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Abstract

In Internet environment, traffic flow to a link is typically modeled by superposition of

ON/OFF based sources. During each ON-period for a particular source, packets arrive

according to a Poisson process and packet sizes (hence service times) can be generally

distributed. In this paper, we establish heavy traffic limit theorems to provide suitable

approximations for the system under first-in first-out (FIFO) and work-conserving ser-

vice discipline, which state that, when the lengths of both ON- and OFF-periods are

lightly tailed, the sequences of the scaled queue length and workload processes converge

weakly to short-range dependent reflecting Gaussian processes, and when the lengths of

ON- and/or OFF-periods are heavily tailed with infinite variance, the sequences converge

weakly to either reflecting fractional Brownian motions (FBMs) or certain type of long-

range dependent reflecting Gaussian processes depending on the choice of scaling as the

number of superposed sources tends to infinity. Moreover, the sequences exhibit a state

space collapse-like property when the number of sources is large enough, which is a kind

of extension of the well-known Little’s law for M/M/1 queueing system. Theory to jus-

tify the approximations is based on appropriate heavy traffic conditions which essentially

mean that the service rate closely approaches the arrival rate when the number of input

sources tends to infinity.

Keywords: reflecting fractional Brownian motion, reflecting Gaussian process, long-

range dependence, queueing process, weak convergence
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1 Introduction

ON/OFF sources are widely used to model voice, video and data traffics in telecommunication

systems (see, e.g., Jain and Routhier [16], Nikolaidis and Akyildiz [23], Taqqu et al. [28],
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Leland et al. [19], Paxson and Floyd [26]). In particular, stochastic modeling of queueing

systems with ON/OFF long-range dependent data has become an active area of research. In

contrast to most of the existing achievements in this field, which are based on fluid models

whose outputs are deterministic with constant (service) rates and whose inputs are certain

types of long-range dependent fluid sources (e.g. Norros [24], Massoulie and Simonian [21],

Debicki and Mandjes [10], Debicki and Palmowski [11]), we will model our queueing system

with general service time distribution and the input as a superposition of Poisson ON/OFF

point processes to better capture the variation of packet sizes and the behavior of real packet

traffic. Concretely, for a particular source, packets arrive according to a Poisson process

during each ON-period. For such a source, the corresponding traffic exhibits long-range

dependence (see, for instance, Ryu and Lowen [27]) when the lengths of ON- and/or OFF-

periods are heavily tailed with infinite variance. Besides the assumption on the service time

distribution, our system is further supposed to operate under FIFO and work-conserving

discipline.

A special case of the above queueing model is discussed in Cao and Ramanan [3], where

the distributions of ON- and OFF-periods are assumed to be Pareto and exponential re-

spectively and packet sizes are supposed to be constant. They show that the sequence of

probabilities that steady state unfinished works exceed a threshold tend to the correspond-

ing probability assuming Poisson input process when the number of input sources tends to

infinity. Currently, it is not clear whether their result can be extended to the more general

model as presented above. Furthermore, the dependence of the convergence rates on various

parameters of the system is not shown in their result, e.g., the relationship between ρN (traffic

intensity, utilization level) and N (the number of sources).

Due to the above reasons, we will study our queueing system by employing some other

method. Under heavy traffic conditions (suitable relationships between ρ and N such that

the service rate closely approaches the arrival rate when N tends to infinity), we will show

that, when the lengths of both ON- and OFF-periods are lightly tailed, the sequences of

the scaled queue length and workload processes converge weakly to short-range dependent

reflecting Gaussian processes, and when the lengths of ON- and/or OFF-periods are heav-

ily tailed with infinite variance, the sequences converge weakly to either reflecting fractional

Brownian motions (FBMs) or certain type of long-range dependent reflecting Gaussian pro-

cesses depending on the choice of scaling as the number of input sources tends to infinity.

Moreover, the sequences exhibit a state space collapse-like property when N is large enough,

which is a kind of extension of the well-known Little’s law for M/M/1 queueing system.

Our heavy traffic limits set up certain connection between the above physical queueing

systems and some existing fluid queueing models. For example, for a fluid model with constant

output rate and FBM input, the stationary queue content distribution is asymptotically

Weibullian (e.g., Norros [24], Massoulie and Simonian [21], Husler and Piterbarg [15], and

more generally, as summarized in Whitt [29]), namely, the probability of exceeding buffer

level b is roughly of the form exp(−b2(1−H)) if FBM is characterized by Hurst parameter H.

The result can be applied to derive corresponding probability for our reflecting FBM after
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properly managing parameters.

Concerning heavy traffic limit theorems for queueing systems with long-range dependent

inputs, there are only a few achievements until now besides the one mentioned above in [3]. In

Debicki and Mandjes [10] and Debicki and Palmowski [11], authors studied a fluid queueing

system with constant output rate and a superposition of ON/OFF fluid input sources. In

Konstantopoulos and Lin [18] and Majewski [20], instead of discussing superposition prob-

lem, authors considered a single class and feedforward multiclass queueing networks with

long-range dependent interarrival and service time sequences respectively. The current limit

theorems are the supplements of these existing results. In justifying our reflecting FBM

approximation, we will adopt the simultaneous limit regime related to FBM in Mikosch et

al. [22], in which both N (the number of sources) and T (the time-scaling parameter) go to

infinity at the same time. This procedure provides us some convenience in employing some

ingredient developed in [22] to establish the weak convergence for our scaled queue length

and workload processes.

One last point we wish to mention is that we have employed our theorem on reflecting

Gaussian processes in the current paper to provide a reasonable interpretation (in Dai [9]) to

some well-known large-scale computer and statistical experiments conducted by Cao et al. [2],

Cao and Ramanan [3], which reveal some gapes between their simulation findings and the

existing theory on heavy-tail and long range dependence. In Dai [9], the author finds out that

all the ‘heavy-tail’ random variables used in computer and network simulations are truncated

versions of their real heavy-tail counterparts due to the limitations of computer hardware

and softwares, and hence they are not heavily tailed ones. So, by combining the findings in

Dai [9] and the theorem in the current paper, we claim in Dai [9] that the findings in Cao

et al. [2], Cao and Ramanan [3] are more close to practice and but not to the mathematical

assumptions imposed in their models since their simulations are computer-based ones.

To be convenient for readers, here we summarize some frequently used notations and

terminologies throughout the paper. First, we recall the definition of u.o.c. convergence.

For a function f : [0,∞) → R and t ≥ 0, put ‖f‖t ≡ sup0≤s≤t |f(s)|, then a sequence of

functions fn : [0,∞) → R is said to converge uniformly on compact sets (u.o.c.) to f if

for each t ≥ 0, ‖fn − f‖t → 0 as n → ∞. Second, we use Cb(R) to denote the set of all

bounded and continuous functions f and C(R) to denote the set of all continuous functions

over the real number space R, which are endowed with the uniform topology. Third, we use

DE [0,∞) to denote the Skorohod topological space, i.e., the space of E-valued functions that

are right continuous and have left-hand limits, which is endowed with the Skorohod topology

(see, e.g., Ethier an Kurtz [12], Billingsley [1]). Fourth, we use i.i.d to denote independent

and identically distributed, use a.s. to denote almost surely, use ‘⇒’ to denote ‘converge in

distribution’ or equivalently ‘converge weakly’, and use ‘∼’ to denote ‘equals approximately’.

The rest of this paper is organized as follows. In Section 2, we formulate our model, and

in Section 3, we present our main theorems and they are proved in Section 4.
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2 Queueing model formulation

In this section, we consider a queueing system with general service time distribution and

with N i.i.d. Poisson ON/OFF input sources. Concretely, a Poisson ON/OFF source n ∈
{1, .., N} consists of independent strictly alternating ON- and OFF-periods, moreover, it

transmits packets to a server according to a Poisson process with interarrival time sequence

{un(i), i ≥ 1} and rate λ if it is ON and remains silent if it is OFF. The lengths of the ON-

periods are identically distributed and so are the lengths of OFF-periods, and furthermore,

both of their distributions can be heavily tailed with infinite variance. Specifically, for any

distribution F , we denote by F̄ = 1− F the complementary (or right tail) distribution, and

by F1 and F2 the distributions for ON- and OFF-periods with probability density functions

f1 and f2 respectively. Their means and variances are denoted by µi and σ
2
i for i = 1, 2. In

what follows, we assume that as x→ ∞,

either F̄i(x) ∼ x−αiLi(x) with 1 < αi < 2 or σ2i <∞,(2.1)

where Li > 0 is a slowly varying function at infinity, that is,

lim
x→∞

Li(tx)

Li(x)
= 1 for any t > 0.

Note that the mean µi is always finite but the variance σ2i is infinite when αi < 2, and

furthermore, one distribution may have finite variance and the other has an infinite variance

since F1 and F2 are allowed to be different. The sizes of transmitted packets (service times)

form an i.i.d. random sequence {vN (i) = v(i)/µN , i ≥ 1}, where µN is the rate of transmission

corresponding to each N and {v(i) : i ≥ 1} is an i.i.d. random sequence with mean 1 and

variance σ2v , moreover, {v(i) : i ≥ 1} is independent of the arrival processes.

To derive our queueing dynamical equation, we introduce more notations. For a single

source n ∈ {1, ..., N}, it follows from the explanation in Mikosch et al. [22] that the alternating

ON/OFF periods can be described by a stationary binary process Wn = {Wn(t), t ≥ 0}:
Wn(t) = 1 means that input traffic is in an ON-period at time t and Wn(t) = 0 means that

input traffic is in an OFF-period, and moreover, the mean of Wn is given by

γ = EWn(t) = P (Wn(t) = 1) = µ1/(µ1 + µ2).(2.2)

Let Tn(t) denote the cumulative amount of time which the nth source is ON during time

interval [0, t], that is,

Tn(t) =

∫ t

0
Wn(s)ds.(2.3)

Let An(t) be the total number of packets arrived at the server from the nth source during

[0, t], namely,

An(t) = sup

{

m,
m
∑

i=1

un(i) ≤ Tn(t)

}

,(2.4)
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which exhibits long range dependence if σ1 and σ2 are not finite simultaneously (see, for in-

stance, Ryu and Lowen [27]). Moreover, let AN (t) be the total number of packets transmitted

to the server by time t summed over all N sources, that is,

AN (t) =
N
∑

n=1

An(t),(2.5)

and let SN (t) be the total number of packets that finished service at the server if her keep

busy in [0, t], that is,

SN (t) = sup
{

m,V N (m) ≤ t
}

,(2.6)

where

V N (m) =
m
∑

i=1

vN (i).(2.7)

Then the queue length process QN (t) which is the number of packets including the one being

served at the server at time t can be represented by

QN (t) = AN (t)− SN (BN (t)),(2.8)

where we assume that the initial queue length is zero for convenience, BN (t) is the cumulative

amount of time that the server is busy by time t. In the following analysis, we will employ

FIFO and non-idling service discipline under which the server is never idle when there are

packets waiting to be served. Hence the total busy time can be represented as

BN (t) =

∫ t

0
I{QN (s) > 0}ds,

where I{·} is the indicator function. Finally, we introduce the below workload process which

measures the delay of a packet staying in the system,

LN (t) = V N (AN (t))−BN (t).(2.9)

3 Heavy traffic limit theorems

We are interested in the behaviors of the queueing process QN (·) and the workload process

LN (·) under suitable scaling and under the condition that the load of the server closely

approaches the service capacity when the source number N gets large enough. In order

to state our main theorems, we introduce the below notations for convenience, which are

adapted from Taqqu et al. [28]. When 1 < αi < 2, set ai = (Γ(2 − αi))/(αi − 1). When

σ2i <∞, set αi = 2, Li ≡ 1 and ai = σ2i /2. Moreover, let

b = lim
x→∞

tα2−α1
L1(x)

L2(x)
.
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If 0 < b <∞ (implying α1 = α2 and b = limx→∞L1(x)/L2(x)), set αmin = α1,

π2 =
2(µ22a1b+ µ21a2)

(µ1 + µ2)3Γ(4− αmin)
and L = L2;(3.1)

if, on the other hand, b = 0 or b = ∞,

π2 =
2µ2maxamin

(µ1 + µ2)3Γ(4− αmin)
and L = Lmin,(3.2)

where min is the index 1 if b = ∞ (e.g. if α1 < α2) and is the index 2 if b = 0, max denoting

the other index.

3.1 Reflecting Gaussian process as the limit

Condition 3.1 (heavy traffic condition) For each N , let the service rate µN be given by

µN = Nλγ + θ
√
N,(3.3)

where θ is some positive constant.

In addition, we need the below conditions on the distributions of F1 and F2:

Fi(x) (i = 1, 2) is absolutely continuous in terms of x;(3.4)

The density fi(x) (i = 1, 2) of Fi satisfies lim
x→0+

fi(x) <∞.(3.5)

Before we state our main theorems, we define the scaling processes for each N as follows,

Q̃N (·) ≡ 1√
N
QN (·), L̃N (·) ≡ µN√

N
LN (·).(3.6)

Theorem 3.1 Under condtions (3.3)-(3.5) and as N → ∞, both Q̃N (·) and L̃N (·) converge
in distribution under Skorohod topology to a reflecting Gaussian process Q̃(·) given by

Q̃(·) = Ã(γ·) + λT̃ (·)− S̃(λγ·) − θ ·+Ĩ(·) ≥ 0,(3.7)

where the three processes Ã(γ·), S̃(λγ·) and T̃ (·) are independent each other, and furthermore,

Ã(γ·) is a Brownian motion with mean zero and variance function λγ·, S̃(λγ·) is also a

Brownian motion with mean zero and variance function λγσ2v · , T̃ (·) is a Gaussian process

with a.s. continuous sample paths, mean zero and stationary increments, whose covariance

and variance functions satisfy

Cov(T̃ (t), T̃ (s)) =
1

2

(

V ar(T̃ (t)) + V ar(T̃ (s))− V ar(T̃ (t− s))
)

,(3.8)

V ar(T̃ (t)) ∼
{

π2t2HL(t) as t→ ∞ for 1 < αmin < 2,

π2t as t→ ∞ and αmin = 2,
(3.9)

where H is the Hurst parameter given by H = (3 − αmin)/2. Moreover, Ĩ(·) in (3.7) is a

non-decreasing process with Ĩ(0) = 0 and satisfies
∫ ∞

0
Q̃(s)dĨ(s) = 0.
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Remark 3.1 More discussions about reflected Gaussian processes, readers are referred to

Whitt [29]. From the theorem, we have the following observations. When 1 < αmin < 2, we

have that 1/2 < H < 1 which implies that the process T̃ (·) exhibits long range dependence.

When αi = 2 for i = 1, 2, the ON- and OFF-periods both have finite variance and hence

we have that H = 1/2 and L = 1, which imply that T̃ (·) exhibits short range dependence.

Finally, the results given in the theorem can be considered as a kind of extension of Little’s

formula for M/M/1 queueing model or considered as satisfying certain state space collapse

property.

3.2 Reflecting fractional Brownian motion as the limit

In this subsection, we suppose that at least one of σ2i (i = 1, 2) is infinite. To further

discussion, we need to introduce another time-scaling parameter R and assume that N =

N(R) goes to infinite as R → ∞. Moreover, we assume that N is taken to satisfy the below

fast growth condition (and see more discussion in Mikosch et al. [22])

NRF̄L(R) → ∞, as R→ ∞,(3.10)

where F̄L = F̄i if L = Li and L is defined in (3.1) and (3.2). Notice that (3.10) implies

NR1−αminL(R) → ∞.

Condition 3.2 (heavy traffic condition) For each N and R, let the service rate µR be

given by

µR = Nλγ + θ
(

NR1−αminL(R)
)1/2

,(3.11)

where θ is some positive constant.

Next, let dR be the normalization sequence given by

dR = (NR3−αminL(R))1/2,(3.12)

and define

Q̃R(·) ≡ 1

dR
QN (R·), L̃R(·) ≡ µR

dR
LN (R·).(3.13)

Theorem 3.2 Assuming that conditions (3.10) and (3.11) hold, then as R→ ∞, both Q̃R(·)
and L̃R(·) converge in distribution under Skorohod topology to a process Q̃H(·) given by

Q̃H(·) = λπBH(·) − θ ·+ĨH(·) ≥ 0,(3.14)

where BH(·) is a standard FBM, and ĨH(·) is a non-decreasing process with Ĩ(0) = 0 and

satisfies
∫ ∞

0
Q̃H(s)dĨH(s) = 0.
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Remark 3.2 Standard FBM is a mean zero Gaussian process with a.s. continuous sample

paths and whose covariance structure is as follows

Cov(BH(t), BH(s)) =
1

2

(

|t|2H + |s|2H − |t− s|2H
)

.

4 Proof of main theorems

Let TN (t) be the total cumulative amount of ON time summed over all N sources, that is,

TN (t) ≡
N
∑

n=1

Tn(t) =

∫ t

0
WN (s)ds,(4.1)

where WN (·) is the superposition of Wn(·) for n = 1, ..., N , that is, for each t ∈ [0,∞),

WN (t) =
N
∑

n=1

Wn(t).(4.2)

Moreover, let Ā(t) denote the cumulative number of arrival packets to the server during the

time interval [0, t], that is,

Ā(t) = sup

{

m :
m
∑

i=1

u(i) ≤ t

}

,(4.3)

where {u(i), i = 1, 2, ...} is an exponentially distributed random sequence with mean value

1/λ, which is independent of all processes mentioned before. Then we have the below lemma.

Lemma 4.1 The stochastic processes AN (·) in (2.5) and Ā(TN (·)) in (4.3) have the same

distribution.

Proof. To show that AN (·) and Ā(TN (·)) have the same distribution, it suffices to show

that they have the same finite-dimensional distribution for an arbitrary positive integer k

and arbitrary numbers t1, ..., tk ∈ [0,∞) according to Proposition 2.2 in Kallenberg [17].

Notice that the process WN (·) in (4.2) takes values in the set N = {0, 1, ..., N} and has

the piecewise constant sample paths given by

x(t) =
M
∑

i=1

ni−1I{si−1 ≤ t < si}, ni−1 ∈ N , ni−1 6= ni,(4.4)

where s0, s1, ..., sM with s0 = 0 and sM = ∞ is a partition of the interval [0,∞) and M is a

positive integer or infinite. Then we use DN [0,∞) to denote the set of all of these functions

defined in (4.4). Obviously, it is a subset of the Skorohod topological space DE [0,∞). Under

the same topology, DN [0,∞) becomes a measurable space in its own right when endowed

with the Borel σ-field A∩B = {A∩B,B ∈ B} where B is the Borel σ-field in DE [0,∞) (see,

for example, Kallenberg [17]). Then there is a probability distribution FN (·) on DN [0,∞)

for the process WN (·) in (4.2), which is uniquely determined by the length distributions of
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ON- and OFF-periods and the source number N (here, for our purpose, we will not derive

the explicit expression of FN (·)).
Basing on the above observation, we first consider the one-dimensional case. For each

t ≥ 0 and each nonnegative number m, it follows from the independent and stationary

increment properties of Poisson process that

P{AN (t) = m} =

∫

DN [0,∞)

{

c
∑

i=1

Nniλ(∆si) = m|WN(·) = x(·)
}

FN (dx),

where x(·) is a sample path as defined in (4.4), Nniλ(∆si) is the number of arrival packets

for the Poisson process with arrival rate niλ during the time interval ∆si = min{si, t} −
min{si−1, t} for i ∈ {1, ...,M}, and the integer c is given by c = 1 + sup{i : si < t}. Then by

the independent and stationary increment properties again, we have,

P{AN (t) = m} =

∫

DN [0,∞)
P

{

N
∑

i=0

Niλ(∆s̄i) = m|WN (·) = x(·)
}

FN (dx)

=

∫

DN [0,∞)
P

{

N
∑

i=1

Nλ(i∆s̄i) = m|WN (·) = x(·)
}

FN (dx)

=

∫

DN [0,∞)
P

{

Nλ(τ
N (t)) = m|WN (·) = x(·)

}

FN (dx)

= P{Ā(TN (t)) = m},

where ∆s̄i is the summation of time intervals during which the arrival rate for the associated

Poisson process is iλ, and τN (t) is the total cumulative amount of ON time from all N sources

up to time t along the sample path x(·).
Secondly, we consider the two-dimensional case (we will omit the discussion for more

higher-dimensional cases since they are similar). For any t1, t2 ∈ [0,∞) with t1 < t2, and

nonnegative integers m1 and m2, it follows from the independent and stationary increment

properties and the definition of conditional probability that

P
{

AN (t1) = m1, A
N (t2) = m2

}

=

∫

DN [0,∞)
P

{

AN (t1) = m1|WN (·) = x(·)
}

P
{

AN (t2 − t1) = m2 −m1|WN (·) = x(·)
}

FN (dx)

=

∫

DN [0,∞)
P

{

Nλ(τ(t1)) = m1|WN (·) = x(·)
}

P
{

Nλ(τ(t2 − t1)) = m2 −m1|WN (·) = x(·)
}

FN (dx)

= P
{

Ā(TN (t1)) = m1, Ā(T
N (t2)) = m2

}

.

where τ(t2 − t1) is the total cumulative amount of ON time from all N sources during time

interval [t1, t2) along the path x(·). Hence we have proved that AN (·) and Ā(TN (·)) have the

same distribution. ✷
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4.1 Proof of Theorem 3.1

First of all, we define some scaled and centered processes. For each t ≥ 0 and N ≥ 1, let

˜̄A
N
(t) ≡ 1√

N

(

Ā(Nt)− λNt
)

,(4.5)

S̃N (t) ≡ 1√
N

(

SN (t)− µN t
)

,(4.6)

T̃N (t) ≡ 1√
N

(

TN (t)− γNt
)

=

∫ t

0

1√
N

N
∑

n=1

(Wn(s)− γN) ds.(4.7)

Then we have the following lemma.

Lemma 4.2 There exist three independent processes Ã(·), S̃(λγ·) and T̃ (·) such that

( ˜̄A
N
(·), S̃N (·), T̃N (·)) ⇒ (Ã(·), S̃(λγ·), T̃ (·)) as N → ∞,(4.8)

where Ã(·) is a Brownian motion with mean 0 and variance function λ·, S̃(λγ·) is a Brownian

motion with mean zero and variance function λγσ2v ·, T̃ (·) is a Gaussian process with station-

ary increments, mean 0, stationary increments, whose covariance and variance functions are

as given in (3.8)-(3.9).

Proof. First of all, it follows from Functional Central Limit Theorem (e.g., Chen and

Yao [5]) that

˜̄A
N
(·) ≡ 1√

N

(

Ā(N ·)− λN ·) ⇒ Ã(·),(4.9)

where Ã(·) is a Brownian motion with mean zero and variance λ·.
Secondly, for each t ≥ 0, we have,

S̃N (t) =
1√
N

(

sup
{

k : vN (1) + ...+ vN (k) ≤ t
}

− µN t
)

=
1√
N

(

sup
{

k : v(1) + ...+ v(k) ≤ µN t
}

− µN t
)

=
1√
N

(

SN
1 (NµN1 t)−NµN1 t

)

,

where in the last equation, µN1 is given by

µN1 = λγ +
θ√
N
,

and SN
1 (·) is the counting process corresponding to the i.i.d. normalized random sequence

{v(i), i ≥ 1} with mean 1 and variance σ2v . It is obvious that µ
N
1 → λγ as N → ∞. Then by

Functional Central Limit Theorem (e.g., Chen and Yao [5]), we have

S̃N (·) ⇒ S̃(λγ·) as N → ∞,
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where S̃(λγ·) is a Brownian motion with mean zero and variance function λγσ2v ·.
Thirdly, it follows from conditions (3.4)-(3.5) and Corollary 3.1 in Debicki and Pal-

mowski [11] that the below convergence in distribution is true

W̃N (·) ≡ 1√
N

N
∑

n=1

(Wn(·)− γN) ⇒ W̃ (·),(4.10)

where W̃ (·) is a stationary centered Gaussian process with a.s. continuous sample paths

(by Hahn [14] since Wn(t) is stochastically continuous) and covariance function η(·) which

satisfies (see the proof of Theorem 1 in Taqque et al. [28] for details),

V ar

(
∫ t

0
W̃ (u)du

)

= 2

∫ t

0

∫ v

0
η(u)dudv,(4.11)

which has the expression as in (3.9). By Skorohod representation theorem (see, for example,

Ethier and Kurtz [12]), we can assume that the convergence in (4.10) is u.o.c. Then we have

T̃N(·) =
∫ ·

0
W̃N(s)ds →

∫ ·

0
W̃ (s)ds ≡ T̃ (·) u.o.c. as N → ∞.

Thus by the definition of weak convergence on C[0,∞) (see, for example, Whitt [29]), Sko-

rohod representation theorem and Proposition 14.6 in Kallenberg [17], the above u.o.c. con-

vergence implies weak convergence. Now, we show that T̃ (·) is a Gaussian process. Due to

(4.11) and Theorem 7 in page 128 of [13], W̃ (·) is mean square integrable in any given finite

interval [0, T ], and therefore it follows from Theorem 3 in page 142 of [13] that T̃ (·) is a

Gaussian process in [0, T ]. Since for any given n ∈ {1, 2, ..., } and any given t1, ..., tn ∈ [0,∞),

we can find an T1 < ∞ such that t1, ..., tn belong to the common interval [0, T1]. Hence the

joint distribution of T̃ (t1), ..., T̃ (tn) is normal. Thus we can conclude that T̃ (·) is a Gaussian

process in [0,∞), whose variance function is as shown in (4.11). Since W̃ (·) is stationary,

T̃ (·) has stationary increments and its covariance function is given by the expression in (3.8)

due to Proposition 1(b) in Choe and Shroff [6].

Finally, by the independence assumptions and definitions of related processes, we know

that the three processes ˜̄A
N
(·), S̃N (·) and T̃N (·) are independent each other for each N . Thus

we can conclude that Ã(·), S̃(λγ·) and T̃ (·) are independent each other. Hence we finish the

proof of the lemma. ✷

To complete the proof of the theorem, for each t ≥ 0, we rewrite (2.8) as the summation

of centered processes and regulated non-decreasing process as follows,

QN (t) = XN (t) + IN (t),(4.12)

where

XN (t) =
(

AN (t)− λγNt
)

−
(

SN
(

BN (t)
)

− µNBN (t)
)

−
√
Nθt,

IN (t) = µN
∫ t

0
I{QN (s) = 0}ds.

11



The process IN (·) is non-decreasing process and can increase only when the queue length

process QN (·) reaches zero due to the non-idling service discipline and the fact that QN (t) ≥ 0

for all t ≥ 0.

Lemma 4.3

X̃N (·) ≡ 1√
N
XN (·) ⇒ X̃(·) = Ã(γ·) + λT̃ (·) − S̃(λγ·) − θ · as N → ∞,

where Ã(γ·) is a Brownian motion with mean 0 and variance function λγ·.

Proof. First of all, we prove the following claim to be true

ẼN (·) ≡ 1√
N

(

AN (·)− λγN ·
)

⇒ Ã(γ·) + λT̃ (·) as N → ∞.

In fact, by Lemma 4.1, it suffices to prove the following claim,

1√
N

(

Ā(TN (·)) − λγN ·
)

⇒ Ã(γ·) + λT̃ (·) as N → ∞,

and it is a direct conclusion of Lemma 4.2 and Corollary 13.3.2 of Whitt [29]. Thus, by

Lemma 4.2 and the independence assumption, we have the below joint weak convergence

(

ẼN (·), S̃N (·)
)

⇒
(

Ã(γ·) + λT̃ (·), S̃(λγ·)
)

.(4.13)

Moreover, by Skorohod representation theorem, we can assume that the above convergence

is u.o.c. a.s. Thus it follows from (4.13) that

(

1

N
AN (·), 1

N
SN (·)

)

→ (λγ·, λγ·) u.o.c. a.s.(4.14)

Then, due to (4.14), the conditions stated in Theorem 6.5 of [5] are satisfied. So, by the same

theorem of [5], we know that, for each t ≥ 0 and as N → ∞,

max
0≤s≤t

|BN (s)− s| → 0.(4.15)

Therefore, by the above discussions and the fact that the associated limiting processes have

a.s. continuous sample paths, we have

∥

∥

∥X̃N (·)− X̃(·)
∥

∥

∥

t
≤

∥

∥

∥ẼN (·)− Ã(γ·) + λT̃ (·)
∥

∥

∥

t
+

∥

∥

∥S̃N (BN (·))− S̃(λγBN (·))
∥

∥

∥

t

+
∥

∥

∥S̃(BN (·))− S̃(λγ·)
∥

∥

∥

t

≤
∥

∥

∥ẼN (·)− Ã(γ·) + λT̃ (·)
∥

∥

∥

t
+

∥

∥

∥S̃N (·)− S̃(λγ·)
∥

∥

∥

t

+
∥

∥

∥S̃(BN (·))− S̃(λγ·)
∥

∥

∥

t

→ 0 a.s. as N → ∞,
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where in the second inequality, we used the fact that BN (t) ≤ t for each t ≥ 0 and in the last

claim, we also used the fact that S̃(·) is continuous. Thus

X̃N (·) → X̃(·) u.o.c. a.s. as N → ∞.

Hence by Proposition 5.3 in Chapter 3 of Ethier and Kurtz [12], the lemma is proved. ✷

Next, similar to the discussion as in (4.12), let

Ṽ N (t) =
1√
N

(

µNV N (t)− t
)

,(4.16)

and rewrite (2.9) as the summation of centered processes and regulated non-decreasing process

as follows,

µNLN (t) = ZN (t) + IN (t),(4.17)

where

ZN (t) =
(

µNV N (AN (t))−AN (t)
)

+
(

AN (t)−Nλγt
)

−
√
Nθt.

Then we have the following lemma.

Lemma 4.4

(Ṽ N (·), ˜̄AN
(·), T̃N (·)) ⇒ (Ṽ (·), Ã(λγ·), T̃ (·)) as N → ∞,(4.18)

where Ṽ (·), Ã(·) and T̃ (·) are independent Brownian motions, moreover, Ṽ (·) is of mean zero

and variance function σ2v ·, Ã(·) and T̃ (·) are given as before. Moreover,

Z̃N (·) ≡ 1√
N
ZN(·) ⇒ X̃(·) = Ã(γ·) + λT̃ (·)− S̃(λγ·)− θ · as N → ∞.(4.19)

Proof. By applying Functional Central Limit Theorem and the same explanation as in

Lemma 4.2, one can prove the convergence stated in (4.18). Then it follows from (4.18),

Lemma 4.1 and random time change theorem that

Z̃N (·) ≡ 1√
N
ZN (·) ⇒ Ṽ (λγ·) + Ã(γ·) + λT̃ (·)− θ · as N → ∞.

Notice that Ṽ (λγ·) and −S̃(λγ·) have the same distribution, we can conclude that the claim

stated in (4.19) is true. ✷

Proof of Theorem 3.1

Once the above lemmas are obtained, we can go over the following standard procedure to

finish the proof of the theorem. By Skorohod representation theorem, we suppose that the

convergence in Lemma 4.3 is u.o.c. Then, by (4.12) and according to Theorem 6.1 in Chen

13



and Yao [5], there uniquely exist a pair of regulated mappings φ and ψ, which are continuous,

such that for each t ≥ 0,

ĨN (t) =
1√
N
IN (t) = φ

(

X̃N (t)
)

= sup
0≤s≤t

(

X̃N (s)
)−

,

Q̃N (t) =
1√
N
QN (t) = ψ

(

X̃N (t)
)

= X̃N (t) + φ
(

X̃N (t)
)

≥ 0,

where x−(s) = max{−x(s), 0}. Then by continuous mapping theorem and Lemma 4.3, we

have, as N → ∞,

IN (·) → Ĩ(·) ≡ φ
(

X̃(·)
)

a.s. u.o.c.,(4.20)

Q̃N (·) → Q̃(·) ≡ ψ
(

X̃(·)
)

≥ 0 a.s. u.o.c.(4.21)

Obviously, Ĩ(·) and Q̃(·) have a.s. continuous sample paths, and moreover, Ĩ(·) is non-

decreasing with Ĩ(0) = 0. Since Q̃N (t) ≥ 0 and IN (t) increases only at times t such that

Q̃N (t) = 0, we have for each T > 0,

∫ T

0
Q̃N (t) ∧ 1dĨN (t) = 0.(4.22)

Define

f : x ∈ R→ f(x) = x ∧ 1.

Clearly, we have f ∈ Cb(R). Then by (4.20), (4.21), (4.22) and Lemma 8.3 in Dai and Dai [8],

we have
∫ T

0
Q̃(t) ∧ 1dĨ(t) = 0 for all T > 0.

Hence Ĩ(·) increases only at times t such that Q̃(t) = 0.

Finally, by Lemma 4.4 and the same procedure as above, one can prove the weak conver-

gence for the processes of L̃N (·) as N → ∞. ✷

4.2 Proof of Theorem 3.2

Lemma 4.5 Let β = 1− αmin/2. Then, as T → ∞, we have,

U(T ) ≡ T βL(T )1/2 → ∞,(4.23)

V (T ) ≡ Tαmin/2−1/2/L(T )1/2 → ∞.(4.24)

Proof. Since L(T ) is a slowly varying function and 1 < αmin < 2, we know that U(T ) is

a regularly varying function with index 0 < β < 1/2, that is, for x > 0,

lim
T→∞

U(Tx)

U(T )
= xβ.

14



Then, take 0 < ǫ < β, it follows from Proposition 0.8 in Resnick [25] that there is a fixed T0
such that for x ≥ 1 and T ≥ T0, we have

U(Tx) > (1− ǫ)xβ−ǫU(T ).

Let x→ ∞ in the above inequality, we know that (4.23) is true.

Similarly, V (T ) is a regularly varying function with index 0 < αmin/2 − 1/2 < 1/2, then

by the same reason as above, we know that (4.24) holds. ✷

Now for each t ≥ 0, we rewrite (3.13) as the summation of centered processes and regulated

non-decreasing process as follows,

Q̃R(t) = XR(t) + IR(t),(4.25)

where

XR(t) =
1

dR

(

AN (Rt)− λγNRt
)

− 1

dR

(

SN
(

BN (Rt)
)

− µRBN (Rt)
)

− θt,

IR(t) =
µR

dR
Y N (Rt) =

RµR

dR

∫ t

0
I{Q̃R(s) = 0}ds.

The process IR(·) is non-decreasing process and can increase only when the queue length

process Q̃R(·) reaches zero due to the non-idling service discipline.

Lemma 4.6 For each N and R and under conditions (3.10) and (3.11), we have, as R→ ∞,

XR(·) converges weakly to a process X̃(·), that is,

XR(·) ⇒ X̃(·) = λπBH(·)− θ·(4.26)

where π and BH(·) are given in Theorem 3.2.

Proof. Due to Lemma 4.1, it suffices to prove the below facts, as R→ ∞,

1

dR
Ā

(

TN (R·)
)

− 1

dR
µRR ·(4.27)

=
1

dR

(

Ā
(

TN (R·)
)

− λTN (R·)
)

+
1

dR
λ
(

TN (R·)− γNR·
)

− θ ·

⇒ λπBH(·)− θ·,

and

1

dR

(

SN
(

BN (R·)
)

− µRBN (R·)
)

⇒ 0.(4.28)

As a matter of fact, notice that from the proof of Theorem 1 in Taqqu et al. [28], we know

that the process Tn(·) defined in (2.3) has variance

V ar(Tn(t)) ∼ π2t3−αminL(t) as t→ ∞.
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Then it follows from condition (3.10) and a similar proof as used in justifying Theorem 4 in

Mikosch et al. [22] that the below weak convergence in the space C[0,∞) is true,

T̃R(·) ≡ 1

dR
(TN (R·)− γNR·) ⇒ πBH(·) as R→ ∞,(4.29)

where BH is standard fractional Brownian motion with H = (3 − αmin)/2 and π is given in

(3.1) and (3.2).

Next, by Functional Central Limit Theorem (see, for example, Chen and Yao [5]), we

have that

˜̄A
R
(·) ≡ 1

(NR)1/2
(

Ā(NR·)− λNR·) ⇒ ξa(·) as R→ ∞,(4.30)

where the weak convergence is in the Skorohod topology and ξa(·) is a Brownian motion with

mean zero and variance λ.

Moreover, for each t ≥ 0, we have,

S̃R(t) ≡ 1

(NR)1/2

(

SN (Rt)− µRRt
)

=
1

(NR)1/2

(

sup
{

k : v(1) + ...+ v(k) ≤ µRRt
}

− µRRt
)

=
1

(NR)1/2

(

SN
1 (NRµR1 t)−NRµR1 t

)

,

where in the last equation, µR1 is given by

µR1 = λγ + (R1−αminL(R))1/2θ,

and SN
1 (·) is the counting process corresponding to the i.i.d. normalized random sequence

{v(i), i ≥ 1} with mean 1. Moreover, by Lemma 4.5, we have that µR1 → λγ as R → ∞.

Then by Functional Central Limit Theorem, we have

S̃R(·) ⇒ ξs(λγ·) as R→ ∞,(4.31)

where ξs(λγ·) is a Brownian motion with mean zero and variance λγσ2v .

Now notice the independent assumption among the processes ˜̄A
R
(·), S̃R(·) and T̃R(·),

and the properties that Brownian motion and fractional Brownian motion have a.s. contin-

uous sample paths, then by Skorohod representation theorem (see, for example, Ethier and

Kurtz [12]), we can and will assume that the convergence in (4.29)-(4.31) is u.o.c. Thus, by

Lemma 4.5 and for each t ≥ 0, as R→ ∞,

∥

∥

∥

∥

1

NR

(

TN (R·)− γNR·
)

∥

∥

∥

∥

t
=

1

N1/2V (R)

∥

∥

∥

∥

1

dR

(

TN (R·)− γNR·
)

∥

∥

∥

∥

t

→ 0 a.s.,
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which implies that as R→ ∞,

TR
1 (·) ≡ 1

NR
TN (R·) → γ · a.s. u.o.c.(4.32)

Therefore, by (4.30), (4.32), Random Change of Time Theorem in Billinsley [1] and Lemma 4.5,

we have

1

dR

(

Ā
(

TN (R·)
)

− λTN (R·)
)

(4.33)

=
1

U(R)(NR)1/2

(

ĀN (NRTR
1 (·))− λNRTR

1 (·)
)

→ 0 a.s. u.o.c.

Next, notice that, for each t ≥ 0,

BR
1 (t) ≡

BN (Rt)

R
≤ t.

Then, it follows from (4.31) and Lemma 4.5 that

∥

∥

∥

∥

1

dR

(

SN
(

BN (Rt)
)

− µRBN (Rt)
)

∥

∥

∥

∥

t

=
1

U(R)

∥

∥

∥

∥

1

(NR)1/2

(

SN
(

RBN
1 (·)

)

− µRRBN
1 (·)

)

∥

∥

∥

∥

t

≤ 1

U(R)

∥

∥

∥

∥

1

(NR)1/2

(

SN (R·)− µRR·
)

∥

∥

∥

∥

t

→ 0 a.s.

Thus, we have, as R→ ∞,

1

dR

(

SN
(

B̄N (R·)
)

− µRB̄N(R·)
)

→ 0 a.s. u.o.c.(4.34)

Hence by (4.29), (4.33) and (4.34), as R→ ∞, the convergence stated in (4.27) and (4.28) is

true. ✷

The remaining proof of Theorem 3.2 is similar to that used in justifying Theorem 3.1.

Hence we omit it here.
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