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Abstract. Aggregation schemes allow to combine several cryptographic values like message

authentication codes or signatures into a shorter value such that, despite compression, some no-

tion of unforgeability is preserved. Recently, Eikemeier et al. (SCN 2010) considered the notion

of history-free sequential aggregation for message authentication codes, where the sequentially-

executed aggregation algorithm does not need to receive the previous messages in the sequence

as input. Here we discuss the idea for signatures where the new aggregate does not rely on the

previous messages and public keys either, thus inhibiting the costly verifications in each aggrega-

tion step as in previous schemes by Lysyanskaya et al. (Eurocrypt 2004) and Neven (Eurocrypt

2008). Analogously to MACs we argue about new security definitions for such schemes and com-

pare them to previous notions for history-dependent schemes. We finally give a construction

based on the BLS signature scheme which satisfies our notion.
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1 Introduction

Aggregate signature schemes [BGLS03] allow to combine multiple signatures from different senders
for possibly different messages, such that the aggregate has roughly the same size as a single
signature. This helps to reduce the communication overhead in settings where authenticated infor-
mation is forwarded from one party to another, such as the S-BGP routing protocol or certificate
chains [BGLS03, LOS+06, BNN07, BGOY08]. As in the case of regular signature schemes, the
validity of aggregates can be publicly verified given all messages and public keys.

The original proposal of Boneh at al. [BGLS03] supports aggregation of the data independently
of the order of the parties and, furthermore, the aggregating algorithm only relies on the aggregates
and public data. In contrast, most other solutions today like [LMRS04, LOS+06, BGOY08, BNN07,
Nev08] are sequential aggregate schemes where each party derives the next aggregate by taking the
private key, the previous aggregate, and all the previous messages together with the corresponding
keys in the sequence into account. For instance, in all1 known sequential signature schemes the
aggregation algorithm first checks with the public keys that the current aggregate is a valid signature
for the preceding message sequence. Often, they also incorporate these messages in the computation
of the new aggregate. Thus, so far, the aggregation in sequential signature schemes seems to be
much more expensive than in the non-sequential setting, which might render sequential schemes
impractical for resource-constraint devices. Another issue, pointed out in [BGR11], is that the
verification requires also obtaining and checking the public keys of the users in the sequence.

1With the exception of the recent work by Brogle et al. [BGR11], discussed at the end of the introduction.



History-Free Sequential Aggregation. Recently, Eikemeier et al. [EFG+10] introduced
the notion of history-freeness in the context of aggregate MACs, which aims to preserve the
“lightweight” aggregation approach from general aggregate schemes also in the sequential setting.
More precisely, in a history-free MAC a new aggregate is derived only from the aggregate-so-far and
the local message, but does not rely on (explicit) access to the previous messages. Note that, strictly
speaking, the aggregate-so-far certainly contains some information about the previous messages;
this information, however, is limited due to the size restriction for aggregates.

In this work we adopt the notion of history-freeness to the case of sequential aggregate signatures,
only allowing the aggregate-so-far, the local message, and signing key to enter the computation, but
not the previous messages and public keys in the sequence. For signatures this property is especially
worthwhile, because it means that the costly signature verifications for each aggregation step are
suppressed. In fact, since the security of previous schemes strongly relies on such checks, omitting
them indicates the hardness of finding history-free schemes. Eikemeier et al. [EFG+10] achieve
this, to some extent, for the case of MACs by using an underlying pseudorandom permutation to
encrypt parts of the data. This is usually not an admissible strategy for the case of signatures.

At first, history-free sequential aggregation might seem to be the second best solution compared
to non-ordered aggregation (with history-free aggregation quasi built in). However, sequential
aggregation is required for many applications such as for authenticating routing information or
for certificate chains, and in these applications the verifiability of the order of signing steps is
usually important, whereas general aggregate schemes do not allow this. Following the terminology
for multi-signatures [BGOY08] we call such schemes ordered sequential-aggregate schemes. We
also remark that all known sequential aggregate schemes are ordered, except for the one by Lu et
al. [LOS+06], and that we usually consider history freeness only in connection with such ordered
schemes.

New Security Models. Introducing the idea of history freeness affects known security defi-
nitions for sequential signature schemes. Since the history of previously signed messages is not
available to the aggregation algorithm, an adversary can now initiate aggregation chains “from the
middle”, without specifying how the initial message sequence looks like. The starting aggregate for
such a truncated iteration does not even need to be valid, as checking the validity of the aggregate
with respect to the preceding message sequence is impossible for the aggregation algorithm.

Our security notions for history-free schemes, adopted from the work by Eikemeier et al. [EFG+10],
follow the well-known approach for (regular and aggregate) signatures that an adversary can re-
quest data via oracles and is supposed to eventually output a valid but non-trivial forgery. In
the original LMRS security model for sequential aggregation with full information about preced-
ing messages [LMRS04], the adversary is considered to win if it produces a valid aggregate for a
non-trivial sequence, where trivial sequences are previously queried sequences and, since appending
some iterations for controlled parties is easy for the adversary, such extended sequences thereof.

Specifying the trivial combinations in our history-free model is more delicate because the ad-
versary now gets to query partial chains and can potentially glue several of these data together.
We resolve this by following the approach of Eikemeier et al., that is, by defining a transitive clo-
sure of trivial sequences, consisting of matching combinations of (possibly many) previously seen
aggregates and contributions by corrupt parties. We define two versions of this closure, depending
on whether intermediate values of partial chains are available to the adversary or not, yielding two
security notions (one being stronger and implying the other). Intuitively, due to the additional
adversarial power, one would expect our new security models to be weaker than the original ones
for sequential aggregation. Interestingly, though, both our security notions for history freeness are
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strictly stronger than the security model for sequential aggregation due to Lu et al. [LOS+06], but
incomparable to the one of Lysanskaya et al. [LMRS04], as we show in Section 3.3.

We also briefly revisit the case of non-ordered aggregates. Here, adapting the idea of the closure
yields strictly stronger security guarantees than in previous definitions for non-sequential schemes.
Our model reflects the resistance of aggregate schemes against “mix-and-match” attacks, where
an attacker is already considered successful if it can recombine learned aggregates into a “fresh”
aggregate that it has not seen before, or is able to remove parts of the aggregates. This is opposed to
the common approach of reducing the unforgeability of aggregation schemes to the unforgeability of
individual messages, where combining aggregates or removing a party’s contribution are not deemed
to be successful attacks (because they do not forge an individual signature). This is discussed for
the symmetric setting in more detail in [EFG+10]. Yet, we are not aware if that high security
standard can be achieved for aggregate signatures. Nonetheless, as a side effect of our approach,
we point out that the scheme by Boneh et al. [BGLS03] allows attacks which are not covered by
their security models. The discussion appears in Appendix 5.

Building History-Free Schemes. We finally provide a solution meeting our requirements in
Section 4. We give a construction based on the signature scheme of Boneh et al. [BLS01], which
has already been successfully transformed into the BGLS scheme for non-sequential aggregation
[BGLS03]. By this we derive a scheme for history-free sequential aggregation. Observe again that
the resulting scheme also comes with the verifiability of the aggregation order.

Our construction chains the aggregates with the help of a collision-resistant hash function, i.e.,
instead of signing only the local message, we first compute the hash value of this message together
with the previous aggregate.2 Hence, instead of verifying a chain of signatures our aggregation
algorithm only needs to compute bilinear mappings. The aggregates of our scheme are slightly
larger than the ones of the original BGLS scheme and the construction satisfies our weaker security
notion.

Concurrent Work. Recently, we became aware that Brogle et al. [BGR11] proposed a notion
of sequential aggregate signatures with so-called lazy verification, resembling the idea of history-
freeness as defined in [EFG+10] and also used here closely. They designed and implemented a
history-free scheme based on trapdoor permutations. Their security model, however, is a relaxation
of the LMRS model which is implied by (even the weaker version of) our security notion. The
reason is roughly that this relaxation merely demands that the message in the forgery has not
been signed by the honest user before, implying that it cannot be in the closure and therefore also
constitutes a breach of security in our model. Unfortunately, the relaxed LMRS notion does not
cover the important class of mix-and-match attacks as discussed in [EFG+10] and here. For the
application of authenticating routing information, as discussed in [BGR11], this thus potentially
allows an adversary to create fake but authenticated routes out of other valid routing data. Also,
their construction produces signatures proportional to the number of signers and explicitly relies
on the random oracle model. In contrast, our scheme generates signatures of size independent of
the number of signers, only implicitly relies on the random oracle model (through the currently
best proof for the underlying BGLS signature scheme in the random oracle model), and comes with
stronger security guarantees.

2The tricky part here is that we do not use the aggregate as it is, but first apply the underlying bilinear mapping to
it, before giving it to the hash function. This is necessary to allow verification of aggregates without seeing individual
signatures and relies on specific properties of the BLS scheme.
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2 Preliminaries

2.1 Sequential Aggregate Signature Schemes

An aggregate signature [BGLS03] is a single signature of different signers on different messages
such that this aggregate has roughly the same size as an ordinary signature. In the sequential
case the aggregation algorithm gets as input a sequence of public keys pk = (pk1, . . . , pki) and
messages M = (M1, . . . ,Mi), an aggregate σ′ for this sequence, a message M and the secret
signing key sk (with corresponding public key pk). It returns the new aggregate σ for the sequence
pk||pk := (pk1, . . . , pki, pk) and M||M := (M1, . . . ,Mi,M). More formally:

Definition 2.1 (Sequential Aggregate Signature Scheme) A sequential aggregate signature
scheme is a tuple of efficient algorithms SAS = (SeqKg, SeqAgg,SeqAggVf), where

Key Generation. SeqKg(1n) generates a key pair (sk, pk) where pk is recoverable from sk.

Signature Aggregation. The aggregation algorithm SeqAgg(sk,M, σ′,M,pk) takes as input a
secret key sk, a message M ∈ {0, 1}∗, an aggregate σ′ and sequences M = (M1, . . . ,Mi) of
messages and pk = (pk1, . . . , pki) of public keys and computes the aggregate σ for message
sequence M||M = (M1, . . . ,Mi,M) and key sequence pk||pk = (pk1, . . . , pki, pk). (We assume
that there is a special “starting” symbol σ0 = ∅ for the empty aggregate, different from all
other possible aggregates.)

Aggregate Verification. The algorithm SeqAggVf(pk,M, σ) takes as input a sequence of public
keys pk = (pk1, . . . , pki), a sequence of messages M = (M1, . . . ,Mi) as well as an aggregate
σ. It returns a bit.

The scheme is complete if for any sequence of key pairs (sk, pk), (sk1, pk1), . . . ← SeqKg(1n),
for any sequence M of messages, any M ∈ {0, 1}∗, for any σ ← SeqAgg(sk,M, σ′,M,pk) with
SeqAggVf(pk,M, σ′) = 1 or σ′ = ∅, we have SeqAggVf(pk‖pk,M‖M,σ) = 1.

Note that we do not define “pure” signing and verification algorithms but only the aggregate
counterparts. We can specify such algorithms in a straightforward way via the aggregation al-
gorithm run on the starting aggregate σ0. In fact, this is often how, vice versa, the aggregation
algorithm works on this empty sequence. Second, we do not put any formal restriction on the
size of aggregates, in the sense that aggregates must be smaller than individual signatures. Such
restrictions can be always met by first “inflating” regular signatures artificially. We thus leave it
to common sense to exclude such trivial examples. Finally, throughout the paper we assume that
public keys of parties are unique, say, they include the identity and a sequence number as common
in certificates.

2.2 LMRS Security of Sequential Aggregate Schemes

Lysyanskaya et al. [LMRS04] propose a security model for sequential aggregate signature schemes
based on the chosen-key model of [Bol03, BGLS03]. The adversary gets as input a challenge public
key pkc and has access to a sequential aggregate signing oracle SeqAgg(skc, · · · ) which takes a
message M , an aggregate σ′ and sequences M and pk as input and returns the new aggregate σ.
The adversary wins if it manages to output a valid sequential aggregate signature for a sequence
M∗ = (M∗1 , . . . ,M

∗
i ) under public keys pk∗ = (pk∗1, . . . , pk∗i ) and pk∗ contains the challenge key

pkc and the sequence (M∗1 , . . . ,M
∗
ic

) with (pk∗1, . . . , pk∗ic) has never been queried to oracle SeqAgg,
where ic denotes the index of pkc in pk∗.
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For the sake of distinctiveness with the unforgeability notion for regular signature schemes we
call schemes being immune against such adversaries sequentially unforgeable:

Definition 2.2 A sequential aggregate signature scheme SAS = (SeqKg,SeqAgg, SeqAggVf) is se-
quentially unforgeable if for any efficient algorithm A the probability that the experiment SeqForgeSASA
evaluates to 1 is negligible (as a function of n), where

Experiment SeqForgeSASA (n)
(skc, pkc),← SeqKg(1n)

(pk∗,M∗, σ∗)← ASeqAgg(skc,··· )(pkc)
Let ic be the index of pkc in pk∗ = (pk∗1, . . . , pk∗` ) and M∗ = (M∗1 , . . . ,M

∗
` ).

Return 1 iff SeqAggVf(pk∗,M∗, σ∗) = 1
and pkc ∈ pk∗ and pki 6= pkj for 1 ≤ i < j ≤ ` and

A never queried SeqAgg(skc, · · · ) about (M∗1 , . . . ,M
∗
ic

) and (pk∗1, . . . , pk∗ic).

3 Security of History-Free Sequential Signatures

3.1 History-Freeness

So far, it seems to be inherent to sequential signature schemes that the computation of a new
aggregate requires the verification of the received aggregate-so-far. Some schemes even incorporate
all previous messages and public keys when deriving the new aggregate. Those approaches are a
crucial disadvantage compared to the “lightweight” aggregation in non-sequential schemes, where
the aggregation only depends on the previous signatures. Note that this is not only a drawback
concerning the complexity for computation but also for communication, as the explicit access to
all previous data for instance prevents incremental compression of the message sequence.

To circumvent that issue we now apply the recently proposed notion of history-freeness [EFG+10]
which restricts the input for the aggregation algorithm to the aggregate-so-far and the local message,
i.e., the aggregation does not get access to the previous messages and keys. More formally:

Definition 3.1 (History-Freeness) A sequential aggregate signature scheme SAS = (SeqKg,
SeqAgg,SeqAggVf) is called history-free if there exists an efficient algorithm SeqAgghf such that
SeqAgghf(·, ·, ·) = SeqAgg(·, ·, ·,M,pk) for all M,pk.

To save on notation we will often identify SeqAgghf with SeqAgg and simply omit M,pk from
the input of SeqAgg.

Note that history-free sequential signature schemes are not the same as non-sequential aggregate
signatures as defined by Boneh et al. [BGLS03]. As mentioned in the introduction, the security
requirement for (history-free) sequential schemes often allows to check the order of the signers, in
contrast to non-sequential schemes.

3.2 Security Model

When considering history-free signature schemes the LMRS security model for sequential schemes
[LMRS04] does not fully reflect the new conditions of the adversary and the desired security guar-
antees. This stems from the fact that in the history-free setting the previously signed messages
are not available to the aggregation algorithm, which allows an adversary to trigger new aggrega-
tion chains “from the middle” without knowing the previous message sequence. To capture those
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attacks we modify the aggregation oracle such that it returns aggregates for sequences of mes-
sages, starting now with an arbitrary aggregate-so-far. Thus, we also incorporate some ideas of the
aggregation-unforgeability notion [EFG+10] into our new model.

Aggregation-unforgeability here demands that the adversary cannot output a valid chain, unless
its a trivial combination of previous aggregation queries and values by corrupt parties. An example
of such a trivial combination is depicted in Figure 1, where the adversary computes the final
value by simply iterating through the sequence with the help of the aggregation oracle and local
computations by corrupt players. Note that each aggregation query is for a sequence of honest
parties and this requires several public keys.

Attack Scenario. As in the aggregation-unforgeability model of Eikemeier et al. for aggregated
MACs, we also grant the adversary in our model an aggregation oracle returning aggregates for
(ordered) sets of messages. To allow reasonable aggregation queries we hand the adversary now t
genuine public keys pk1, . . . , pkt of initially honest parties as in [MOR01], instead of considering a
single challenge key as in the chosen-key model [Bol03, BGLS03].

The adversary’s attack is divided into two phases. In the first phase, the adversary has access to
a corruption and a key-setting oracle, both initialized with the t key pairs ((sk1, pk1) . . . , (skt, pkt)).
By querying the corruption oracle the adversary can obtain at most t− 1 secret keys of his choice.
We denote by QCor the set of corrupted keys. To model rogue-key attacks we also provide an oracle
SetKey which allows the adversary to change the public key of a previously corrupted party, i.e.,
on input pk, pk∗ the oracle replaces the public key pk of a corrupt party by pk∗. Recall that we
assume that public keys must be unique. Any modifications of corrupted keys are captured by the
set QCor as well.

The adversary starts the second phase by interacting with the sequential aggregate signature
oracle OSeqAgg but is denied access to the corruption or key-setting oracle in this phase (reflecting
static corruptions3). On input of an aggregate-so-far σ′, a sequence of new messages M for public
keys pk the OSeqAgg oracle checks whether all public keys in pk are distinct and belong to honest
parties. If an invalid public key appears OSeqAgg answers ⊥, otherwise it responds with a new
valid aggregate σ derived by running the aggregation algorithm stepwise for all input data. We
remark that the aggregation oracle only aggregates for honest parties, i.e., where the corresponding
keys were neither corrupted nor modified; for corrupt players the adversary, holding the secret key,
must add the values herself.

Eventually the adversary A holds, outputting a tuple (pk∗,M∗, σ∗). The forgery must be valid
according to our definition of history-free sequential aggregate signature schemes. In addition, the
signature must be non-trivial which is quantified by defining the closure of all query/answer pairs
of A. Here, we denote by QSeq the set of all query/answer tuples ((σ′,M,pk), σ) that occur
in A’s interaction with the OSeqAgg oracle and by QCor we denote the set of all keys that were
corrupted and possibly modified by the adversary. The closure contains all admissible combinations
of aggregated data for the queried sequences together with all possible values by corrupted parties.

Closure. For history-free sequential aggregate signatures, defining the closure is more complex
as in the general case that we discuss in Appendix 5. Here, an adversary can query partial chains
and later possibly combine several of them by using corrupted keys or chains with matching start-
ing/end points. Thus, we define the closure recursively through a function TrivialQSeq,QCor

which,

3We observe that the standard strategy to lift security against static corruptions to security against adaptive
corruptions by guessing the right “target” key in advance does not work in our setting, as our security notion relies
on multiple honest users.
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aggregation query #1

honest parties only

aggregation query #2

aggregates available to the adversary (through aggregation queries or local computations)

corrupt party

Figure 1: Example of a trivial combination of replies to aggregation queries and local computations by corrupt parties.

for parameters (pk,M, σ) describes all sequences that can be derived trivially starting from mes-
sage sequence M and aggregate-so-far σ, i.e., where one can append (recursively expanded) trivial
sequences via aggregation queries or local computations by corrupt players. For example, if we
have an aggregation query (σ0,pk,M) with answer σ in QSeq and another query (σ,pk′,M′) with
the answer from the first query as the starting aggregate, then the sequence (pk||pk′,M||M′) is
in the trivial set. So is any extension of this sequence for corrupt players. We note that, if the
final aggregate of a chain and the starting aggregate do not match, then the combined sequence is
not in the closure, neither are subsequences of previous queries (unless either sequence appears in
another query).

The closure is then defined to contain all trivial sequences starting from the information available
to the adversary at the beginning, namely, the empty message sequence, the starting key pk0 = ∅
and the starting tag σ0 = ∅. Note that the closure here is now a set of tuples where each tuple
represents a sequential aggregation.

Definition 3.2 (Sequential Closure of A’s queries) Let QCor and QSeq be the sets correspond-
ing to the different oracle responses and let TrivialQSeq,QCor

be a recursive function of trivial combi-
nations defined as

TrivialQSeq,QCor
(pk,M, σ)

:= {(pk,M)} ∪
⋃

((σ,M,pk),σ)∈QSeq

TrivialQSeq,QCor
(pk||pk,M||M, σ)

∪
⋃
∀M,σ

∧pki∈QCor

TrivialQSeq,QCor
(pk||pki,M||M,σ) .

The closure Closure of A’s queries QSeq and QCor is then defined by recursively generating the trivial
combinations starting from the empty tuple as described above:

Closure(QSeq, QCor) := TrivialQSeq,QCor
(∅, ∅, ∅).

As an example consider an attack on a regular (non-aggregate) signature scheme, with a single
honest party and no corrupt players. Then the closure contains all queries to the signing oracle
and renders these values as trivial. Note that we do not treat the case of concatenating answers
for the same public key in any special way.

Aggregation Unforgeability. With the definition of the sequential closure, we propose the
following security model for history-free sequential aggregate signatures.
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aggregates available to the adversary (through aggregation queries or local computations)

Figure 2: Relaxed Security Notion: In comparison to the stronger notion (Figure 1) the adversary can only make
aggregation queries of length 1. The closure potentially allows more combinations now and thus rules out more
sequences as trivial.

Definition 3.3 (Aggregation Unforgeability) A history-free sequential aggregate signature scheme
SAS = (SeqKg, SeqAgg, SeqAggVf) is aggregation-unforgeable if for any efficient algorithm A
(working in modes corrupt, forge) the probability that the experiment SeqForgeSASA evaluates
to 1 is negligible (as a function of n), where

Experiment SeqForgeSASA (n)
(sk1, pk1), . . . , (skt, pkt)← SeqKg(1n)
K′ ← ((sk1, pk1), . . . , (skt, pkt))

st← ACorrupt(K′,·),SetKey(K′,·,·)(corrupt, pk1, . . . .pkt)
// it is understood that A keeps state st

Let K be the set of the updated keys of all parties

(pk∗,M∗, σ∗)← AOSeqAgg(K,··· )(forge, st)
Return 1 iff pki 6= pkj for all i 6= j and SeqAggVf(pk∗,M∗, σ∗) = 1 and

(pk∗,M∗) 6∈ Closure(QSeq, QCor).

Relaxed Security Notion. Our definition is very demanding in the sense that prefixes of
aggregation sequences are considered to be non-trivial. In particular, this means that intermediate
values in such a chain cannot be available to the adversary, or else successful attacks according
to our model are straightforward. This model corresponds to the case that the forwarded data
between honest parties are for instance encrypted.

Regarding existing sequential aggregate signature schemes like [LMRS04], all intermediate sig-
natures that appeared in the computation of the final aggregate can be re-obtained by simply ver-
ifying the aggregate signature, since the verification algorithm “peels off” the aggregate. Thus, we
also propose a relaxed definition of history-free unforgeability that takes the possibility of obtaining
the intermediate signatures into account, inciting the name mezzo aggregation unforgeability.

We also remark that a simple approach like having the first party in a sequence create some
unique identifier or nonce, which is used by all subsequent players, usually does not facilitate the
design of schemes because the adversary can always put a corrupt player upfront. Similarly to the
case of non-ordered aggregation we can have a solution with counters or time stamps but this again
requires synchronization between the parties.

We can easily cast the weaker notion in our model by allowing only aggregation queries for
sequences of length one, i.e., where the adversary has to compute longer chains itself by iterating
through the sequence manually. Clearly, this adversary is a special case of our adversary above
and the security guarantee is therefore weaker (in other words, the closure now contains more
trivial elements). It is also very easy to prove this formally by considering a scheme where the
new aggregate contain the previous aggregate. For the stronger notion this allows to obtain a valid
aggregate of a prefix easily, whereas for the weaker notion the extra aggregate is already been input
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by the adversary and thus provides no additional information. The difference between the models
is depicted in Figure 2.

Definition 3.4 (Mezzo Aggregation Unforgeability) A history-free sequential aggregate sig-
nature scheme SAS = (SeqKg,SeqAgg, SeqAggVf) is mezzo aggregation-unforgeable if it is aggregation-
unforgeable for any efficient algorithm A that only calls oracle OSeqAgg for sequences of length one.

3.3 Relationship to the LMRS-Model

It is easy to see that our security model is strictly stronger than the one by Lu et al. [LOS+06]
because successful attacks according to their definition involve individual forgeries for fresh messages
against a single challenge key (which thus cannot belong to our closure). At the same time their
approach does not allow to verify the order of aggregation steps, whereas changing the order
constitutes a successful attack according to our definition. We therefore focus on the comparison
to the LMRS-model.

On one hand our model gives the adversary more power than in the LMRS-model for secure
sequential aggregation, because it does not need to specify the starting message sequence for ag-
gregation queries. On the other hand we allow the adversary less freedom when it comes to values
of corrupt players in the forgery attempt. Hence, the possibilities in the attack are somewhat
compensated for and this makes the models incomparable, as we show by the following separating
examples.

The ideas of the separating examples are given in Figure 3. The left part of the figure shows an
attack which is defined as trivial in our model but constitutes a break in the LMRS model. Indeed,
it seems that in the history-free setting the adversary can always find “bad” keys for corrupt
parties which enable collisions on the intermediate values. Since the information about the starting
sequence then does not enter the further computations preventing such attacks in our setting seems
impossible. The right side shows a successful attack in our model which takes advantage of a prefix
of an aggregation subsequence; this is by definition not a successful attack in the LMRS model. A
similar separation holds for our relaxed notion.

3.3.1 Aggregation Unforgeability vs. LMRS

We give two separating examples starting from secure schemes in both models and show that we
can derive schemes which are secure only according to one of the two definitions.

Separating Example #1. In the first example we show that unforgeability according to LMRS
does not imply history-free security. Assume that there exist a sequential aggregate signature
scheme SAS = (SeqKg, SeqAgg,SeqAggVf) that is secure in both models. Then there exists a
sequential aggregate signature which is sequentially unforgeable but not aggregation unforgeable.

We modify SAS to SAS∗ such that it loses its history-free security while the corresponding
history-dependent scheme stays secure. We define SAS∗ as follows:

• SeqKg remains unchanged

• SeqAgg∗(sk,M, σ′,M,pk) outputs (σ′, σ) with σ ← SeqAgg(sk,M, σ′,M,pk).

• SeqAggVf∗(pk,M, (σ′, σ)) outputs SeqAggVf(pk,M, σ).

The adversary in the LMRS model gets a single challenge key pkc and has access to a sequential
aggregate signing oracle only on that challenge key. On querying the oracle about ((pk′,M′, σ′),
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succesful attack according to LMRS
but not according to our model

forgery

succesful attack according to our model
but not according to LMRS model

forgery

Figure 3: Comparison of the LMRS security model and our (strong) model: Prepending any values by

corrupt parties is not considered a successful attack in our model (left part), whereas branching into a

different sequence from some intermediate value is not considered a successful attack in the LMRS model

(right part).

M, pkc) the adversary now obtains the pair (σ′, σ) where σ is the new aggregate and σ′ the provided
aggregate-so-far. Thus, compared to the signature scheme SAS which we assumed to be secure,
the adversary does not learn any new information, since the additional output value σ′ is the same
value that the adversary used when invoking the oracle.

However, in the security-model of history-free schemes, the adversary is given access to an
oracle that outputs an aggregate signature even for a sequence of additional messages and public
keys. Thereby, the intermediate signatures are not issued by the oracle, such that computing a
valid signature for a prefix of the queried sequence is already deemed a successful forgery. When
using the modified scheme SAS∗ and querying the oracle about some sequence (σ′,M,pk) with
|M| = |pk| = i ≥ 2 the adversary always obtains the second-to-last signature σi−1 “for free”.
Thus, by simply outputting the prefix of the queried sequence, i.e., M∗ = (M1, . . . ,Mi−1),pk∗ =
(pk1, . . . , pki−1) together with σi−1, the adversary in the history-free model always wins.

Separating Example #2. In the second example we show that for a specific sequential aggre-
gate signature scheme, there exist a successful adversary against the LMRS unforgeability, while
any attacker against the history-free notion of unforgeability fails.

Assume that SAS = (SeqKg,SeqAgg,SeqAggVf) is an unforgeable sequential aggregate signature
scheme in both models Then we can construct a scheme SAS∗ where

• SeqKg∗ works as SeqKg but appends the bit ’1’ to the issued public key, i.e., pk∗ = pk||1

• SeqAgg∗((pk,M, σi−1),Mi, pk∗i ) parses the public key as pk∗i = pki||b. For b = 0, it computes
σi ← SeqAgg((pk,M, σi−1), 0

n, pki) for the message 0n and the shortened key. For b = 1, it
outputs σi ← SeqAgg((pk,M, σi−1), 1||Mi, pki).

• SeqAggVf∗(pk,M, σ) proceeds as follows: for i = 1 . . . |M |

– it parses the public key as pk∗i = pki||b and sets pk′i = pki

– if b = 0 set m′i = 0n, else m′i = 1||Mi

and outputs SeqAggVf(pk′,M′, σ) for the modified messages M′ = (m′1, . . . ,m
′
i) and public

keys pk′ = (pk1, . . . pki).

The modification basically creates colliding signatures when the public key, for which the sig-
natures are issued, ends with ’0’. However, honestly generated public keys always ends with the
bit ’1’, where the signature scheme operates exactly like the original secure scheme.
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An adversary in the LMRS model is allowed to choose all public keys except for the challenge
key pkc. Hence it can create a key pk||0 and compute an aggregate signature σ on some arbitrary
message M . The aggregate σ is then valid for all possible messages under the key pk||0. By querying
the sequential aggregate signing oracle on the aggregate-so-far (pk||0,M, σ) and the additional
message Mc to be signed for the key pkc it receives the new aggregate σ′. The adversary can
now choose any message M 6= M and output ((pk||0)||pkc,M ||Mc, σ

′) as its forgery. The LMRS
definition only requires that the sequence of messages was not queried to the signature oracle before,
thus the combination M ||Mc is considered non-trivial. Since M and M have the same intermediate
signature σ the aggregate σ′ is a valid signature for M ||Mc, too.

It is not possible to translate this attack into an successful attack in the model of history-free
schemes. Therein, in order to exploit the colliding signatures, an adversary has to corrupt an
honestly generated key-pair, and then substitute the public key by using the key-setting oracle.
However, prepending any message/signature tuples of corrupted signers to an queried aggregate
is considered as trivial in our model. Thus all possible messages for M under some key pk||0 are
contained in the closure and can not be used to create a forgery. For honestly generated keys, the
security transfers from the original scheme.

3.3.2 Mezzo Aggregation Unforgeability vs. LMRS

In this section we show that also the weaker notion of mezzo aggregation unforgeability is incom-
parable to the model of LMRS. In contrast to aggregation unforgeability, we consider signatures
for prefixes of queried sequences in the weaker model as trivial, which is modeled by an oracle that
adds only single messages to an aggregate, such that all intermediate aggregated data is contained
in the closure of A’s queries. Thus, the first separating example described above does not carry over
to our weaker notion. However, the second example exploits the different handling of messages of
corrupted users, which is the same in both variants of history-free unforgeability and thus transfers
to the mezzo aggregation unforgeability as well. In a further example we can construct a scheme
that is aggregation unforgeable but not sequential unforgeable.

Separating Example #3. Let SAS = (SeqKg,SeqAgg,SeqAggVf) be a sequential aggregate
signature scheme that is unforgeable according to both definitions. Then we can construct a
scheme SAS∗ where

• SeqKg remains unchanged

• SeqAgg∗ cuts off the last bit of the given aggregate-so-far σ’ and runs SeqAgg on the shortened
aggregate and the other input data. It then appends ’0’ to the obtained new aggregate, i.e.
σ∗ = σ||0 where σ ← SeqAgg.

• SeqAggVf∗ deletes the last bit of the given aggregate signature σ∗ and invokes SeqAggVf on
the shorten signature and the input data.

In the modified scheme one can easily derive from any valid aggregate signature σ∗ a second
valid signature by flipping the last bit.

The adversary in the history-free model benefits from that modification, when it uses its signing
oracle to compute an aggregate for some sequence of messages Mi under public keys pki step
by step. When it receives σ∗i−1 = σi−1||0 ← SeqAgg∗(σ∗i−2,Mi−1, pki−1) it flips the last bit of
σ∗i−1 before querying the oracle on the subsequent message Mi. The adversary then obtains the
aggregate σ∗i for the sequence Mi, but Mi is not contained in the closure. Due to bit flipping, the
function TrivialQSeq,QCor

does not recognize σi−1||1 as a response of the signing oracle and thus does
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not consider the sequence Mi−1||Mi as trivial. Hence, the adversary simply outputs (σ∗i ,Mi,pki)
which is obviously a valid tuple.

However, in the LMRS-model the adversary has to provide the complete sequence of previous
messages when invoking the signing oracle. But then it is not allowed to output the same sequence
even with a modified signature. Hence, an adversary in the LMRS-model does not gain advantage
from the modifications of the signature scheme.

4 Construction

We derive a history-free sequential aggregate signature scheme based on the BLS signature scheme
that is secure in the random oracle model [BLS01]. This scheme has already been successfully
applied to derive the non-sequential BGLS aggregate signature scheme [BGLS03]. Below we assume
that we have an efficient, non-degenerate bilinear map e : G1 ×G2 → G3 for system-wide available
groups, where g1 is a generator of G1 and g2 is a generator of G2. We assume that e(·, g2) is
one-to-one. Also, let H : {0, 1}∗ 7→ G1 be a public hash function.

In the BLS signature scheme the key generation algorithm Kg(1n) picks an element x ← Zp
at random and computes v ← gx2 . It returns (pk, sk) ← (v, x). The signing algorithm Sign(x,M)
takes as input a message M ∈ {0, 1}∗ and a secret key x. It computes σ ← H(M)x and returns the
signature σ ∈ G1. The verification algorithm Vf(v,M, σ) outputs 1 iff e(σ, g2) = e(H(M), v).

The idea of our construction is as follows. We let the signer build a link between all previous
all signatures by linking them through a hash chain. That is, in each aggregation step the signer
receives the aggregate-so-far (σ′, pk′, c′, s′), consisting of an aggregate σ′, the public key pk′ of
the preceding signer, a hash chain value c′ and the non-aggregated signature s′ of the preceding
party. The signer first checks that s′ is a valid signature under pk′ for c′ and, if so, it extends the
hash chain via c ← h(e(σ′, g2),M, pk′, c′) for its message M . Note that using the value under the
bilinear mapping instead of σ′ is necessary for the verification the whole sequence without knowing
the individual aggregates and is a specific property of the BLS scheme. The signer next computes a
non-aggregated signature s for c and aggregates s to σ′ to derive σ, and finally forwards (σ, pk, c, s)
to the next signer.

Construction 4.1 Let DS = (Kg,Sig,Vf) be the BLS signature scheme and h : {0, 1}∗ 7→ {0, 1}n
be a hash function. Define the following efficient algorithms:

Key Generation. The key generation algorithm is identical to Kg.

Sequential Signature Aggregation. Algorithm SeqAgg gets as input a pair of keys (sk, pk) =
(x, v), a message M ∈ {0, 1}∗, and a sequential aggregate signature (σ′, pk′, c′, s′). The algo-
rithm sets c← h(e(σ′, g2),M, pk′, c′), where e(∅, g2) = 1 by definition, checks that Vf(pk′, c′, s′) =
1 or that pk′, c′, s′ = ∅ are the starting symbols, and stops if not. Else it computes the signa-
ture s = H(c)x ← Sig(sk, c) on c and the value σ ← σ′ · s. It outputs the sequential aggregate
signature (σ, pk, c, s).

Aggregate Verification. The input of algorithm SeqAggVf(pk,M, σ) is a sequence of public keys
pk = (pk1, . . . , pk`), a sequence of messages M = (M1, . . . ,M`) as well as an aggregate σ (with
pk, c, s). It sets

c0 ← ∅ and pk0 ← ∅ and ci ← h
( i−1∏
j=0

e(H(cj), pkj),Mi, pki−1, ci−1
)
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for i = 1, . . . , `, where e(H(∅), pkj) = 1 by definition. Let C = (c1, . . . , c`). The algorithm
then outputs 1 if AggVf(pk,C, σ) = 1.

Completeness follows inductively, as for honest parties each intermediate aggregate σi is a valid
signature for c1, . . . , ci and therefore the next output also satisfies e(σi, g2) =

∏
e(H(cj), pkj).

Next, we prove the security of the scheme. Our proof basically follows by reduction to the
security to the BGLS aggregate signature scheme [BGLS03] and the collision resistance of h. We
note that we do not explicitly rely on the random oracle model, only implicitly through the (cur-
rently best) security proof for the BGLS scheme. Instead, we could give a straight reduction to the
co-Diffie-Hellman problem [BLS01], but then we would need to program the random oracle. The
main idea of the proof is that we either break the underlying BGLS scheme (in case C∗ computed in
the verification of the adversary’s forgery attempt contains a new value c∗i ), or that the adversary
has to forge a (regular) signature for an honest party or to find a collision for h (if all values in C∗

have appeared during the attack).

Theorem 4.2 Let h be a collision-resistant hash function. If the BGLS aggregate signature scheme
is unforgeable, then the scheme defined in Construction 4.1 is a history-free, mezzo aggregation-
unforgeable sequential aggregate signature scheme.

Proof. We prove this theorem assuming towards contradiction that there exists an adversary A
breaking aggregation-unforgeability with non-negligible probability ε(n). Assume that this adver-
sary eventually outputs a valid forgery M∗, pk∗ and σ∗. Let C∗ = (c∗1, . . . , c

∗
` ) denote the values

derived during the verification, and assume that the sequence M∗ does not belong to the closure.
If the probability that the adversary A succeeds and there is some c∗i for an honest party which

has never been queried to an aggregation query for this party, then we can break the underlying
aggregate signature scheme. To this end we construct an algorithm B (receiving a challenge key
and having access to a signature oracle for this key) as follows:

Setup. Algorithm B gets as input a public key pkc, it picks t− 1 key pairs (ski, pki)← SeqKg(1n)
and inserts the key pkc at a random position, pk ← (pk1, . . . , pkj−1, pkc, pkj+1 . . . , pkt). B
simulates A in a black-box way on input pk.

Key Oracles. During the simulation, A is allowed to corrupt keys and to change them. If A
invokes the corruption oracle Corrupt(sk, ·) on input pk, then B returns ski if pki = pk, for
some i ∈ {1, . . . , t} \ j, and otherwise failed. In the case that A wishes to substitute a certain
public key pk ∈ pk and queries its key-modification oracle SetKey(sk, ·) about a pair (pk, pk′),
then B sets pki = pk′ if pki = pk for an index i ∈ {1, . . . , t} \ j. It returns succ if such a public
key exists and substitution succeeded, otherwise failed.

Aggregate Signing. Whenever A asks the aggregate signing oracle SeqAgg to build a new se-
quential aggregate signature for an aggregate-so-far σ′, a message M , and a public key pk,
algorithm B answers this query in the following way. It first checks if the public key pk has
never been corrupted nor substituted (if so, it returns ⊥). Adversary B either computes the
aggregate invoking its external signing oracle (in the case where pk = pkc), or by executing
the aggregation algorithm (for the corresponding secret key sk). In both cases all other steps
of the aggregation algorithm besides the signing step can be computed easily. B outputs the
full aggregate to A.

Output. At the end of the simulation A outputs a tuple (M∗,pk∗, σ∗). Algorithm B computes
C∗ as in the description of the verification procedure and returns these values together with
pk∗ and σ∗.
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For the analysis note that, in the case that some new c∗i for some honest party is in C∗ our algorithm
B also breaks the aggregate scheme, losing a factor 1/t for guessing the right public key. Hence,
this case cannot have non-negligible probability.

Next assume that all the c∗i ’s of honest parties have appeared in aggregation requests before
(and are answered without failure), but A still wins. In the forgery attempt consider the leftmost
honest party at position i such that the leading sequence (M∗1 , . . . ,M

∗
i ) of M∗ does not lie in the

closure. Since we assume that c∗i has appeared in some aggregation query to party i before, we
must have a query (σ′, pk′, c′),M with

h(e(σ′, g2),M, pk′, c′) = c∗i = h(
∏
j<i

e(H(c∗j ), pkj),M
∗
i , pki−1, ci−1).

By the collision-resistance of h we conclude that M = M∗i , pk′ = pki−1 and c′ = c∗i−1 and e(σ′, g2) =∏
j<i e(H(c∗j ), pkj). By assumption, the leading sequence (M∗1 , . . . ,M

∗
i ) is not in the closure. There

are three cases:

• Our “target” party at position i is the first one in the sequence (M∗1 , . . . ,M
∗
i ), i.e., i = 1.

Since it then only computes an aggregate if σ′, pk′, c′ = ∅ we derive the contradiction that the
sequence is in fact in the closure, due to the aggregation query (σ′, pk′, c′),M = M∗i yielding
c∗i . This, however, contradicts our assumption.

• Assume that there is a corrupt party at position i − 1 in the forgery sequence. Then, by
construction and since party i is the leftmost with the sequence (M∗1 , . . . ,M

∗
i ) not being in

the closure, the sequence including the corrupt party must be in the closure (all subsequences
must already be in the closure by assumption). But then the query triggering the appearance
of c∗i again makes (M∗1 , . . . ,M

∗
i ) per definition also part of the closure. This is so since corrupt

parties can “link” any trivial sequences.

• The final case is if there is an honest party at position i − 1. Note that our party at i only
returns an aggregate if the signature s′ is a valid signature for the incoming value c′ = c∗i
under the same key pk′ = pki−1 of the honest party at position i − 1. We conclude again
that the adversary needs to make the honest party at some step sign c∗i (or needs to forge
a signature for honest party at i− 1, which would again contradict the security of the basic
aggregate scheme). However, by the collision resistance of h and noting that the function
e(·, g2) is one-to-one, it follows that this requires the same input (σ′′, pk′′, c′′),M ′ to the party
at position i − 1 as on the “closure path”. Furthermore, the valid signatures s′′ for c′′ and
s′ for c′ are unique, and it therefore follows again that the closure extends to the party at
position i, contradicting again our assumption.

This shows that the adversary can win in this case with negligible probability only, and concludes
the proof. �

5 Security of Non-Sequential Aggregation Schemes

The common security model for non-sequential aggregate signatures of Boneh et al. [BGLS03]
only considers limited attacks (akin to our weaker security notion), even though stronger notions
may be desirable for some applications (similar to our strong notion). For the case of symmetric
authentication this was already discussed in [EFG+10] by presenting an attack against an aggregate
MAC scheme, that was outside of the previous security model. Here we show that a similar
argumentation holds for aggregate signatures as well.
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Mix-and-Match Attacks. We first recall the example of an “mix-and-match” attack that was
given for aggregate MACs by Eikemeier et al. From an abstract point of view, the attack uses
three aggregates for message sets {M1,M2}, {M3,M2} and {M1,M4} to derive a valid aggregate
for a fourth pair {M3,M4}. The attack is not considered a security breach according to the
model by [BGLS03]. Roughly, the shortcoming is due to the definition of “trivial” attacks: an
adversary is usually not considered to succeed if the messages in the forgery have been authenticated
individually during the attack. In the example above this means that any combination of the
messages M1,M2,M3,M4 cannot be used for a successful forgery, although only three of these
combinations have actually appeared before. Ideally, however, an aggregation scheme should be
considered insecure if an adversary is able to transform several aggregates into a new combination
that has not been authenticated before.

More concretely, recall that an aggregate in the scheme by Boneh et al. is of the form σ =
∏
σi

for regular BLS signatures σi = H(Mi)
xi for random oracle H, message Mi and secret key xi. The

public key is given by gxi and verification is performed with the help of the pairing operation.
Given the replies

σ1 = H(M1)
x1 ·H(M2)

x2 , σ2 = H(M3)
x1 ·H(M2)

x2 , σ3 = H(M1)
x1 ·H(M4)

x2

to three aggregation queries for message sets {M1,M2}, {M3,M2} and {M1,M4}, the adversary is
able to compute a valid aggregate

σ∗ = σ−11 · σ2 · σ3 = H(M3)
x1 ·H(M4)

x2

for the set {M3,M4}. According to the definition of [BGLS03] this, however, does not constitute a
security breach.

We discuss further attacks.

Deletion. Given two aggregates

σ1 = H(M1)
x1 ·H(M2)

x2 ·H(M3)
x3 , σ2 = H(M2)

x2

for queried message sets {M1,M2,M3}, and {M2} respectively, an adversary against the
BGLS scheme can delete the element H(M2)

x2 = σ2 from the first aggregate by computing

σ∗1 = σ1 · σ−12 = H(M1)
x1 ·H(M3)

x3

and thereby obtains a valid aggregate on the “fresh” set {M1,M3}.

Re-Ordering. A re-ordering attack is an attack where an adversary learns a single aggregate
σ1 on a sequence of messages M1,M2,M3 and outputs an aggregate on a new sequence of
messages M1,M3,M2. More precisely, given the reply

σ1 = H(M1)
x1 ·H(M2)

x2 ·H(M3)
x3

to the aggregation query for message sets {M1,M2,M3}, the adversary is able to reorder the
elements inside the aggregate:

σ∗2 = H(M1)
x1 ·H(M3)

x3 ·H(M2)
x2

and obtains a valid “fresh” aggregate on the set In particular, this attack cannot be prevented
by assuming a synchronized state among signers.
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Extension. This attack holds by definition for any scheme that comes with a keyless aggregation
algorithm, i.e., where even an untrusted party can aggregate signatures (or aggregates) to-
gether. However, in our model we consider such extensions of aggregates as valid forgeries.
For BGLS the attack works as follows: Given the aggregates

σ1 = H(M1)
x1 ·H(M2)

x2 ·H(M3)
x3 σ2 = H(M4)

x4 ·H(M5)
x5

for queried message sets {M1,M2,M3} and {M4,M5}, the adversary is able to extend the
aggregates into

σ∗3 = σ1 · σ2 = H(M1)
x1 ·H(M2)

x2 ·H(M3)
x3 ·H(M4)

x4 ·H(M5)
x5

which is a valid aggregate on the “fresh” set {M1,M2,M3,M4,M5}.

Relation to Boneh’s et al. Aggregate Extraction Problem. Our mix-and-match attack
on the scheme of Boneh et al. [BGLS03] benefits from the fact that we can remove some signatures
from the aggregate. Interestingly, the authors in [BGLS03] already address the question whether it
is possible to extract any subset of (unknown) signatures from the aggregate or not. This problem
is called aggregate-extraction-problem. Extracting even a single (unknown) signature from such an
aggregate is equivalent to solving the computational Diffie-Hellman problem, as subsequently shown
by Coron and Naccache [CN03]. Thus, in a sense, our result can also be seen as a generalization
of the aggregate extraction problem with respect to the BGLS aggregate signature scheme, to a
more general context where we not only consider the extraction of single signatures, but also the
(re-)combination of aggregates (as discussed above).

Defining Stronger Aggregation Unforgeability. To derive a stronger security notion
Eikemeier et al. adapt their notion and attack model for the sequential case, except that the
aggregation oracle now takes unordered sets of messages and public keys. The definition of the
closure for our signature case simplifies and is then given by

Closure(QAgg, QCor) ={ ⋃
MA∈A

MA ∪ MC

∣∣∣∣ A ⊆ QAgg, MC ⊆
⋃

pk∗∈QCor

{(pk∗,M) |M ∈ {0, 1}∗}

}
.

We remark again that it is unknown whether this notion can indeed be satisfied.

Synchronized Aggregate Signatures. A line of research studies aggregate signatures where
signers share a synchronized clock [GR06, BJ10, AGH10], showing that efficient constructions under
well known computational assumptions are possible in this model, even for unordered aggregation.
Following this line, Eikemeier et al. [EFG+10] discuss how to derive MAC schemes secure according
to a relaxed notion similar to the one above, and their ideas transfer to signatures as well. However,
their solution still does not cover deletion attacks. Furthermore, it is of course preferable to avoid
such synchronization assumptions.
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