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Message-Passing Estimation from
Quantized Samples

Ulugbek Kamilov, Vivek K Goyal, and Sundeep Rangan

Abstract—Estimation of a vector from quantized linear mea-
surements is a common problem for which simple linear tech-
niques are suboptimal—sometimes greatly so. This paper de-
velops generalized approximate message passing (GAMP) algo-
rithms for minimum mean-squared error estimation of a random
vector from quantized linear measurements, notably allowing the
linear expansion to be overcomplete or undercomplete and the
scalar quantization to be regular or non-regular. GAMP is a
recently-developed class of algorithms that uses Gaussianapprox-
imations in belief propagation and allows arbitrary separable
input and output channels. Scalar quantization of measurements
is incorporated into the output channel formalism, leading to
the first tractable and effective method for high-dimensional
estimation problems involving non-regular scalar quantization.
Non-regular quantization is empirically demonstrated to greatly
improve rate–distortion performance in some problems with
oversampling or with undersampling combined with a sparsity-
inducing prior. Under the assumption of a Gaussian measurement
matrix with i.i.d. entries, the asymptotic error performan ce of
GAMP can be accurately predicted and tracked through the state
evolution formalism. We additionally use state evolution to design
MSE-optimal scalar quantizers for GAMP signal reconstruction
and empirically demonstrate the superior error performance of
the resulting quantizers.

Index Terms—analog-to-digital conversion, approximate mes-
sage passing, belief propagation, compressed sensing, frames,
non-regular quantizers, Slepian–Wolf coding, quantization,
Wyner–Ziv coding

I. I NTRODUCTION

Estimation of a signal from quantized samples is a funda-
mental problem in signal processing. It arises both from the
discretization in digital acquisition devices and the quantiza-
tion performed for lossy compression. In some settings, much
can be gained from treating quantization with care. A key ex-
ample is analog-to-digital conversion (ADC), where the advan-
tage from oversampling is increased by replacing conventional
linear estimation with nonlinear estimation procedures [1]–[9].
Sophisticated approaches are also helpful when using sparsity
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or compressibility to reconstruct an undersampled signal [10]–
[12].

This paper focuses on using a simple message-passing
algorithm based on belief propagation (BP). Implementation
of BP for estimation of a continuous-valued quantity requires
discretization of densities; this is inherently inexact and leads
to high computational complexity. To handle quantization
effects without any heuristic additive noise model [13] and
with low complexity, we use a recently-developed Gaussian-
approximated BP algorithm, calledgeneralized approximate
message passing(GAMP) [14] or relaxed belief propaga-
tion [15], which extends earlier methods [16], [17] to nonlinear
output channels.

A. Contributions

Our first main contribution is to demonstrate that GAMP
provides significantly-improved performance over traditional
methods for estimating from quantized samples. Gaussian ap-
proximations of BP have previously been shown to be effective
in several other applications [15]–[20]; for our application to
estimation from quantized samples, the extension to general
output channels [14], [15] is essential.

Our second main contribution concerns the quantizer design.
When quantizer outputs are used as inputs to a nonlinear esti-
mation algorithm, minimizing the mean-squared error (MSE)
between quantizer inputs and outputs is generally not equiv-
alent to minimizing the MSE of the final reconstruction [21].
To optimize the quantizer for the GAMP algorithm, we use
the fact that the MSE under large random mixing matrices
A can be predicted accurately from a set of simple state
evolution (SE) equations [14], [22]. Then, by modeling the
quantizer as a part of the measurement channel, we use the
SE formalism to optimize the quantizer to asymptotically
minimize distortions after the reconstruction by GAMP. Note
that our use of randomA is for rigor of the SE formalism;
the effectiveness of GAMP does not depend on this.

B. Outline

The remainder of the paper is organized as follows. Sec-
tion II provides basic background material on quantization,
compressed sensing, and belief propagation. Section III in-
troduces the problem of estimating a random vector from
quantized linear transform coefficients. It concentrates on
geometric insights for both the oversampled and undersampled
settings. The main results in this paper apply under a Bayesian
formulation introduced in Section IV. Note that this Bayesian
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formulation does not require sparsity of the signal nor spec-
ify undersampling or oversampling. The use of generalized
approximate message passing to find optimal estimates under
this Bayesian formulation is derived in Section V. Section VI
describes the use of state evolution to predict the performance
of GAMP for our problem. Optimization of quantizers using
state evolution is developed in Section VII, and experimental
results are presented in Section VIII. Section IX concludesthe
paper.

C. Notation

Vectors and matrices will be written in boldface type (A,
x, y, . . . ) to distinguish from scalars written in normal
weight (m, n, . . . ). Random and non-random quantities (or
random variables and their realizations) are not distinguished
typographically since the use of capital letters for random
variables would conflict with the convention of using capital
letters for matrices (or in the case of quantization, an operator
on a vector rather than a scalar). The probability density
function (p.d.f.) of random vectorx is denotedpx, and the
conditional p.d.f. ofy given x is denotedpy|x. When these
densities are separable and identical across components, we
repeat the previous notations:px for the scalar p.d.f. andpy|x
for the scalar conditional p.d.f. Writingx ∼ N (a, b) indicates
thatx is a Gaussian random variable with meana and variance
b. The resulting p.d.f. is written aspx(t) = φ(t ; a, b).

II. BACKGROUND

This section establishes concepts and notations central to
the paper. For a comprehensive tutorial history of quantiza-
tion, we recommend [23]; for an introduction to compressed
sensing, [24]; and for the basics of belief propagation, [25]–
[27].

A. Scalar Quantization

A K-level scalar quantizerq : R → R is defined by itsout-
put levelsor reproduction pointsC = {ci}Ki=1 and (partition)
cells {q−1(ci)}Ki=1. It can be decomposed into a composition
of two mappingsq = β ◦ α whereα : R → {1, 2, . . . , K}
is the (lossy) encoderand β : {1, 2, . . . , K} → C is
the decoder. The boundaries of the cells are calleddecision
thresholds. One may allowK = ∞ to denote thatC is
countably infinite.

A quantizer is calledregular when each cell is a convex set,
i.e., a single interval. Each cell of a regular scalar quantizer
thus has a boundary of one point (if the cell is unbounded) or
two points (if the cell is bounded). If the input to a quantizer
is a continuous random variable, then the probability of the
input being a boundary point is zero. Thus it suffices to specify
the cells of aK-point regular scalar quantizer by its decision
thresholds{bi}Ki=0, with b0 = −∞ andbK = ∞. The encoder
satisfies

α(x) = i for x ∈ (bi−1, bi),

and the output for boundary points can be safely ignored.
The lossy encoder of a non-regular quantizer can be decom-

posed into the lossy encoder of a regular quantizer followed

by a many-to-one integer-to-integer mapping. SupposeK-
level non-regular scalar quantizerq′ has decision thresholds
{b′i}K

′

i=0, and letα be the lossy encoder of a regular quan-
tizer with these decision thresholds. Sinceq′ is not regular,
K ′ > K. Let α′ : R → {1, 2, . . . , K} denote the lossy
encoder ofq′. Thenα′ = λ ◦ α, where

λ : {1, 2, . . . , K ′} → {1, 2, . . . , K}
is called abinning function, labeling function, or index assign-
ment. The binning function is not invertible.

The distortion of a quantizerq applied to scalar random
variablex is typically measured by the MSE

D = E[(x − q(x))2].

A quantizer is called optimal at fixed rateR = log2 K when
it minimizes distortionD among allK-level quantizers. To
optimize scalar quantizers under MSE distortion, it suffices to
consider only regular quantizers; a non-regular quantizerwill
never perform strictly better.

While regular quantizers are optimal for the standard lossy
compression problem, non-regular quantizers are sometimes
useful when some information aside fromq(x) is available
when estimatingx. Two key examples are Wyner–Ziv cod-
ing [28] and multiple description coding [29]. One method
for Wyner–Ziv coding is to apply Slepian–Wolf coding across
a block of samples after regular scalar quantization [30]; the
Slepian–Wolf coding is binning, but across a block rather
than for a single scalar. In multiple description scalar quan-
tization [31], two binning functions are used that together
are invertible but individually are not. In these uses of non-
regular quantizers, side information aids in recoveringx with
resolution commensurate withK ′ while the rate is only
commensurate withK, with K ′ > K.

Optimization of a quantizer can rarely be done exactly
or analytically. One standard way of optimizingq is via
the Lloyd algorithm, which iteratively updates the decision
boundaries and output levels by applying necessary conditions
for quantizer optimality.

A quantizerQ : R
m → R

m is called a scalar quantizer
when it is the Cartesian product ofm scalar quantizersqi :
R → R. In this paper,Q always represents a scalar quantizer
with component quantizers{qi}mi=1.

B. Compressed Sensing

Conventionally, one does not attempt to estimate ann-
dimensional signalx from fewer thann scalar quantities; it
would not seem to work from a simple counting of degrees
of freedom. Compressed sensing (CS) [32]–[34] encapsulates
a variety of techniques for estimatingx from m < n
scalar linear measurements, possibly including some noise, by
exploiting knowledge thatx is sparse or approximately sparse
in some given transform domain. Measurements are of the
form

z = Ax, (1)

whereA ∈ R
m×n is themeasurement matrix, or

y = z+ d = Ax+ d, (2)
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whered ∈ R
m is additive noise. Many theoretical guarantees

for compressed sensing are given with high probability of
success over a random selection ofA. Note that it is always
assumed thatA is available when estimatingx from z or y.

In this paper, we simplify notation and expressions by
assuming thatx itself is sparse or approximately sparse
without requiring the use of a transform domain. Also, since
our focus is on estimation in the presence of degradation of
measurements caused by quantization, we do not consider
further the noiseless measurement model (1).

The most commonly-studied estimator for the measurement
model (2) is thelassoestimator [35]

x̂ = argmin
x∈Rn

(
1
2‖y −Ax‖22 + γ‖x‖1

)
,

where algorithm parameterγ > 0 trades off data fidelity
against sparsity of the solution. This may be interpreted as
a Lagrangian form of the estimator

x̂ = argmin
x : ‖y−Ax‖22≤ǫ

‖x‖1,

which could be justified heuristically by‖d‖22 ≤ ǫ.
Most of the CS literature has considered signal recovery

with no noise or with‖d‖22 ≤ ǫ. However, in many practical
applications, measurements have to be discretized to a finite
number of bits. The effect of such quantization on the per-
formance of CS reconstruction has been studied in [36], [37].
In [38], high-resolution functional scalar quantization theory
was used to design quantizers for lasso estimation. Better yet
is to change the reconstruction algorithm: In [10]–[12], the
authors demonstrate that whend represents quantization error,

d = Q(Ax)−Ax,

significant improvements can be obtained by replacing the
constraint‖y−Ax‖22 ≤ ǫ by one that uses the partition cells
of the quantizers that composeQ.

While convex optimization formulations are prominent in
CS, estimation with generic convex program solvers often has
excessively high computational cost. Thus, there is significant
interest in greedy and iterative methods. The use of belief
propagation for CS estimation was first proposed in [39];
however, as explained in Section II-C, belief propagation has
high complexity for the estimation of continuous-valued quan-
tities. Lower-complexity approximations to belief propagation
were first proposed for CS estimation in [20]. To handle the
effects of quantization precisely, in this paper we use the
generalization of the technique of [17], [20] developed by
Rangan [14].

C. Belief Propagation

Consider the problem of estimating a random vectorx ∈ R
n

from noisy measurementsy ∈ R
m, where the noise is

described by a measurement channelpy|z that acts separably
and identically on each entry of the vectorz obtained via (1).
Moreover suppose that elements in the vectorx are distributed
i.i.d. according topx. We can construct the following condi-
tional probability distribution over random vectorx given the

measurementsy:

px|y(x | y) = 1

Z

n∏

j=1

px(xj)
m∏

i=1

py|z (yi | zi) , (3)

whereZ is the normalization constant andzi = (Ax)i. In
principle, it is possible to estimate eachxj by marginalizing
this distribution.

Belief propagation replaces the computationally intractable
direct marginalization ofpx|y with an iterative algorithm. To
apply BP, construct a bipartite factor graphG = (V, F,E)
from (3) and pass the following messages along the edgesE
of the graph:

µt+1
i←j(xj) ∝ px(xj)

∏

ℓ 6=i

µt
ℓ→j(xj), (4a)

µt
i→j(xj) ∝

∫
py|z(yi | zi)

∏

k 6=j

µt
i←k(xj) dx\j , (4b)

where∝ means that the distribution is to be normalized so
that it has unit integral and integration is over all the elements
of x exceptxj . We refer to messages{µi←j}(i,j)∈E as vari-
able updates and to messages{µi→j}(i,j)∈E as measurement
updates. BP is initialized by settingµ0

i←j(xj) = px(xj).
Earlier works on BP reconstruction have shown that it

is asymptotically MSE optimal under certain verifiable con-
ditions. These conditions involve simple single-dimensional
recursive equations calledstate evolution(SE), which predicts
that BP is optimal when the corresponding SE admits a unique
fixed point [16], [22]. However, direct implementation of
BP is impractical due to the dense structure ofA, which
implies that the algorithm must compute the marginal of
a high-dimensional distribution at each measurement node;
i.e., the integration in (4b) is over many variables. Further-
more, integration must be approximated through some discrete
quadrature rule.

BP can be simplified through various Gaussian approxima-
tions, including therelaxed BPmethod [15], [16] andapprox-
imate message passing (AMP)[14], [20]. Recent theoretical
work and extensive numerical experiments have demonstrated
that, in the case of certain large random measurement matrices,
the error performance of both relaxed BP and AMP can also
be accurately predicted by SE.

III. QUANTIZED L INEAR EXPANSIONS

This paper focuses on the general quantized measurement
abstraction of

y = Q(Ax), (5)

wherex ∈ R
n is a signal of interest,A ∈ R

m×n is a linear
mixing matrix, and Q : R

m → R
m is a scalar quantizer.

We will be primarily interested in (per-component) MSE
n−1E[‖x−x̂‖2] for various estimatorŝx that depend ony, A,
andQ. The cases ofm ≥ n andm < n are both of interest.
We sometimes usez = Ax to simplify expressions.
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A. Overcomplete Expansions

Let A ∈ R
m×n have rankn. Then{ai}mi=1 is a frame in

R
n, whereaTi is row i of A. Rankn can occur only with

m ≥ n, soAx is called anovercomplete expansionof x and
Q(Ax) as in (5) is called aquantized overcomplete expansion.
In some cases of interest, the frame may beuniform, meaning
‖ai‖ = 1 for eachi, or tight, meaningATA = cIn for some
scalarc.

Commonly-usedlinear reconstructionforms estimate

x̂ = A†y = A†Q(Ax), (6)

whereA† = (ATA)−1AT is the pseudoinverse ofA. Under
several reasonable models, linear reconstruction has MSE
inversely proportional tom. For example, suppose the frame is
uniform and tight andx is an unknown deterministic quantity.
By modeling scalar quantizationyi = qi(zi) with an additive
noise as

yi = zi + di (7a)

where

E[di] = 0, (7b)

E[didj ] = σ2
dδij , (7c)

one can compute the MSE to benσ2
d/m [40].

Even when the model (7) is accurate [41], the linear
reconstruction (6) may be far from optimal. More sophisti-
cated algorithms have focused on enforcingconsistencyof an
estimate with the quantized samples. A nonlinear estimate may
exploit the boundedness of the sets

Si(yi) = {x ∈ R
n | qi(zi) = yi}, i = 1, 2, . . . , m,

which we callsingle-sample consistent sets. Assuming for now
that scalar quantizerqi is regular and its cells are bounded, the
boundary ofSi(yi) is two parallel hyperplanes. The full set of
hyperplanes obtained for one indexi by varyingyi over the
output levels ofqi is called a hyperplane wave partition [42],
as illustrated for a uniform quantizer in Figure 1(a). The set
enclosed by two neighboring hyperplanes in a hyperplane
wave partition is called aslab; one slab is shaded in Fig-
ure 1(a). IntersectingSi(yi) for n distinct indexes specifies an
n-dimensional parallelotope as illustrated in Figure 1(b).Using
more thann of these single-sample consistent sets restrictsx

to a finer partition, as illustrated in Figure 1(c) form = 3.
The intersection

S(y) =
m⋂

i=1

Si(yi)

is called theconsistent set. Since eachSi(yi) is convex,
one may reachS(y) asymptotically through a sequence of
projections ontoSi(yi) using each infinitely often [1], [2].

In a variety of settings, nonlinear estimates achieve MSE
inversely proportional tom2, which is the best possible
dependence onm [42]. The first result of this sort was
in [1]. WhenA is an oversampled discrete Fourier transform
matrix andQ is a uniform quantizer,z = Ax represents
uniformly quantized samples above Nyquist rate of a periodic
bandlimited signal. For this case, it was proven in [1] that

any x̂ ∈ S(y) hasO(m−2) MSE, under a mild assumption
on ‖x‖. This was extended empirically to arbitrary uniform
frames in [3], where it was also shown that consistent estimates
can be computed through a linear program. The techniques
of alternating projections and linear programming suffer from
high computational complexity; yet, since they generally find
a corner of the consistent set (rather than the centroid), the
MSE performance is suboptimal.

Full consistency is not necessary for optimal MSE de-
pendence onm. It was shown in [4] thatO(m−2) MSE
is guaranteed for a simple algorithm that uses eachSi(yi)
only once, recursively, under mild conditions on randomized
selection of {ai}mi=1. These results were strengthened and
extended to deterministic frames in [9].

Quantized overcomplete expansions arise naturally in ac-
quisition subsystems such as ADCs, wherem/n represents
oversampling factor relative to Nyquist rate. In such systems,
high oversampling factor may be motivated by a trade-off
between MSE and power consumption or manufacturing cost:
within certain bounds, faster sampling is cheaper than a higher
number of quantization bits per sample [43]. However, high
oversampling does not give a good trade-off between MSE and
raw number of bits produced by the acquisition system: com-
bining the proportionality of bit rateR to number of samples
m with the best-caseΘ(m−2) MSE, we obtainΘ(R−2) MSE;
this is poor compared to the exponential decrease of MSE with
R obtained with scalar quantization of Nyquist-rate samples.

Ordinarily, the bit-rate inefficiency of the raw output is
made irrelevant by recoding, at or near Nyquist rate, soon
after acquisition or within the ADC. An alternative explored
in this paper is to combat this bit-rate inefficiency throughthe
use of non-regular quantization.

B. Non-Regular Quantization

The bit-rate inefficiency of the raw output with regular
quantization is easily understood with reference to Figure1(c).
After y1 andy2 are fixed,x is known to lie in the intersection
of the shaded strips. Only four values ofy3 are possible (i.e.,
the solid hyperplane wave breaksS1(1)∩S2(0) into four cells),
and bits are wasted if this is not exploited in the representation
of y3.

Recall the discussion of generating a non-regular quantizer
by using a binning functionλ in Section II-A. Binning does
not change the boundaries of the single-sample consistent sets,
but it makes these sets unions of slabs that may not even
be connected. Thus, while binning reduces the quantization
rate, in the absence of side information that specifies which
slab containsx (at least with moderately high probability),
it increases distortion significantly. The increase in distortion
is due toambiguity among slabs. Takingm > n quantized
samples together may provide adequate information to disam-
biguate among slabs, thus removing the distortion penalty.

The key concepts in the use of non-regular quantization
are illustrated in Figure 2. Suppose one quantized sample
y1 specifies a single-sample consistent setS1(y1) composed
of two slabs, such as the shaded region in Figure 2(a). A
second quantized sampley2 will not disambiguate between
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S1(−2)

S1(−1)

S1(0)

S1(1)

S1(2)

0

S1(1)

S2(0)

0

(a) (b) (c)

Fig. 1: Visualizing the information present in a quantized overcomplete expansion ofx ∈ R
2 when eachqi is a regular

quantizer. (a) A single hyperplane wave partition with one single-sample consistent set shaded. (b) Partition boundaries from
two hyperplane waves;x is specified to the intersection of two single-sample consistent sets, which is a bounded convex cell.
(c) Partition from part (b) in dashed lines with a third hyperplane wave added in solid lines.

the two slabs. In the example shown in Figure 2(b),S2(y2)
is composed of two slabs, andS1(y1) ∩ S2(y2) is the union
of four connected sets. A third quantized sampley3 may now
completely disambiguate; the particular example ofS3(y3)
shown in Figure 2(c) makesS = S1(y1)∩S2(y2)∩S3(y3) a
single convex set.

When the quantized samples together completely disam-
biguate the slabs as in the example, the rate reduction from
binning comes with no increase in distortion. The price to pay
comes in complexity of estimation.

The use of binned quantization of linear expansions was
introduced in [44], where the only reconstruction method
proposed is intractable in high dimensions because it is
combinatorial over the binning functions. Specifically, using
the notation from Section II-A, let the quantizer formingyi

be defined by(αi, βi, λi). Thenλ−1i (β−1i (yi)) will be a set of
possible values ofαi(zi) specified byyi. One can try every
combination, i.e., element of

λ−11 (β−11 (y1))×λ−12 (β−12 (y2))× · · · ×λ−1m (β−1m (ym)), (8)

to seek a consistent estimate. If the binning is effective, most
combinations yield an empty consistent set; if the slabs are
disambiguated, exactly one combination yields a non-empty
set, which is then the consistent setS. This technique has
complexity exponential inm (assuming non-trivial binning).
The recent manuscript [45] provides bounds on reconstruction
error for consistent estimation with binned quantization;it
does not address reconstruction.

This paper provides a tractable and effective method for
reconstruction from a quantized linear expansion with non-
regular quantizers. To the best of our knowledge, this is the
first such method.

C. Undercomplete Expansions

Maintaining the quantized measurement model (5), let us
turn to the case ofm < n. We now callQ(Ax) a quantized
undercomplete expansionof x.

Since the rank ofA is less thann, A is a many-to-one
mapping. Thus, even without quantization, one cannot recover
x from Ax. Rather,Ax specifies a proper subspace ofR

n

containingx; whenA is in general position, the subspace is
of dimensionn−m. Quantization increases the ambiguity in
the value ofx, yielding consist sets similar to those depicted in
Figures 1(a) and 2(a). However, as described in Section II-B,
knowledge thatx is sparse or approximately sparse could be
exploited to enable accurate estimation ofx from Q(Ax).

For ease of explanation, consider only the case wherex is
known to bek-sparse withk < m. Let J ⊂ {1, 2, . . . , n} be
the support (sparsity pattern) ofx, with |J | = k. The product
Ax is equal toAJ xJ , where xJ denotes the restriction
of the domain ofx to J and AJ is the m × k submatrix
of A containing theJ -indexed columns. AssumingAJ has
rank k (i.e., full rank),Q(Ax) = Q(AJ xJ ) is a quantized
overcompleteexpansion ofxJ . All discussion of estimation
of xJ from the previous subsections thus applies, assuming
J is known.

The key remaining issue is thatQ(Ax) may or may not
provide enough information to inferJ . In an overcomplete
representation, most vectors of quantizer outputs cannot occur;
this redundancy was used to enable binning in Figure 2, and
it can be used to show that certain subsetsJ are inconsistent
with the sparse signal model. In principle, one may enumerate
the setsJ of size k and apply a consistent reconstruction
method for eachJ . If only one candidateJ yields a non-
empty consistent set, thenJ is determined. This is intractable
except for small problem sizes because there are

(
n

k

)
candi-

dates forJ .

The key concepts are illustrated in Figure 3. To have an
interpretable diagram withk < m < n, we let (k,m, n) =
(1, 2, 3) and draw the space of unquantized measurementsz ∈
R

2. (This contrasts with Figures 1 and 2 where the space of
x ∈ R

2 is drawn.) The vectorx has one of
(
n

k

)
=
(
3
1

)
= 3

possible supportsJ . Thus, z lies in one of 3 subspaces of
dimension 1, which are depicted by the angled solid lines.
Scalar quantization ofz corresponds to separable partitioning
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S1(0)

S1(1)

S1(0)

S1(2)

S1(1)

0

S

(a) (b) (c)

Fig. 2: Visualizing the information present in a quantized overcomplete expansion ofx ∈ R
2 when using non-regular (binned)

quantizers. (a) A single hyperplane wave partition with onesingle-sample consistent set shaded. Note that binning makes
the shaded set not connected. (b) Partition boundaries fromtwo hyperplane waves;x is specified to the intersection of two
single-sample consistent sets, which is now the union of four convex cells. (c) A third sample now specifiesx to within a
consistent setS that is convex.

of R2 with cell boundaries aligned with coordinate axes, as
shown with lighter solid lines.

Only one quantized measurementy1 is not adequate to
specify J , as shown in Figure 3(a) by the fact that a sin-
gle shaded cell intersects all the subspaces.1 Two quantized
measurements together will usually specifyJ , as shown in
Figure 3(b) by the fact that only one subspace intersects the
specified square cell; for fixed scalar quantizers, ambiguity
becomes less likely ask decreases,n increases,m increases,
or ‖x‖ increases. Figure 3(c) shows a case where non-regular
(binned) quantization still allows unambiguous determination
of J .

The naı̈ve reconstruction method implied by Figure 3(c) is
to search combinatorially over bothJ and the combinations
in (8); this is extremely complex. While the use of binning
for quantized undercomplete expansions of sparse signals has
appeared in the literature, first in [44] and later in [45], to
the best of our knowledge this paper is the first to provide a
tractable and effective reconstruction method.

IV. ESTIMATION FROM QUANTIZED SAMPLES:
BAYESIAN FORMULATION

We now specify more explicitly the class of problems for
which we derive new estimation algorithms. Generalizing (5),
let

y = Q(z+w) where z = Ax, (9)

as depicted in Figure 4. The input vectorx ∈ R
n is random

with i.i.d. entries with prior p.d.f.px. The linear mixing matrix
A ∈ R

m×n is random with i.i.d. entriesaij ∼ N (0, 1/m).
The (pre-quantization) additive noisew ∈ R

m is random
with i.i.d. entrieswi ∼ N (0, σ2). The quantizerQ is a scalar
quantizer, and each of its component quantizersqi is identical
and hasK output levels.

The estimator̂x is a function ofA, y, Q, andσ2. We wish
to minimize the MSEn−1E[‖x− x̂‖2].

1Intersections with two subspaces are shown within the rangeof the
diagram.

x z

w

s y x̂

A ⊕ Q GAMP

Fig. 4: Quantized linear measurement model for which GAMP
estimator is derived. Vectorx ∈ R

n with an i.i.d. prior is
estimated from scalar quantized measurementsy ∈ R

m. The
quantizer inputs is the sum ofz = Ax ∈ R

m and an i.i.d.
Gaussian noise vectorw. Including noise varianceσ2 in the
model clarifies certain derivations; setting the noise variance
to zero recovers acquisition model (5).

Our primary interest is in the case ofσ2 = 0, but allowing
a nontrivial distribution forw is not only more general but
also makes the derivations more clear.

V. GENERALIZED APPROXIMATE MESSAGEPASSING FOR

A QUANTIZER OUTPUT CHANNEL

The acquisition model (9) is suitable for GAMP estimation
under the conditions in [14] after one simple observation: the
mapping fromz to y is a separable probabilistic mapping
with identical marginals. Specifically, quantized measurement
yi indicatessi ∈ q−1i (yi), so each componentoutput channel
can be characterized as

py|z(y | z) =
∫

q
−1
i

(y)

φ
(
t ; z, σ2

)
dt,

whereφ is the Gaussian function

φ (t ; a, b) =
1√
2πb

exp

(
− (t− a)2

2b

)
.

GAMP can be derived by approximating the updates in (4)
by two scalar parameters each and introducing some first-
order approximations, as discussed in [14]. Then given the
estimation functionsFin, Ein, D1, andD2 described below, for
each iterationt = 0, 1, 2, . . . , the GAMP algorithm produces
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(a) (b) (c)

Fig. 3: Visualizing the information present in a quantized undercomplete expansionQ(Ax) of a 1-sparse signalx ∈ R
3

whenAx ∈ R
2. The depicted 2-dimensional plane represents the vector ofmeasurementsz = Ax. Sincex is 1-sparse, the

measurement lies in a union of 1-dimensional subspaces (theangled solid lines); sincex is 3 dimensional, there are three such
subspaces. (a) Scalar quantization ofz1 divides the plane of possible values forz into vertical strips. One particular value of
y1 = q1(z1) does not specify which entry ofx is nonzero since the shaded strip intersects all the angled solid lines. For each
possible support, the value of the nonzero entry is specifiedto an interval. (b) Scalar quantization of both components of z

specifiesz to a rectangular cell. In most cases, including the one highlighted, the quantized values specify which entry ofx

is nonzero because only one angled solid line intersects thecell. The value of the nonzero entry is specified to an interval. (c)
In many cases, including the one highlighted, the quantizers can be non-regular (binned) and yet still uniquely specifywhich
entry ofx is nonzero.

estimateŝxt of the true signalx according to the following
rules:

x̂t+1 ≡ Fin

(
x̂t +

ATut

(AT )
2
τ
t
,

1

(AT )
2
τ
t

)
, (10a)

τ̂
t+1 ≡ Ein

(
x̂t +

ATut

(AT )
2
τ
t
,

1

(AT )
2
τ
t

)
, (10b)

ut ≡ D1

(
y,Ax̂t − ut−1A2

τ̂
t,A2

τ̂
t + σ2In

)
, (10c)

τ
t ≡ D2

(
y,Ax̂t − ut−1A2

τ̂
t,A2

τ̂
t + σ2In

)
. (10d)

Note that in (10) the notationA2 denotes the element-wise
product of a matrix with itself, i.e.(A2)ij = (Aij)

2. The
estimation functionsFin, Ein, D1, andD2 described below are
applied to their inputs component-by-component.

We refer to messages{x̂j , τ̂j}j∈V as variable updates and to
messages{ui, τi}i∈F as measurement updates. The algorithm
is initialized by settingx̂0

j = x̂init , τ̂0j = τ̂init , andu−1i = 0,
wherex̂init and τ̂init are the mean and variance of the priorpx.
The nonlinear functionsFin andEin are the conditional mean
and variance

Fin (q, ν) ≡ E [x | q] ,
Ein (q, ν) ≡ var (x | q) ,

whereq = x + v with x ∼ px and v ∼ N (0, ν). Note that
these functions can easily be evaluated numerically for any
given values ofq andσ2. Similarly, the functionsD1 andD2

can be computed via

D1 (y, ẑ, ν) ≡ 1

ν
(Fout (y, ẑ, ν)− ẑ) , (11a)

D2 (y, ẑ, ν) ≡ 1

ν

(
1− Eout (y, ẑ, ν)

ν

)
, (11b)

where the functionsFout andEout are the conditional mean and
variance

Fout (y, ẑ, ν) ≡ E
[
z | z ∈ q−1i (y)

]
, (12a)

Eout (y, ẑ, ν) ≡ var
(
z | z ∈ q−1i (y)

)
, (12b)

of the random variablez ∼ N (ẑ, ν). These functions admit
closed-form expressions in terms oferf (z) = 2√

π

∫ z

0
e−t

2

dt.

VI. STATE EVOLUTION FOR GAMP

The equations (10) are easy to implement, however they
provide us no insight into the performance of the algorithm.
The goal of SE equations is to describe the asymptotic
behavior of GAMP under large measurement matrices.

The SE for our setting in Figure 4 is given by the recursion

τ̄t+1 = Ēin

(
1

D̄2 (βτ̄t, σ2)

)
, (13)

where t ≥ 0 is the iteration number,β = n/m is a fixed
number denoting the measurement ratio, andσ2 is the variance
of the additive white Gaussian noise (AWGN), which is also
fixed. We initialize the recursion by settinḡτ0 = τ̂init , where
τinit is the variance ofxj according to the priorpx. We define
the functionĒin as

Ēin (ν) = E [Ein (q, ν)] , (14)

where the expectation is taken over the scalar random variable
q = x + v, with x ∼ px and v ∼ N (0, ν). Similarly, the
function D̄2 is defined as

D̄2

(
ν, σ2

)
= E

[
D2

(
y, ẑ, ν + σ2

)]
, (15)
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whereD2 is given by (11b) and the expectation is taken over
py|z and (z, ẑ) ∼ N (0, Pz(ν)), with the covariance matrix

Pz (ν) =

(
βτ̂init βτ̂init − ν

βτ̂init − ν βτ̂init − ν

)
. (16)

One of the main results of [14] was to demonstrate the
convergence of the error performance of the GAMP algorithm
to the SE equations. In the asymptotic analysis,m,n → ∞
with n/m → β.

Another important result regarding SE recursion in (13) is
that it admits at least one fixed point. It has been shown that
ast → ∞ the recursion decreases monotonically to its largest
fixed point and if the SE admits a unique fixed point, then
GAMP is asymptotically mean-square optimal [14].

VII. QUANTIZER OPTIMIZATION

Ordinarily, quantizer designs depend on the distribution
of the quantizer input, with an implicit aim of minimizing
the MSE between the quantizer input and output. Often,
only uniform quantizers are considered, in which case the
“design” is to choose the loading factor of the quantizer. When
quantized data is used as an input to a nonlinear function,
overall system performance may be improved by adjusting
the quantizer designs appropriately [21]. In the present setting,
conventional quantizer design minimizesm−1E[‖z−Q(z)‖2],
but minimizingn−1E[‖x− x̂‖2] is desired instead.

The SE description of GAMP performance facilitates the
desired optimization. By modeling the quantizer as part of the
channel and working out the resulting equations for GAMP
and SE, we can make use of the convergence results to recast
our optimization problem to

QSE = argmin
Q

{
lim
t→∞

τ̄t

}
, (17)

where minimization is done over allK-level regular scalar
quantizers. In practice, about 10 to 20 iterations are sufficient
to reach the fixed point of̄τt. Then by applying convergence
results from [14], we know that the asymptotic error perfor-
mance of the optimal quantizer for GAMP will be identical
to that ofQSE. It is important to note that the SE recursion
behaves well under quantizer optimization. This is due to
the fact that SE is independent of actual output levels and
small changes in the quantizer boundaries result in only minor
change in the recursion (see (12b)). Although closed-form
expressions for the derivatives ofτ̄t for large t’s are difficult
to obtain, we can approximate them by using finite difference
methods. Finally, the recursion itself is fast to evaluate,which
makes the scheme in (17) practically realizable under standard
optimization methods like sequential quadratic programming
(SQP).

VIII. E XPERIMENTAL RESULTS

A. Overcomplete Expansions

We first consider overcomplete expansion ofx as discussed
in Section III-A. We generate the signalx with i.i.d. elements
from the standard Gaussian distributionxj ∼ N (0, 1). We

5 10 15 20 25 30 35 40
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M
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E
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dB
)

 

 

Linear MMSE
MAP
GAMP

Fig. 5: Performance comparison for oversampled observation
of a jointly Gaussian signal vector (no sparsity). GAMP
outperforms linear MMSE and MAP estimators.

form the measurement matrixA from i.i.d. zero-mean Gaus-
sian random variables. To concentrate on the degradation due
to quantization we assume noiseless measurement model (5);
i.e., σ2 = 0 in (9).

Figure 5 presents squared-error performance of three esti-
mation algorithm while varying the oversampling ratiom/n
and holdingn = 100. To generate the plot we considered
estimation from measurements discretized by a16-level reg-
ular uniform quantizer. For each value ofm/n, 100 random
realizations of the problem were generated; the curves show
the median squared error over these 100 Monte Carlo trials.
For comparison to GAMP, we also plot the performance for
two other common reconstruction methods: linear MMSE and
maximum a posteriori probability (MAP). The MAP estimator
was implemented using quadratic programming (QP) and
obtains the minimum Euclidean-norm estimate consistent with
the quantized samples.

We see that GAMP offers significantly better performance
with more than5 dB improvement for many values ofm/n.
MAP provides poor performance compared to GAMP because
it finds a corner of the consistent set, which is suboptimal as
compared to the centroid of the consistent set.

B. Compressive Sensing with Quantized Measurements

We now would like to estimate a sparse signalx from
m < n random measurements. We assume that the signal
x is generated with i.i.d. elements from the Gauss–Bernoulli
distribution

xj ∼
{

N (0, 1/ρ) , with probabilityρ;
0, with probability1− ρ,

(18)

whereρ is the sparsity ratio that represents the average fraction
of nonzero components ofx. In the following experiments we
assumeρ = 0.1. Similarly to overcomplete case, we form the
measurement matrixA from i.i.d. Gaussian random variables,
i.e., Aij ∼ N (0, 1/m); and we assume no additive noise
(σ2 = 0 in (9)).
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Fig. 6: Performance comparison of GAMP with other sparse
estimation methods.

Figure 6 compares squared-error performance of GAMP
with two other sparse estimation methods. We obtain the
curves by varying the undersampling ratioβ = n/m and
holdingm = 100. We perform estimation from measurements
obtained from a16-level regular uniform quantizer. The figure
plots the median of squared error values from 100 Monte Carlo
trials for each value ofβ. The top curve (worst performance)
is for linear MMSE estimation; and middle curve labeled is
for the basis pursuit estimator

x̂ = argmin
x : y=Q(Ax)

‖x‖1,

which can be cast and solved as a linear program (LP). Again
GAMP offers substantial improvement over the other methods.

C. Non-Regular Quantization

We now repeat the case of the undersampled sparse signal
by again usingx with an i.i.d. Gauss–Bernoulli distribution
with ρ = 0.1. To study the effect of non-regular quantization,
we introduce a binning function

λ : {1, 2, . . . , N} → {1, 2, . . . , N/2}
that reduces the rate of the quantizer by 1 bit per sample
(halving the number of output levels) by performing reduction
modulo2. Hence input indexesi and i+N/2 get mapped to
the same output indexi.

Figure 7 plots the MSE performance of GAMP under
regular and non-regular quantization. Both quantizers were
optimized using (17). We obtain the plot by varying the
number of bits per component ofx and holdingβ = 3. We
see that, in comparison to regular quantizers, binned quantizers
with GAMP estimation achieve much lower distortions for the
same rates. This indicates that binning can be an effective
strategy to favorably shift rate–distortion performance of the
estimation.

IX. CONCLUSIONS

We present generalized approximate message passing as an
effective and efficient algorithm for estimation from quantized

0.8 1 1.2 1.4 1.6
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Rate (bits / signal component)

M
S
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 (

dB
)

 

 

Optimal Regular
Optimal Binned

Fig. 7: Performance comparison of GAMP with regular and
binned quantizers under sparse Gauss-Bernoulli prior.

linear measurements. The problem formulation is Bayesian,
with an i.i.d. prior over the components of the signal of
interestx; the prior may or may not induce sparsity ofx.
Also, the number of measurements may be more or less
than the dimension ofx, and the quantizers applied to the
linear measurements may be regular or not. Experiments
show significant performance improvement over traditional
reconstruction schemes, some of which have higher compu-
tational complexity. Matlab code for experiments with GAMP
is available online [46].
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