which 6* is estimated by
implementing a standard likelihood based parameter estimator using some
principled approximation to the likelihood instead of the true likelihood
function itself. In general these approximations are estimated using Monte
Carlo simulation based on generating samples from the relevant probability
distributions.

A method which has recently become very popular in practice and on
which we shall focus our attention for the rest of this paper is approximate
Bayesian computation (ABC). A non-exhaustive list of references for appli-
cations of the method includes: [McKinley et al., 2009, Peters et al., 2010,
Pritchard et al., 1999, Ratmann et al., 2009, Tavre et al., 1997]. See also
[Sisson and Fan, to be published| for a review on computational method-
ology. The standard ABC approach to approximating the likelihood is as
follows. Suppose that the distributions Py all have a density pg () on some
space R™ w.r.t. some dominating measure p. Furthermore suppose that the
functions py (-) cannot be evaluated directly but that one can generate ran-
dom variables distributed according to the laws Py. Given some data Z the
general ABC approach to approximating the values of the likelihood func-
tions pg(Z) is to choose a metric d(-,-) on R™ and a tolerance parameter

A~

e > 0 and for all § € © approximate the likelihood py(Z) with
(1) Po(2) 2Py (d(Z,2) < ).

Typically the probabilities (1) are themselves estimated using Monte Carlo
techniques. A particularly appealing feature of the ABC methodology is
that, despite the methods name, the resulting approximations to the likeli-
hoods may then be used in any likelihood based parameter inference method-
ology the user desires.

Intuitively, the justification for the ABC approximation is that for suffi-

ciently small e
1

(%)

where B¢ denotes the d-ball of radius € around the point Z and thus the
probabilities (1) will provide a good approximation to the likelihood, up to
the value of some renormalising factor which is independent of # and hence
can be ignored.

P, (d(Z, Z) < e) ~ pg (Z)
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Clearly in general the estimators based on ABC approximations to the
likelihood will differ from those based on the exact value of the likeli-
hood function, however although the use of ABC has become common-
place there has to date been little investigation of the precise nature of
the theoretical properties of ABC based estimators. One notable exception
is [Fearnhead and Prangle, 2010]. In this paper the authors consider the
problem of finding the optimal choice, for a given data set, of summary
statistic and € in order to minimise the mean square error of the resulting
ABC posterior distribution on parameter space. Unfortunately the resulting
optimal choice of summary statistic involves computing a conditional expec-
tation w.r.t. the unknown posterior distribution and hence it can only be
computed approximately and not exactly. Further the analysis is done only
for fixed size data sets and the asymptotic properties of the ABC estimator
are left unexplored.

An alternative approach is taken in [Dean et al., 2010] in which the asymp-
totic behaviour of the MLE implemented with the ABC approximation to
the likelihood (henceforth ABC MLE) was studied. The analysis in this pa-
per is based on the observation that the ABC approximation to the likelihood
can be considered as being equal to the likelihood function of a perturbed
probability distribution. Using this observation it was shown that ABC MLE
in some sense inherits its behaviour from the standard MLE but that the
resulting estimator has an innate asymptotic bias. Furthermore, it is shown
that this bias can be made arbitrarily small by choosing a sufficiently small
values of the ABC parameter e.

The results in [Dean et al., 2010] concerning the asymptotic behaviour
of ABC MLE provide a mathematical justification of this method analgous
to that provided for the standard MLE by the results concerning asymp-
totic consistency. However they do not establish any asymptotic normality
type properties of this estimator and there are as yet no analogous results
for the ABC Bayesian parameter estimator. The aim of this paper is to
bridge these theoretical gaps by showing that the standard results in like-
lihood based parameter estimation, that is to say asymptotic consistency,
asymptotic normality and Bernstein-von Mises type theorems, also hold in
a suitably modified version for parameter estimators based on ABC approx-
imations to the likelihood. In the next section we provide an outline of the
approach that we shall take to proving these results.

1.1. Contributions and Structure. In this paper we shall study the asymp-
totic behaviour of ABC parameter estimators when used to perform in-
ference for hidden Markov models. This will be convenient as (as we will
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show) the Markovian context imbues the ABC approximations with a par-
ticularly nice mathematical structure. Furthermore, as HMMs are used as
statistical models in a wide range of applications including Bioinformatics
(e.g. [Durbin et al., 1998]), Econometrics (e.g. [Kim et al., 1998]) and Popu-
lation genetics (e.g. [Felsenstein and Churchill, 1996]) (see also [Cappé et al.,
2005] for a recent overview), the class of models thus considered is sufficently
general to be of genuine practical interest.

For the purpose of this paper a HMM will be considered to be a pair of
discrete-time stochastic processes, {X};,~, and {Yj},~o- The hidden pro-
cess, {Xg} >0, is a homogenous Markov chain taking values in some Polish
space X and the observed process {Yj},, takes values in R™ for some
m > 1. Conditional on X}, the observations Y}, are statistically independent
of the random variables Yy, ..., Yi_1; X0, ..., Xx_1. In many models the den-
sities of the conditional laws of the observed process w.r.t. the hidden state
either have no known analytic expression or else are computationally in-
tractable. In this case it follows that standard methods to estimating the
likelihoods of the observed process, eg. SMC, can no longer be used and that
an alternative approach like ABC must be used. For the rest of this paper we
shall consider performing ABC based parameter estimation for HMMs using
the following specialization of the standard ABC likelihood approximation
(1), proposed in [Jasra et al., 2010], for when the observations are generated
by a HMM. Specifically, given a sequence of observations Yi,...,Y, from
a HMM, we shall approximate the corresponding likelihood functions with
the probabilities

2) P, <Y1 €BL ...V, ¢ B;n)

where for all y € R™, By denotes the ball of radius € centered around the
point y. The benefit of this approach is that it retains the Markovian struc-
ture of the model. This facilitates both simpler Markov chain Monte Carlo
(MCMC) (e.g. [McKinley et al., 2009]) and sequential Monte Carlo (SMC)
(e.g. [Jasra et al., 2010]) implementation of the ABC approximation. Fur-
thermore the resulting approximation has a structure which is particularly
tractable to mathematical analysis.

The purpose of this paper is to show that one can prove results about
the asymptotic behaviour of ABC based parameter estimators analogous to
the standard results in the literature concerning the asymptotic behaviour
of estimators based on the exact value of the likelihood. In particular we
show that one can develop a theoretical justification of ABC parameter es-
timation procedures based on their large sample properties analogous to
those provided for Bayesian and maximum likelihood based procedures by
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the standard Bernstein-von Mises and asymptotic consistency and normality
results respectively. Our approach is based on the observation in [Dean et al.,
2010] that ABC can be considered as performing parameter estimation using
the likelihoods of a collection of perturbed HMMs which suggests that in
some sense ABC based parameter estimators should inherit their behaviour
from the standard statistical estimators. We first show that unlike the MLE,
which is asymptotically consistent, the ABC MLE estimator has an innate
asymptotic bias in the sense that the value of the estimator converges to
the wrong point in parameter space as the number of observations tends to
infinity. Moreover we show that asymptotically the ABC MLE is normally
distributed around this biased estimate. Secondly we show that the result-
ing ABC Bayesian posterior distributions obey a Bernstein-von Mises type
theorem but that the posteriors are again asymptotically biased in the sense
that as the number of data points goes to infinity the resulting posterior
distributions concentrate about the limit of the ABC MLE rather than the
true parameter value. Finally we show that the size of the asymptotic bias
of both the ABC Bayesian and ABC MLE estimators goes to zero as € tends
to zero and under mild regularity conditions we obtain sharp rates for this
convergence. Together these results show that ABC based parameter esti-
mates are asymptotically biased with a bias which can be made arbitrarily
small by taking a suitable choice of € and thus provide a rigorous justifica-
tion for performing statistical inference based on ABC approximations to
the likelihood.

We note that the results in this paper extend those in [Dean et al., 2010]
in several ways. In particular we provide a much sharper analysis of the
ABC MLE than that contained in [Dean et al., 2010]. The crucial difference
between the current paper and [Dean et al., 2010] is that it is not possible
using the techniques of [Dean et al., 2010] to show that the ABC MLE has
a unique limit point. In contrast, in this paper we show that for sufficiently
small values of ¢ the ABC MLE has one and only one limit point. This
then enables us to extend the scope of the analysis in [Dean et al., 2010] to
include asymptotic normality results for the ABC MLE and Bernstein-von
Mises type results for ABC based Bayesian estimators.

This paper is structured as follows. In Section 2 the notation and assump-
tions are given and in Section 3 we present our main results concerning the
asymptotic behaviour of ABC. The article is summarized in Section 4 and
supporting technical lemmas and proofs of some of the theoretical results
are housed in the four appendices.

2. Notation and Assumptions.
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2.1. Notation and Main Assumptions. Throughout this paper we shall
use lower case letters x,y, z to denote dummy variables and upper case let-
ters X, Y, Z to denote random variables. Observations of a random variable,
i.e. data, will be denoted by Y. Given any € > 0 and y € R™ we shall let B
denote the closed ball of radius e centered on the point y and let I/ By denote
the uniform distribution on By. For any A C R™ the indicator function of
A will be denoted by I 4.

In what follows we need to refer to various different scalar, vector and
matrix norms. Given a scalar z and a vector a we shall let |z| and |a| de-
note the standard Fuclidean scalar and vector norms respectively and for
any matrix M we shall let ||M|| denote the Frobenius norm. We note that
although using |-| to denote multiple norms is an abuse of notation there
is in practice no loss of clarity as the precise meaning of these terms will
always be made clear by the context in which they are used.

For any vector of variables a we shall let V, denote the gradiant operator
with respect to a. Moreover given vectors of variables a, b, ¢ of dimensions
dy,ds and dg we shall let V.,V and V,V, V. denote the d; >< do and d1 X

ds X d3 matricies of partial derivatives with entries given by 8 b and 8aab o
J ]

respectively. Further, for any vector of variables a we shall let V2 and V3

denote V,V, and V,V,V, respectively. Further given vectors w,v,w we

shall let u* v and u * v x w denote the outer products of u,v and u, v, w and
*2 and u*? denote the outer products u * u and u * u * u respectively.

It is assumed that for any HMM the hidden state {Xj},-, is time-
homogenous and takes values in a compact Polish space X with associated
Borel o-field B (X'). Throughout this paper it will be assumed that we have a
collection of HMMs all defined on the same state space and parametrised by
some parameter vector  taking values in a connected compact set © € R
Furthermore we shall reserve 6* to denote the ‘true’ value of the parameter
vector 6. For each 6 € © we shall let Qg (x,-) denote the transition kernel of
the corresponding Markov chain and for each z € X and § € © we assume
that Qp (z,-) has a density gp (z,-) w.r.t. some common finite dominating
measure y on X. The initial distribution of the hidden state will be denoted
by 7.

We also assume that the observations {Y}}, -, take values in a state space
Y C R™ for some m > 1. Furthermore, for each k we assume that the
random variable Y}, is conditionally independent of ..., X3 _1; Xx41,... and

Y 1;Yerq,... given X and that the conditional laws have densities
9o (y|z) w.r.t. some common o-finite dominating measure v. We further as-
sume that for every 0 the joint chain { X}, Y} } .~ is positive Harris recurrent

and has a unique invariant distribution 7g. For each § € © we shall let Py
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denote the law of stationary distribution of the corresponding HMM and Eg
denote expectations with respect to the stationary distribution Py.

We shall frequently have to refer to various kinds of both finite, infinite
and doubly infinite sequences. For brevity the following shorthand notations
are used. For any pair of integers k < n, Y}.,, denotes the sequence of random
variables Yy, ...,Y,; Y_... denotes the sequence ...,Y); Y,..o denotes the
sequence Yy, ... and Y_.;.n:00 denotes the sequence ..., Y Y,,.... Further
given a measure g on a Polish space X we let [ - pu(dzy.,) denote integration
w.r.t. the n-fold product measure u®" on the n-fold product space X™.

For any two probability measures u1, 2 on a measurable space (E, &) we
let |1 — p2llry denote the total variation distance between them. For all
p € [1,00) we let Ly(n) denote the set of real valued measurable functions
satisfying [ |f(z)" p(dz) < .

Finally we note that when writing the likelihood pg(fﬁ, . ,Yn) of a se-
quence of observations Yl, e ,ffn we shall typically suppress the dependence
of the likelihood function on the the initial condition of the hidden state of
the process unless we specifically need to refer to it in which case we shall
write the likelihood as pg(fﬁ, . ,Yn]Xo = ).

2.2. Particular Assumptions. In addition to the assumptions above, the
following particular assumptions are made at various points in the article.

(A1) The parameter vector 8* belongs to the interior of © and 6 = 6* if and
only if ﬁg( ‘e ,Y_l,}/b, Yl, ‘e ) = @9*(. .o ,Y_l, Y(),Yl, .o )

(A2) For all y € Y, z, 2’ € X, the mappings 6 — gp(z,2’) and 0 — gy(y| x)
are three times continuously differentiable w.r.t. 6.

(A3) There exist constants ¢;,¢; € (0,00) such that for every y € Y, z, 2’ €
X, 00

3)

1 S q@(x7x,) S Elu
go(y|x) < €.

(A4) There exists a constant ¢3 € (0,00) such that for every y € Y, z, 2’ €
X,0€0

‘VG log qg(l‘,l‘,)| ) |Vg log qg(l‘,l‘,)| < ¢.
(A5) For all 6 € ©

(4) 0< /X 9o (] () < 00

for all y € V.
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(A6) For any K >0

Ey-

sup sup sup |[Vglog gy (Y+Z\$)H3] :
€O 2EX zcBK

(5) Eg*

2
supsup sup ||Vgloggs (Y + z|z)| ] :
0cO xeX ZeBé{

Eg

supsup sup || Viloggs (Y + z[z)|| | < occ.
Ge@wEXzeB(;{

REMARK 1. Assumptions (A1)-(A6) are similar to those used in [Douc et al.,
2004] to prove consistency of the MLE for HMMs. We use similar assump-
tions in this paper as, broadly speaking, our approach will be to show that
the ABC' parameter estimators inherit their properties from standard sta-
tistical estimators. However the methods and emphasis of this paper differ
from those in [Douc et al., 2004] and as a result the assumptions we re-
quire have a slightly different flavour. In particluar we shall require slightly
stronger conditions on the differentiability of the conditonal densities gg(y|x)
but slightly weaker conditions on their integrability.

REMARK 2. In general assumptions (A3)-(A6) will hold when the state
space X is compact. However we expect that the behaviours predicted by
Theorems 2, 3, 4 and 5 will provide a good qualitative guide to the behaviour
of ABC MLE in practice even in cases where the underlying HMMs do not
satisfy these assumptions.

3. Approximate Bayesian Computation.
3.1. Structure of ABC Estimators. Suppose that a collection of HMMs
(6) {Xk7Yk}kzo

parameterised by some 6 € © are given. For any sequence of observations
Yi,...,Y, for 6 € © let pg(f/l, . ,Yn) denote the likelihood of the observa-
tions under the corresponding HMM (6). Following [Jasra et al., 2010] we
consider approximating py (Yl, e ,Yn) by the ABC approximation,

Py (YleB;l,...,YneB;>

Z/Xn+1 . [Hqg(xk—l,ivk)ﬂB;k (W) g0 (yrlzr) | mo(dzo) pr(dw1:n)v (dy1in)-

k=1
(7)
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The purpose of this paper is to analyse the asymptotic properties of likeli-
hood based parameter estimators implemented using the ABC approximate
likelihoods (7). The key to our analysis is the following observation, see
[Dean et al., 2010] for more details;

n

-

a0 (Tk—1, xk)HB;k (yk)gﬂ(yk|$k)] mo(dzo) p(dxrn)v(dyrn)
k=1

n

® o [ Tl wtonos,an)ab (ko) mo(dmouteon,)

k=1
where
€ _ 1 /33‘ v /
Q G501 = 5 ey [, /)i

The crucial point is that the quantity gj(y|x) defined in (9) is the density
of the measure obtained by convolving the measure corresponding to gg(y|z)
with Ups where the density is taken w.r.t. the new dominating measure
obtained by convolving v with Upg. One can then immediately see that the
quantities gg(z,2’) and gj(y|r) appearing in (8) are the transition kernels
and conditional laws respectively for a perturbed HMM { X}, Y} >0 defined
such that it is equal in law to the process

(10) { Xk, Vi + €Zi b5

where {Xj, Yy };5¢ is the original HMM and the {Z;},-, are an i.i.d. se-
quence of U py distributed random variables.

3.2. Theoretical Results. It follows that performing statistical inference
using the ABC approximations to the likelihood is equivalent to performing
inference using a misspecified collection of models. It is well known (see for
example [White, 1982]) that this will in general lead to biased estimates of
the true parameter value. In the rest of this paper we shall investigate the
theoretical consequences of this for ABC based parameter estimators.

We start by showing that almost surely the ABC MLE will converge, with
increasing sample size, to a given point in parameter space that is not equal
to the true parameter value (more generally the set of accumulation points
will belong to a given subset of parameter space) and hence that the ABC
MLE is asymptotically biased (Theorem 2). Further, we show that these
accumulation points must lie in some neighbourhood of the true parameter
value and that the size of this neighbourhood shrinks to zero as € goes to
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zero. Next we show that for sufficiently small values of € the ABC MLE has
a unique limit point and that asymptotically the ABC MLE is normally dis-
tributed about this point with a variance that is proportional to % (Theorem
3). Third we show that aymptotically the ABC Bayesian posterior converges
to that of a Normal random variable, centered on the location of the ABC
MLE and with variance again proportional to % (Theorem 4). Finally we
show that under certain Lipschitz conditions one can obtain a rate for the
decrease in the size of the asymptotic bias of the ABC parameter estimators
(Theorem 5).

These results show that the error of ABC based parameter estimators may
be decomposed into two parts. A bias component whose size depends on €
and a variance component whose size is proportional to % Furthermore
they show that the size of the bias can be made arbitrarily small by a
suitable choice of €. Thus taken together the results show that the accuracy
of estimators based on ABC approximations to the likelihood can be made
to be arbitrarily close to that of estimators based on the exact value of the
likelihood, providing a rigourous mathematical justification for the ABC
methodology.

We note that there are two important technical issues that arise in the
proofs of these results. Firstly, as noted in [Dean et al., 2010], one cannot
simply analyse the behaviour of the ABC MLE by extending the parameter
space © to include € and then applying standard results from the theory
of MLE because the perturbed likelihoods g§(y|x) are in some sense insuf-
ficiently continuous. Instead one has to establish that in some sense the
Lebesgue differentiation theorem still holds upon taking asymptotic limits.

Secondly we note that because the dominating measures of the original
and perturbed HMMs are no longer necessarily mutually absolutely continu-
ous with respect to each other we can no longer take the standard approach
to analysing likelihood based estimators by studying the limits of

1 ~ N
lim — Ingg(Yi7 s 7Yn)
n—oo n
and interpreting them in terms of Kullback-Leibler distances. To avoid this
problem we instead show that for any e the relative mean log likelihood
surfaces (considered as functions of 6)
1 ~ N N N
E <10gpfg(Y1, cee 7Yn) - lngg*(Ylv s 7Yn))
almost surely converge to some limiting surface [¢(6). The behaviour of ABC
based parameter estimators can then be understood by examining the be-

haviour of the corresponding limiting log likelihood surfaces. The key result
in doing so is the following whose proof is deferred until Appendix B.
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THEOREM 1. Suppose that one has a collection of HMMs parameterized
by some parameter vector 6 € © that satisfy assumptions (A1)-(A6). For any
€ > 0 let py(---) denote the likelihood function w.r.t. the perturbed HMMs
(10) (and where by definition we let p)(---) denote the likelihood function of
the original HMM (6)). Let data Yi,...,Y, generated by the HMM corre-
sponding to an unknown parameter vector 0* be given. Then for every e > 0
there exists a twice continuously differentiable function ¢ (6) : © — R such
that for all z € X one has that Py« a.s.

(1)

1 N N N N
~ (togpj(¥i, .. VulXo = @) —logpje (V1. Y2l Xo = &) = I (9)

1 N N
~Vo (10gP5(Y1, o Yol Xo = x) — log pg. (Y1, ..., Yo|Xo = 33)) — Vil (0)

1 A .
;Vg (IOgPE(Yh o Yl Xo =) = log pl (Y1, ..., Yn)|Xo = 96) — V3l ()

uniformly in 6.
Furthermore 1 (6) ,V(;ZE,VZZ6 — 9 (9),V910,V§l0 as € — 0, where the
convergence is again uniform in 6.

We can now use Theorem 1 to analyse ABC based parameter estimators
by comparing their the asymptotic behaviour (encapsulated in the surfaces
1€(0)) to the asymptotic behaviour of estimators based on using the true
value of the likelihood (which is encapsulated in the surface [°(6)). we shall
start by analysing the behaviour of the ABC MLE which we formally define
below.

PROCEDURE 1 (ABC MLE). Given € > 0 and data Yi,...,Y,, estimate
0* with

(12) o, = argréleaé(]P’g (Yl €Bj ..., Yn € BYH) .

Using Theorem 1 we can now establish the following biased asymptotic
consistency and normality type properties of the ABC MLE whose proofs
are deferred to Appendix C.

THEOREM 2. Suppose that one has a collection of HMMSs parameter-
ized by some parameter vector 0 € © that satisfy assumptions (A1)-(A6).
Let data Yi,...,Y, generated by the HMM corresponding to an unknown
parameter vector 0* be given and suppose that we use the ABC MLFE to es-
timate the value of 0*. Then for every e > 0 there exists a collection of sets
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T€ such that fm: all initial conditions Xo the set of accumulation points of
the ABC MLE 65, lies Py« a.s. in T¢ and

(13) lim sup |# — 6% = 0.

e=0gc7e
Furthermore let 1°(0) be as in Theorem 1. If V31° (0*) is strictly negative def-
inite then for sufficiently small values of € the set T¢ consists of a singleton
0.

REMARK 3.  The quantity —V2l% (6*) is equal to the asymptotic Fisher
information I of the HMM. For more details see [Douc et al., 2004].

THEOREM 3. Suppose that one has a collection of HMMs parameterized
by some parameter vector 0 € O that satisfy assumptions (A1)-(A6) and
that V210 (0%) is strictly negative definite where 1°(6) is as in Theorem 1.
Let data Yi,...,Y, generated by the HMM corresponding to an unknown
parameter vector 0% be given and suppose that we use the ABC MLE to
estimate the value of 6*. Then for sufficiently small values of € there exists
strictly positive definite matricies J., I, such that Py« a.s.

(14) Jn (en - 9) — N(0, 71T 7Y,
Furthermore J.,I. — I as e — 0 where I is as in Remark 3.

Next we consider the properties of the ABC Bayesian parameter estimator
which we define below.

PROCEDURE 2 (ABC Bayesian Estimator). Given ¢ > 0 a prior distri-

bution mo and data Y1,...,Y, estimate 0* via the ABC posterior
(15) ¢ o Py <Y1 €BY ...V, € B;n> 0.

Given Theorem 1 we can easily see that the ABC Bayesian estimator sat-
isfies the following Bernstein-Von Mises type theorem, see [Borwanker et al.,
1971] whose proof is again deferred to Appendix C.

THEOREM 4. Suppose that the assumptions of Theorem 3 hold and that
one tries to infer the true value of 0* using the ABC approrimate Bayesian
posterior (15). Suppose further that the prior distribution has a continuous
density w.r.t. Lebesgue measure, then for sufficiently small values of € one
has that Py« a.s.

(16) e (\/ﬁ(e . én,e)> — N (0,171

where I. is as in Theorem 3.
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3.3. Asymptotic Rates of Convergence. Theorems 2, 3 and 4 show that
asymptotically ABC based parameter estimators concentrate around a point
0*¢ # 0* and thus that the asymptotic bias will be of order |6*¢ — 6*|. It is
natural to ask at what rate does 8¢ — 6* as ¢ — 0. We begin our answer
to this question with the following example.

EXAMPLE 1. Let w1 be the distribution on the set of diadic numbers
of the form 4%; k = 0,1,... given by 771(4%) = le% for all k and let mo
be the distribution on the set of diadic numbers of the form ﬁ given by

1

m2(5qw) = M% for all k = 0,1,.... Furthermore let {mg}gc(g 95075 be the
set of distributions defined such that for all 0, w9 = 071 + (1 — 0)ms.

It is clear that the distributions wg satisfy the conditions of Theorem 1 and
hence that for any € the limiting approximate mean log likelihood surface 1(6)
exists and is well defined. Further if we assume that the true value of the

parameter is equal to 0% = %1 then it is easy to show that Vglo(ﬁ*) %0 and

that for all k > 0 that Vlak+1 (6%) = 41% from which it follows that

| 3 1
Gk — 0 —7vzlo(6*)—4k+2+0<—4k+1>.

The above example shows that in the general case one should expect that
the size of the asymptotic bias will be at least O(€). The next theorem shows
that the behaviour of the asymptotic bias will be no worse than this. In order
for it to hold we need to make the following Lipschitz assumptions.

(A7) There exists some R > 0 such that for all e < R.

Vzge (Y + Z"T)

2
FEy~ | sup sup sup ,
(17) r€X 0€0 2eBY 9o (Y"T)
B V. (Vogo (Y + 2l2)) |”
g | sup sup sup < 0.
z€X 0€O 2eBY 96 (Y‘LL’)

THEOREM 5.  Suppose that in addition to all of the assumptions of The-
orem /4 one has that assumption (A7) above also holds. Then

(18) 105 — 0*| = O(e).

Moreover, if the dominating measure v is Lebesgue measure then one can
show, under slightly stronger Lipschitz assumptions, that the asymptotic
error in the ABC parameter estimate is of order O(¢)?.
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(A8) There exists some R > 0 such that for all € < R.

Vigy (Y + z|z)

2
FEyg+ | sup sup sup ,
(19) TEX 0€O 2 B0 g0 (Y|z)
V2 (Voge (Y 2
Ey« | sup sup sup = (Vogo (V + 2|z)) ‘ < 00.
rE€X 0€0 e BY 90 (Y|2)

THEOREM 6. Suppose that v is Lebesgue measure and that in addition
to all of the assumptions of Theorem 5 one has that assumption (A8) above
holds also. Then

(20) 105 — 0*| = O(2).

The proofs of Theorems 5 and 6 are deferred to Appendix D. Finally we
note that in the case that v is Lebesgue measure we have from Theorems 3
and 4 that the variance of ABC based based estimators is of order O(1//n)
while their bias is of order O(e?). It follows that (at least in theory) it is
optimal to scale € as O(1/+/n) as n goes to infinity. Intriguingly this is the
same rate as the optimal bandwidth in kernel density estimation (see for ex-
ample [Wand and Jones, 1995]). This suggests an alternative interpretation
of ABC as approximating the likelihood via a kind of kernel density based
estimate.

4. Summary. In this paper we have shown that the framework devel-
oped in [Dean et al., 2010] to analyse the behaviour of the the ABC MLE
can be extended to provide a rigourous analysis of the behaviour of ABC
based estimators in both the Bayesian and frequentist contexts. In particular
we have shown that ABC based parameter estimators satisfy results anal-
ogous to the asymptotic consistency, asymptotic normality and Bernstein-
von Mises theorems for standard parameter estimators but that the ABC
estimators are asymptotically biased. Furthermore we have shown that this
asymptotic bias can be made arbitrarily small by choosing a sufficiently
small value of the parameter e. Together these theoretical resultshelp to
solidify and extend existing intuition and provide a rigourous theoretical
justification for ABC based parameter estimation procedures.

Appendix A: Auxillary Results. In this section we present without
proof some well known results that will be needed in the proofs of Theorems
1, 2, 3, 4 and 5. The first two lemmas are standard result from real analysis.
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LEMMA 1. Let a connected compact set G C R* and some constant
K > 0 be given. Suppose that there exists a continuous function f: G — R"
and sequence of continuous functions f,, : G — RY, n > 1, such that for all
n the function f, is Lipschitz-K continuous. Then f, — f uniformly in G
if and only if f,, — f pointwise on a countable dense subset of G.

LEMMA 2. Let a connected compact set G C R" be given and suppose that
there exists a continuous function g : G — RY and sequence of continuously
differentiable functions f, : G — RY, n > 1, such that Vf,(z2) — g(z)
uniformly in z and f,(2*) is Cauchy for some z* € G. Then there exists
a uniformly bounded and continuously differentiable function f such that
fn(2) = f(2) uniformly in z and V f(z) = g(z).

Lemmas 3, 4 and 5 are essentially corollaries and extensions of Proposi-
tions 4 and 5 in [Douc et al., 2004] and may be proved in exactly the same
manner. We leave the details to the reader.

LEMMA 3. Suppose that one has a collection of HMMs parameterised
some vectors 0 € © that satisfy assumption (A2). Furthermore suppose that
one has a HMM {X},Yy},~,, defined on the same state spaces as the pa-
rameterised collection of HMMs, which satisfies assumption (A2) with the
same values of ¢ and €.

Given measurable functions ¢1, a2, d3: OXX?xY s>Randye Y, k<1
and s € {1,2,3} define the following functions of the HMM {Xj, Yy}~

I
D5k (0) = Z ¢s (0, X1, X;,Y;)

i=k+1

and for any n > 0 define the random variables Ao, I'o pn, Yo, and Qo by

Bon(0) 2 Ep|1,-n0(O)|Y-n0| = B[ 01,1 (0) [V |,

Lo (6) £ Ey |:¢1;—n:0(9)¢2;—n:0(9)‘}/b:—n} — Ep [¢1;—n:—1(9)¢2;—n:—1(9)‘Y—n:—l]
+ Ey |:¢1;—n:—1(0) ‘Y—n:—1:| Ey |:¢2;—n:—1(9)|y—n:—1]

— Ep {(bl;—n:O(o)‘Y—n:—O} Ey [¢2;—n:0(0)|y—n:—0] ;
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Wo,n(0) £ Eo [¢1;—n:0(9)¢2;—n:0(9)|Y0:—n} Ey [¢3;—n:0(9)|Y—n:—0}
_'E@[¢L—nﬂ(eﬂycwn—0}ﬂb[¢Z—nﬂ(9”}24n—0]ﬁb[@&—nﬂ(eﬂic4u—0]
+Ep [m;_m_l(e)w_n:_l} Ey [@;_n:_l(e) \Y_n:_l] Ey [(ﬁg;_nz_l(e)w_n:_l]
= Bp | 9151 0)02:1 )|Vt | B | 0321 (0)| Voo |,
and
Q00(0) 2 Ep[91,-:0(0)S2i-:0(0)05:-0(6) [Y-nio]
—-E@[¢L—nﬂ(9ﬂ314u—o}ﬂb[¢z—nﬂ(9ﬂ314u—0]ﬂb[¢&—nﬂ(9ﬂ114u—0]
+Ep [¢1;_n:_1(9)|y_n:_1} Ey [@;_n:_l(e) \Y_n:_l] By [¢3;_n1_1(9)|y_n:_1]
— Eo|#1-n-1(0) 621 (0)05, i1 (0) [V |.

Then there exist 0(Y_oo.0) measurable random variables Ao o (8), To,00(8),
Vo oo(l) and Qo oo(8) and constants C < oo and 0 < p < 1 which depend
only on ¢ and ¢ such that for any initial condition on the collection of pa-
rameterised HMMs

B [sup180,(0) - Ban0)]| < O B[]
0cO

E [sup\ro,n(o)—ro,oo(e)y] < Cp" sup E[H(bsllio}

=) se{1,2}
(A-21)
B [sup [W0,6) ~ Vo) <O sup [ 0.]1%]
0cO s€{1,2,3}
B [sup190,(0) ~ 00 0)]| < € s B[]
0cO s€{1,2,3}

where for all s € {1,2,3}

H(bs”oo (y) £ Sup sup ‘Qbs (67x7x,7y)|
0eO x,x’'eX
E[] denotes expectation w.r.t. the law and stationary law respectively of the
process {Xi, Yi}psq-

LEMMA 4. Suppose that the assumptions of Lemma 3 all hold. Then
there exist constants C' < co and 0 < p < 1 such that for any initial condition
on the collection of parameterised HMMs

(422) B |swpldnn®) - 8o <O B[l |
0O



APPROXIMATE BAYESIAN COMPUTATION 17

LEMMA 5. Let the same assumptions and notation as Lemma 3 be given.
Then there exist constants C < oo and 0 < p < 1 such that for any k,n

(A-23)
|| 300 O sl = B 80O -ical[| < CHE e ]

where E[-|-] denotes conditional expectation w.r.t. the law of the process
{Xkayk}kzl-

The last Lemma is a statement of the Fisher identity and the Louis missing
information principle (see for example [Douc et al., 2004]) plus an extension
of these results to third order derivatives of the log likelihood function. Given
assumptions (A2)-(A6) it follows from a simple application of the dominated
convergence theorem.

LEMMA 6. Suppose that assumptions (A2)-(A6) hold for a collection of
HMMs parametrised by some vector 8 € © where for each 6 € © we let
g9 (ylx) and qg (2',x) denote the densities of the conditional law and transi-
tion kernel of the corresponding HMM. For any € > 0 let gy (y|x) denote the
density of the conditional law of the corresponding perturbed HMM (10). By
convention we let g9 (y|z) = go (y|z).

For any 0 € ©, ¢ > 0 and n > 0 let ¢¥(0,z,2',y) = log g§ (y|z') qo (x,z)
and following the notation of Lemma 3 let 1, (0) = S0 ¥(0, Xi-1, X4, Y;).
Then one has that for any 8 € © and ¢ > 0 the log ABC approximate
likelihood function log py(---) is three times differentiable and

(A_24) V@ Ingg(Yiv v 7Yn) = E9€ [Vﬂln(@) ‘len] )

(A-25)
VZ% log p§(Y1,...,Yy)
— Epe [V3tn|Yim] + Epe [(vwn)*z \YM} — Epe [Votbn|Vin] ™,
and
vg% log py(Y1, ... Yn) = Ege [Vithn |Yim)
+ 3Epe [V % o Vothn |Yim]| — 3Ege [Vithn|Yim] * Ege [Votbn|Y1n]
— 3 [(Votn)? Vi) * Eoe [Voun|Yi] + Eo [(Votn)™ [Yiin]
(A-26) + 2Ep [Votou|Vim]™
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where Ege [-|-] denotes conditional expectation w.r.t. the law of the perturbed
HMM (10).

Appendix B: Proof of Theorem 1. Theorem 1 is an immediate corol-
lary of the following three lemmas.

LEMMA 7. Suppose that assumptions (A1)-(A6) hold for a collection of
HMDMs parametrised by some vector § € ©. Then for any € > 0 there exists

a twice continuously differentiable function 1 (0) such that
(B-27)

: 1 € € €
i sup [ (g (75, ¥2) ~ log - (Vi Yo)) = (6] =0
77/—)00969 n
. 1 € € €
lim sup |—Vy (logpe(yi7 cee 7Yn) - lngG*(Ylv cee 7Yn)) — Vyl (0)‘ =0
n—)OOeEQ n
1

lim sup | V3 (log pj(Y1, ..., ¥5) — log pj- (Y1, ..., ¥z)) — V3I° (9)‘ =0
’fL—)OO@ee n

Py« a.s. and in Ly (]?’9*) where for all § and €, py(---) denotes the likelihood
function of the perturbed HMM (10). By convention we define p)(---) to
be equal to the true likelihood function pg(---). Moreover there exists some
constant 0 < K < oo such that for all 0 € © and € > 0

(B-28) I(8), Vol (), VI (0) < K
and 1€ (), Vgl¢ (0),V3I (0) are K-Lipschitz (as functions of 0).

LEMMA 8. Suppose that assumptions (A1)-(A6) hold for a collection of
HMDMs parametrised by some vector § € © and for any € > 0 let I°(0) be
equal to the corresponding limit function defined in Lemma 7. Then for all
0 € © one has that

lim V1 (0) = Vol (0).

LEMMA 9. Suppose that assumptions (A1)-(A6) hold for a collection of
HMDMs parametrised by some vector 6 € © and for any € > 0 let I°(0) be
equal to the corresponding limit function defined in Lemma 7. Then for all
0 € © one has that

lim V3 (0) = V3I° (6).

In order to complete this section we need to provide the proofs of Lemmas
7, 8 and 9. We start by stating some properties of the perturbed conditional
likelihood (9) that will be needed in the sequel. First note that it follows
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from assumptions (A2) and (A5) and a simple application of the dominated
convergence theorem that

Jpe Vogo (z|z) v(dz)
(B-29) Vg (ylz) £ = ;B;V(dz)

and that Vyg§ (y|z) is continuous w.r.t. 6 for all €, x and y. Furthermore
since

Voge (z|z) v(dz) < sup sup sup <M> X /B 9o (z|z) v (dz)

B 0O zeX z€B5 \ Y6 (z]x) i

it follows from (B-29) and assumption (A5) that for any € > 0
(B-30) Eor [supsup (Voo g5 (Vo) < o.
0cO zeX

Finally we note that analogous comments hold for g (y|z) and V3g§ (y|z).
We now proceed to the proof of Lemma 7.

PrOOF OF LEMMA 7. First note that for any n the gradient of the mean
log ABC likelihood may be decomposed into the following telescoping sum

1 1 &
B-31 —1 o(Y1,....Y,) = — ho(Y1).
( ) Ven ogpy(Y1,...,Yy) n; o(Y1:4)

where for any k <n
(B-32)  hg(Yin) == Vologpy(Ya, ..., Yn) — Vologpg(Y, ..., Yn-1).

It then follows from (A-21) and (A-24) that there exist constants K < oo
and 0 < p < 1 such that for all # € ©, ¢ > 0 and n > 0 there exists some
0(Y_oo:0) measurable random variable Rj(Y_o.0) such that

(B-33) Ep+ |sup < Kp".

k>n

(Vo) = Ry(Y-o00)|

We note that by (B-29) and (B-30) and the accompanying comments and
the dominated convergence theorem that Eg- [h§(Y_y.0)] is continuous for all
n and hence by (B-33) that Eyp« [R§(Y_oc.0)] is continuous. Further it then
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follows from (B-33) and two applications of the ergodic theorem that for any
m >0

% .Z h(Yisi) — Eg+ [R§(Y-oc:0)]

lim sup
n—o0

< h;n_)s;l)p - 2 (Y1) — Eg« [R§(Y_oc0)] ‘
1 n
+ lim sup - Z R§(Y_oo:i) — Ep- [Rg(y—oozo)]

n

1
+limsup — > sup [h§(Yiogi) — RG(YV-o0ui)

n—oo 1 i=m-+1 k>0
(B-34) < Kp™
and
(B-35)
lim sup sup |— hy(Y1.)| < limsup sup sup |hg(Yz)| < K.
n—oo HeO Z 9 b n—00 n2€€®k<z 1 9( F )

Thus we have by (B-31), (B-34) and (B-35) that Py a.s.

1
(B—36) VGE 1ng§(Y1, c. ,Yn) — E@* [RE(Y_OOQ)]

pointwise in # for some continuous in @ function Ey« [Rg(Y_oo;o)] and that
|V9% log py(Y1,...,Y,)| is eventually uniformly bounded above by K

Moreover it follows from (A-21), (A-25) and (A-26) and a similar argu-
ment as above that for any § € © and € > 0 there exist 0(Y_.0) measurable
random variables S§(Y_o:0) and Tj(Y_.0) such that Eyp- [S§(Y_sc:0)] and
Eg« [T§5(Y_sc:0)] are continuous functlons of 6, that

1 _
Vg— IOgP?)(Yla e 7Y7l) — E@* [SE(Y—OOO)] ?
(B-37) ”1 )
Vg; log py(Y1,...,Yn) = Eg« [T5(Y_co0)]

Py~ a.s. and in L* (Fg*) and that Py a.s. eventually |V?)% log py(Y1,...,Ys)|
and [ViLlogp§(Yi,...,Y,)| are both uniformly bounded above by K. Since
the fact that [V21logp§(Y7,...,Y,)| and |Vidlogp§(Ys,...,Y,)| are both
uniformly bounded above implies that both ]Vg% logpy(Yi,...,Y,)| and
|V§% log py(Y1,...,Y,)| are Lipschitz the result now follows from Lemmas 1
and 2. O
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In remains to prove Lemmas 8 and 9. Since the proofs of these two lemmas
are almost identical we prove only Lemma 8 and leave the details of the proof
of Lemma 9 to the reader.

PrROOF OF LEMMA 8. It follows from (B-31) and (B-33) that in order to
prove the result it is sufficient to show that

1 ) 71
(B_38) ll_IE(l]Eg* Evﬁ lngG(Ylv"'vyn):| = Ey- |:Ev9 Inge(Yi)vYn)

for all n and € and hence by (A-24), (B-29) and (B-30) and the accompanying
comments and the dominated convergence theorem that

Ege [V (log g5 (Yie| Xk) qo (Xp—1, X)) [Y1:n]
(B-39) = Ep [Vg (log go (Y| Xk) g6 (Xp—1, Xk)) [Y1:n]

Py« a.s. for all @ and 1 < k < n. Recall that
(B-40)

Ege [V (log gg (Yil Xk) g0 (Xi—1, Xk)) [Y1:n]
_ Jan Ve (og g5 (Yk|ﬂfk)% (-1, 7%)) T2y (g5 (Yilwi) go (i1, 7)) p(dy.y)
an i= 1(99 (Yilz:) qo (@i 17952)) p(dz1:n)

and
(B-41)
Ey [V (log g9 (Y| Xk) g0 (Xk—1, Xk)) |Y1:n)]

_ Jen Vo (log go (Yk\xk)qé) (zr—1,71)) [Ty (90 (Yilws) qo (w51, 20)) p(da1n)
f;\m i=1 (90 (Yilxi) qo (w51, %)) p(dw1) '

Further we have by (B-30) and the accompanying comments that we can use
the Lebesgue differentiation theorem (see for example [Wheeden and Zygmund,
1977]) to deduce that for all z € X that

(B-42) Vogy (Yilz) = Voge (Yilx), g5 (Yilz) — g6 (Yil|z)

Py« a.s.. It now follows from assumptions (A2) and (A5), (B-30) etc. and
(B-42) and the dominated convergence theorem that the numerator and de-
nominator of the quantity in (B-40) converge to respectively the numerator
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and denominator of the quantity in (B-41). Since by assumption (A4) we
have that

/Xn [T (90 (Yilzi) ao (wimr. i) pldarin) > 0
=1

Py a.s. we obtain (B-39). O
Appendix C: Proofs of Theorems 2, 3 and 4.

PROOF OF THEOREM 2. It follows immediately from Theorem 1 that the
first part of Theorem 2 will hold with the set 7¢ equal to the set of max-
imisers of [¢(f). Note that since [°(f) is continuous and © compact 7€ will
always be well defined and non-empty. Further, (13) follows from the uniform
convergence of [¢(6) to (°(f) and the continuity of the surfaces.

It remains to prove the second part of the theorem. Suppose now that
V219(6*) is strictly negative definite. We have from the last part of Theorem
1 that

C-43 lim lim  su V2I€(0) — V2I°(6%)]| = o.
( ) 6_)06_)0‘9_6*1‘25” gl (0) al( )H

Equation (C-43) implies that there exists some § > 0 such that for suffi-
ciently small e the surface (°(f) has at most one local maximum in the ¢
neighbourhood of #*. The result now follows from (13). O

PROOF OF THEOREM 3. Letting the matrix I. be equal to V2I(6*¢) it
follows from Theorem 1 and standard results on the asymptotic normality
of the MLE (see for example [Douc et al., 2004]) that in order to prove
Theorem 3 it is sufficient to show that for e sufficiently small there exists
some strictly positive definite matrix J. such that

1
(C—44) %Vg lngg*,e (Yl, e ,Yn) — N(O, Je)
and
(C-45) Je =1

as € — 0 where I = V21°(0%).
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We begin by proving (C-44). We have by (B-31) and (B-33) that

1 €
%Vg lnge*,e (Yi, . ,Yn)
1 1 «
(C‘46) - —= RE*,e (Y—OOZ) + — he*,e (Yil) - Re*,e (Y—OOZ)
\/ﬁ ZZ:; 0 \/’ﬁ ZZ:; 0 0

where hf. (Y1) is as defined in (B-32). We note that it follows from (A-22)
that one can use similar arguments to those used to deduce (B-31) to show
that

(C-47) Ey- |sup

k>n

2
h;(Y—n:O) - RB(Y—OOO)‘ ] < K,On

It then follows from (C-47) that
n € L n €
EO* [he*»e (Y—n:i)‘Y—OOZO] —2> EO* [RG*,E (Y—oo:i)‘y—oo:O]

and likewise for conditional expectations w.r.t. o(Y_o.—1) and hence by
(A-23) that there exists some K such that

(C-48)
n I € n € 2 )
EG* |:|E0* [Rg*,e (Y—oo:i)|Y—oo:0] - E@* [Re*’é (Y—oo:i)|Y—oo:—1” :| é Kp

for all i. Equation (C-48) immediately implies that the sequence of random

variables Rf. (Y_oc:0), Rjse.c (Y_oo:1), . . . satisfies the conditions of Theorem
5 in [Volny, 1993] and hence we have that

1 " weakly
C-49 — Y RS (Vo) — N(0, J,
(C-49) \/ﬁ; o ( ) (0, Je)
where
1 & ?
(C-50) Je= lim Eq- <%;R§*,€(Y_wi)>

Finally we note that it follows from (B-33), Markov’s inequality and the
Borel-Cantelli lemma that

v € € 1.
(C-51) P@* <‘h€*,e (le) — Rg*,s (Y—OOZ)‘ > 2—2 1.0. > = 0.
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Equation (C-44) now follows from (C-49) and (C-51).
To complete the proof of the theorem it remains to prove (C-45). It im-
mediately follows from (B-32), (C-47) and (C-50) that for all e

_T1
(C-52) J. = lim Ey- ~Vo log p§e.c(Y1,...,Y,)?

n— o0

where the convergence is uniform in n. Next we note that by a simple ap-
plication of the Fisher identity (see for example [Douc et al., 2004]) that

Eg- [V3logpe:(Y1,...,Yn)] = Eg« [Vglogpe-(Y1,...,Y,)?]

and thus by (B-37) and Lemma 7 that

_ 1
(C-53) I'= lim Ep- [;vg logpg*(Yl,...,Yn)2]
In order to complete the proof of (C-45) it is thus sufficient, by (C-52) and
(C-53), to show that for all n

(C-54)
- . _ 1
lim Eg* EVQ Ingg*,e (Yi, ce 7Yn)2:| = Eg* |:EVQ logpg* (Yi, e ,Yn)2:| .

€E— 00
Finally we note that (C-54) can be proved in exactly the same way as (B-42)
in the proof of Lemma 8. In order to this we need to show that

(C-55) Vogo-e (Yrlz) = Vogor (Yilz), ghe.c (Yilr) — go (Yi|z)

as € — 0. However (C-55) follows from (B-42) and the fact that by assump-
tions (A2) and (A6) we have that Py~ a.s. the functions Vygy (Vi + 2z|z) and
9o (Yx + z|z) are uniformly Lipschitz (as functions of ) for all z € B§. O

PROOF OF THEOREM 4. The proof of this result follows from standard
Bernstein-Von Mises type arguments, see for example [Borwanker et al.,

1971]. O

Appendix D: Proofs of Theorems 5 and 6. A central role in the
proof of Theorem 5 will be played by the following time inhomogeneous
versions of the perturbed HMM (10).

Suppose that one has a collection of HMMs parametrised by some pa-
rameter vector § € © and that for each value of 6 the conditional laws
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and transition kernels of the corresponding HMM have densities gy(y|x)
and gg(z,2") respectively. Given some # € © and € > 0 define the HMM
X veth b
{ kootk fpep Y
(D-56)
6+ ve+ . 6+ et
XY, T =X, Y forall k <0; X7, YT = Xy, Y + eZ; ow.

where {Xj,Vi}ycqzy is the original HMM and {Zy};~ is a collection of

Lid. Up random variables. Similarly define the HMM {X,z’_, Y, ’_}k . by
€

(D-57)
XOT, Y0 = X, Yy forall k< 0; X0, Y5 = X, Vi + €2, 0w

Clearly the transition kernels of the HMMs (D-56) and (D-57) are equal to
g (x,2") and the conditional densities of the observed state are equal to

] ot (ole) = | 9o le) it k>0
(D 58) ge,k (y|x) - { 9o (y|g;) otherwise

and

] o fogyylz) if k>0
(D-59) 9ok (yle) = { g0 (y|z)  otherwise
respectively.

Let pge+(--+), Poet (), Eget [[], Epet [|-] and Pger (+[-) and ppe—(--+),
Pge.— (+), Ege,- [-], Ege,— [-]-] and Pge,~ (-]-) denote the likelihood functions,
laws and expectation, conditional expectation and conditional probability
operators w.r.t. to the laws of (D-56) and (D-57). It follows by definition
that
(D-60)

p@(yh s ,yn) = p€5v+(Y—TL+1 =Yi--- 7Yb = yn)
pg(ylv v 7yn) = peévf(yb =Y1,--- 7YTL—1 = yn)
DPoe.+ (Y—k‘-i-l =Y—k+15--- 7YTL = yn) — p@év*(y—k‘ =Y—k+1y--- 7YTL—1 — yn)

Recall that by (B-31) and (B-33) we have that
(D-61)
Vel (6) — Vol (0)
= lim 1 (E@* [Vologpe(Y1,...,Yn)] — Eg« [Vologp(Y, ... ,Yn)])

n—oo N,
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and thus by (D-60) and (D-61) that we have the telescoping sum

€ : 1 - n
Vol (9) = Vol (6) = lim ~ z; (Eg* (Vo log pgect (Voniis ... Yio1)]

(D-62) B [Vologpge (Yensis- -, Yie1)] )

We now note that Theorems 5 and 6 follow immediately from (D-62) and
the following lemma

LEMMA 10. Suppose that assumptions (A2)-(A7) hold for a collection
of HMMs parametrised by some vector 8 € O. Then there exists a finite
constant K such that for all e > 0 and integers k,n

(D-63)  |Ep- [Vglogpge+ (Yo, ..., Yn)] — Ep+ [Vglog pge— (Yo, ..., Yn)]
< Ke.

Furthermore suppose that v is Lebesgue measure and that assumption (A8)
also holds. Then

(D-64) |Eg- [Vologpge+ (Y i, ..., Yn)] — Eg+ [Volog pge— (Y_i, ..., Yn)]

< Ké.

PROOF. We shall prove only the first part of the lemma, the proof of the
second part being almost identical. Clearly analogous expressions to (A-24)
hold for the HMMs (D-56) and (D-57) and thus in particular we have that
the term on the left hand side of (D-64) is bounded by

Ey- Z Ege.+ [Vt‘) logggzj (Y3 X5) qo (Xiz1, X) Y—k:n} —
i—k
(D-65) Z Ege.- [Vt‘) log gy'; (YilXi) gp (Xi-1, X;) Y—k:n} '
i——k

where g5 and gj; are as in (D-58) and (D-59). Using the identity

Vogy (Yo|Xo)  Vegp (Yo|Xo) (Vege (Yo|Xo)  Vagp (Y0’X0)>
g6 (Yo|Xo) g5 (Yol Xo) — \U g9 (Yo|Xo) g6 (Yo|Xo)
Vogy (Yo|Xo) <9§ (Yol Xo) — 9o (YO|X0)>
g5 (Yol Xo) g0 (Yol Xo)
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it is clear from (B-29) and assumptions (A6) and (A7) that there exists some
K’ such that

‘Ee* [Eae# [Vt‘) log 95’3 (Yi|X3) qo (Xi-1, X5)

Y_,m] -

(D-66) Egerr [Volog g (YilXi) 4o (Xi-1, Xi) Y_kmm < K'e.

It then follows from the definitions of g;’:r and gy, and from assumptions
(A2)-(A6) that in order to derive (D-64) from (D-65) it is sufficient to show
that for all 7, k,n

(D-67)

E@* [ ] S K//Epm

Pt (Xi1, Xi|Yoiim) — Ppem (Xi1, Xi|Yoion) || oy

for some K”.
We first note that it follows from standard results concerning uniformly
mixing Markov chains, see for example [Cappé et al., 2005, Del Moral, 2004]
that there exist some K and 0 < p < 1 such that for all 4 and z, 2’ € X one
has that
(D-68)
H]P’95,+ (Xio1, Xi| X0 = 2) — Pges (X1, Xi| Xo = 2/)

< Kpli=1,
Ly K

Since by definition we have that the marginal laws of Pge.+ (Y_o0:—1:1:00) and
Pge.— (Y_oo:—1:1:00) are equal it follows that in order to prove (D-67) it is
sufficient to only prove it for the case ¢ = 0.

To prove (D-67) for @ = 0 we shall make use of the following simple
identities. For any ¢ € Lo

- E95,+ [¢(X0)99 (YO‘XO) ’Yoo:—l;l:oo]
E9€’+ [(b(XO)‘YOOOO] - E0€v+ [90 (YOIXO) ’Yoo:—l;l:oo]

o Eeév* [¢(X0)g§ (Yb’XO) ‘Yoo:—l;lzoo]
E€€Y7 [¢(X0)|YOOOO] B Eﬁe’* [g; (YYO|X0) |Yoo:—1;1:oo] ‘

It then follows from (D-69) using basic algebra that

(D-69)

sup Ep- [

e X0 Yori] B 00 V]|
P:lloll o<1

(D—?O) < E@* |:E€6,+ ng - g§| |Yoo:—1;1:oo] Ege,f Hgg — g§| |Yoo:—1;1:oo]:|

E0€v+ [99|Yoo:—1;1:oo] Ege,— [96|Yoo:—1;1:oo]

The result now follows follows immediately from (D-70) and assumption
(AT7). O
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