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Abstract. Since side channel analysis was introduced as a method to recover se-
cret information from an otherwise secure cryptosystem, many countermeasures have
been proposed to prevent leakage from secure devices. Among these countermeasures
is side channel atomicity that makes operations indistinguishable using side channel
analysis. In this paper we present practical results of an attack on RSA signature
generation, protected in this manner, based on the expected difference in Hamming
weight between the result of a multiplication and a squaring operation. This work
presents the first attack that we are aware of where template analysis can be used
without requiring an open device to characterize an implementation of a given cryp-
tographic algorithm. Moreover, an attacker does not need to know the plaintexts
being operated on and, therefore, blinding and padding countermeasures applied to
the plaintext do not hinder the attack in any way.
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1 Introduction

Side channel analysis of cryptographic devices can potentially allow the recovery of secret
information by an attacker, even when the underlying algorithms are mathematically secure.
An attacker would seek to identify a suitable side channel, such as timing [19], power [20],
and electromagnetic [13] leakage. Many attacks using these side channels have been described
in the literature such as differential [6, 20] and template [8] attacks, as well as countermea-
sures [9, 11, 18] intended to thwart them.

In [1], a method of distinguishing between multiplication and squaring operations using
acquired traces of power consumption or electromagnetic emanations was demonstrated.
In this paper we extend that work by using template attacks to distinguish between these
operations to propose a practical attack. The attack functions with no knowledge of the
input to the algorithm, other than that it is random and uniformly distributed. Therefore,
the attack is unaffected by padding and/or blinding applied to the input message.

Typically, generating templates to attack a device requires an open device where crypto-
graphic keys are known, or can be controlled. The device is then characterized and templates
are generated. These templates are then used to derive a cryptographic key on an identical
device with very few traces. In this paper we present an attack where a device with a known
key can be used to generate templates. Where a verification function is available that uses
the same subfunctions as a signature generation function, this function could be used to
generate templates under the assumption that the public key is known.



Previous work applying templates to public key primitives, such as that described in [16,
22], has targeted the precise Hamming weight of intermediate values. The work described
in this paper targets the distribution of the Hamming weight of intermediate values, but
differs in that the value itself is unknown even when generating the templates. The templates
are generated so as to be able to distinguish if an operation is a squaring operation or
multiplication, rather than directly recovering an intermediate value.

The paper is organized as follows: in Section 2, the side channel atomic RSA algorithm is
described as the target of this work. Further implementation details are given with a descrip-
tion of the Montgomery multiplication algorithm. An overview of template attacks is also
given in this section. In Section 2.4 the previous work dealing with the the Hamming weight
difference between multiplications and squaring operations is revisited. Both simulated and
practical results of our attack using templates are provided in Section 3. The potential ap-
plication of our attack to implementations secured with various other countermeasures are
described in Section 4. Finally we draw our conclusions in Section 5

2 Preliminaries

2.1 RSA

The principal operation of the RSA [30] signature scheme is a modular exponentiation
in (Z/NZ)∗. That is, a signature s is generated from a message m by computing s =
µ(m)d mod N , where d is the private key, N is the product of two large primes, and µ is an
appropriate padding function. This signature can be verified by checking whether µ(m) is
equal to sv mod n. We define d ≡ v−1 (mod φ(N)) where φ is Euler’s Totient function.

One of the most widely known algorithms for implementing an exponentiation is the
square-and-multiply algorithm, where an exponent e is read from left-to-right bit-by-bit.
Starting with an accumulator set to one, a squaring operation is performed if a bit is equal
to zero, and a squaring operation followed by a multiplication (with the value being raised
to e) if a bit is equal to one.

It has been shown that bit values of an exponent can be distinguished by observing a
suitable side channel, such as the execution time [19], power consumption [20] or electromag-
netic emanations [13, 28]. This is because an attacker can potentially derive the difference
between a multiplication and a squaring operation if, for example, a different number of
registers in a hardware implementation is used (which would lead to the operations having
different power signatures), or they require a different amount of time to compute.

The simplest countermeasure is to always perform the multiplication and squaring op-
erations [11], however this incurs a significant performance penalty. Another option is to
remove the difference between a squaring operation and a multiplication. This means that,
to square a value x, the calculation of x2 mod N is replaced with x · x mod N . This idea
is put forward in [9], where two instructions are defined as side channel equivalent if they
are indistinguishable through side channel analysis, and algorithms are termed side channel
atomic if the algorithm can be broken down into indistinguishable blocks. This principle,
applied to the square and multiply algorithm, is demonstrated in Algorithm 1.

This algorithm would prevent an attacker from being able to distinguish a multiplication
from a squaring operation by simply observing the difference in a side channel, since an
optimized squaring operation is not used.

2.2 Montgomery Multiplication

When implementing a modular exponentiation a commonly used multiplication algorithm
is Montgomery multiplication [24], since the modular reduction is interleaved with the mul-
tiplication. The result of a modular multiplication using this algorithm is not the product



Algorithm 1: Side Channel Atomic Square and Multiply Algorithm

Input: m, x < m, e ≥ 1, ℓ the binary length of e (i.e. 2ℓ−1 ≤ e < 2ℓ)
Output: A0 = xe mod m

1 A0 ← 1; A1 ← x; i← ℓ− 2; k ← 0
2 while i ≥ 0 do

3 A0 ← A0 ·Ak mod m
4 k ← k ⊕ bit(e, i)
5 i← i− ¬k

6 end

7 return A0

of x and y modulo m. The algorithm actually returns x y R−1 mod m, where R−1 mod m
is introduced by the algorithm (R = bn, where the modulus consists of n words of size
b), shown in Algorithm 2. In order to use Montgomery multiplication, x and y need to be
converted to their Montgomery representation, i.e. x̃ ← xR mod m and ỹ ← y R mod m.
Then, when x̃ and ỹ are multiplied together using Montgomery multiplication, the result is
x y R mod m. This algorithm requires 2n (n+ 1) single-precision multiplications [23].

Algorithm 2: Montgomery Multiplication

Input: m = (mn−1, . . . ,m1,m0)b, x = (xn−1, . . . , x1, x0)b, y = (yn−1, . . . , y1, y0)b with
0 ≤ x, y < m, R = bn, gcd(m, b) = 1 and m′ = −m−1 mod b.

Output: A← x y R−1 mod m.

1 A← 0
2 for i = 0 to n− 1 do

3 ui ← (a0 + xi y0)m
′ mod b

4 A← (A+ xi y + ui m)/b

5 end

6 if A ≥ m then A← A−m

7 return A

Algorithm 2 has been demonstrated to be vulnerable to side channel because of the final
conditional subtraction that takes place if A ≥ M . This conditional subtraction affects the
entire execution time of an exponentiation leading to an attack based on total time taken to
compute an exponentiation [35]. It has also been shown that individual subtractions will be
visible in the power consumption, or electromagnetic emanations, leading to more efficient
attacks [33, 34]. The simplest countermeasure would be to always conduct the subtraction
and take the result as required. However, this approach is problematic since the bit that is
used to make this choice may be visible in a side channel. Moreover, this could potentially
be attacked by a fault attack, where a fault in a subtraction that does not affect the result
of an exponentiation identifies a dummy subtraction [37]. More effective countermeasures
involve increasing the number of iterations of the main loop so that the final subtraction
becomes unnecessary [15, 32]. However, these attacks and countermeasures do not have any
impact on the attack described below and can be considered beyond the scope of this paper.



2.3 Template Attacks

Template attacks, introduced by Chari et al. [8], are a powerful form of side channel attack
that allow secret information to be extracted from a device with very few power traces.
They work on the premise that an attacker has an identical device to that which is being
attacked under his control, such that he can choose, or knows, all the inputs to the device
(this includes any cryptographic keys). This allows an attacker to characterize the power
consumption of the device prior to an attack. A template attack is, therefore, a two stage
attack, as outlined in [12]. The first stage is template generation, where a device under the
attacker’s control is used to characterize the power consumption. This is followed by template
classification where, using the templates generated previously, information is extracted from
the device under attack.

In the attack presented in this paper we can consider a more relaxed model than that
proposed by Chari et al. since we do not require a device where cryptographic keys need
be modified to generate templates. An attacker merely needs to be able to execute a mul-
tiplication or squaring operation where the input is known to be random. Assuming that
an attacker wishes to recover a RSA private key, this can be achieved by using an identical
device where the private key is known. Another approach would be to use the verification
function in the same device assuming that the public key is known.

Template Generation Templates consist of estimates for the mean vector mi and noise
covariance matrix Ci, as defined in Equations 1 and 2 where i ∈ {1, . . . , n} and n signifies
the number of different possible values or operations that an attacker wishes to analyze.
These values are each constructed from a large number of traces, tj where j ∈ {1, . . . , k},
and k is typically in the region of 1000. However, the actual value of k will vary from one
device to another, and is also dependent on the size of the bus in the device under attack,
as well as the operation being performed.

mi =
1

k

k∑

j=1

ti,j (1)

Here ti,j represents the j-th acquisition of the i-th possible value.

Ci =
1

k − 1

k∑

j=1

(ti,j −mi) (ti,j −mi)
T

(2)

When recording power traces, a high sampling rate is often used, to capture small fluctua-
tions in power consumption. This leads to the length of a trace being very large (e.g. for the
1024-bit modular multiplication traces on the ARM7 used in Section 3.2 a sampling rate of
100MS/s led to a trace length of over a million points). It is computationally unfeasible to
construct templates including all of these points. Methods are available to reduce redundant
information in a trace, such as integration within a clock cycle or extracting the maximum
value per clock cycle [21]. These methods significantly reduce processing time by removing
redundancy within the trace without a significant loss in the information that leaks from the
trace. However, for the construction of templates further reduction is required to extract the
features that the templates will be based on. One option is to sum the absolute differences
of the mean traces and select the required number of highest points, as described in [29].
It is typically only necessary to retain one point per clock cycle since the inclusion of other
points does not add any further information. Note that certain trace reduction methods
already have this effect.



Template Classification To extract key information, an attack trace t is required, which is
a power trace of the operation that is being targeted. The trace must first be reduced in size
and features selected, i.e. extracting the same information that was used when generating
templates. For each of the n templates, the probability of the trace corresponding to a given
template can be calculated using Equation 3:

Pr (t |mi,Ci) =
1√

(2π)
n
|Ci|

e−
1

2
(t−mi)C

−1

i
(t−mi)

T

(3)

The probability of each of the n possible templates, can then be calculated using Bayes’
theorem, which is given in Equation 4:

Pr (kj | t) =
Pr (t | kj) Pr (kj)∑K

l=1 Pr (t | kl) Pr (kl)
(4)

The success of the attack is increased if a set of D power traces, T, for a constant
secret key is available. In this scenario, Bayes’ theorem applied iteratively can be used,
thereby increasing the power of the attack, as shown in [27]. Numerical errors during the
classification due to the exponentiation in Equation 3 can be avoided by taking the logarithm
of the probability template as described in [21].

2.4 The Difference in Hamming Weight

It was observed in [1] that the expected Hamming weight of the result of a multiplication
is different than the result of a squaring operation. The power consumption, and electro-
magnetic emanations, of a microprocessor is often proportional to the Hamming weight of
the values being manipulated [6, 13]. The difference in the expected Hamming weight of the
result of a multiplication and a squaring operation can be observed by measuring these side
channels [1]. We can note that this observation applies to a single-word operation and that
this difference will be present in any word-by-word multiplication algorithm.

This observation assumes that the power consumption, or electromagnetic emanations,
of the device being attacked is proportional to the Hamming weight of the values being
manipulated, referred to as the Hamming weight model. However, many devices also con-
form to the Hamming distance model [6], i.e. the power consumption, or electromagnetic
emanations, of the device being attacked is proportional to the number of bits that change
at a given point in time. This is of particular relevance to CMOS logic since a gate will
consume little power unless it changes state. However, other features in a microprocessor
can correspond to the Hamming weight model. In this paper we assume that the target
device corresponds to the Hamming weight model (we discuss this topic in more depth in
Section ??).

If we assume that a multiplication takes place between two random uniformly distributed
κ-bit values, the probability of a given bit being equal to zero, or one, can be computed by
observing the distribution of each bit over all the possible multiplicands. If κ = 16, for
example, this can readily be computed, as is shown in Figure 1. A significant difference in
the probability of the bits of the least significant byte being set to one can be observed. This
difference will be present in each of the single-precision multiplications that are required to
compute a Montgomery multiplication.

In order to demonstrate this difference, simulated traces of a 1024-bit Montgomery mul-
tiplication were generated. Algorithm 2 was implemented with a radix value, b, of 32-bits,
leading the number of words, n, required also being 32. Therefore 2n (n+ 1) = 2112 single
precision multiplications were present for each trace. The Hamming weight of each interme-
diate multiplication value was then recorded to generate the simulated power values. Figure 2
shows the difference in the mean power consumption for 1000 multiplication and squaring



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6
Bit Probability for a 16−bit Multiplication

P
ro

ba
bi

lit
y

Bit Number

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Bit Probability for a 16−bit Squaring

P
ro

ba
bi

lit
y

Bit Number

Fig. 1. The probability that each bit of the result of a multiplication and a squaring operation is
equal to one with random 16-bit multiplicands.

operations. There are 33 distinct peaks clearly visible in this trace. Comparing with Algo-
rithm 2, these peaks correspond to the single-precision multiplications xi yj , where i = j.
There are 33 distinct peaks since there are two such multiplications when i = 0. It can
also be seen where mean power traces for the same operation are subtracted, no peaks are
present. There are also a number of smaller peaks present at the beginning when computing
u0m since u0 = (x0y0m

′) mod b.
This property leads to the attack outlined in [1], where if many traces for a constant

exponent are available, bits can be recovered by subtracting the mean of adjacent operations.
However, attacks based on this observation require a large number of acquisitions in order
to be able to observe this difference to extract key bits and are not practicable.

3 Application of Templates

In this section we demonstrate that the expected Hamming weight can be used to create
templates to distinguish between a multiplication and a squaring operation with a high
probability using a single trace. We further discuss how this could be applied to a side channel
atomic exponentiation algorithm to determine an RSA private key. This is demonstrated
using simulated traces, and then its practical relevence is shown using traces acquired by
measuring the instantaneous power consumption of an ARM7 microprocessor.

As stated previously, we assume that the power consumption is proportional to the
proportional to the Hamming weight of the values being manipulated at a given point in
time.

3.1 Attack using Simulated Traces

To illustrate our attack, we generated simulated traces for 20 thousand 1024-bit Montgomery
multiplication operations in the same manner as used for Figure 2. Two sets of 10 thousand
traces were acquired, representing multiplications and squaring operations using uniformly
distributed random inputs. The first 5 thousand traces of each set were designated the
template generation traces, and the last 5 thousand were designated attack traces. Using
the peaks present in the difference of means trace, as illustrated in Figure 2, templates
were built for the two operations. The peaks are chosen as the points of interest to build
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Fig. 2. Difference between mean traces for multiplication and squaring operations.

the templates from as they indicate the points where the expected Hamming weight of a
multiplication and squaring operation differ and affect the power consumption.

To determine whether an operation is a multiplication or squaring, each trace was clas-
sified using both multiplication and squaring templates. Since we are considering a binary
classification system, a threshold was determined where any probabilty greater than the
threshold indicates the template for the correct operation has been used. Conversly this
means that anything less than the threshold is the other operation. Classification for both
templates must still be computed to allow the application of Bayes theorem as outlined
in Section 2.3. To calculate the threshold, each trace used to generate the templates was
classified individually and the midpoint between the mean of the resultant probabilities
selected.

Figure 3 shows the classification success rate of 1000 attack traces as a function of the
number of traces used to generate the templates, i.e. the percentage of individual traces that
were successfully classified. It can be seen that as the number of traces used to generate the
templates increases, the attack traces are more accurately classified, giving an expected suc-
cess rate of 82% for a given trace when 5000 traces are used to generate the templates. This
is due to a more accurate estimation for the mean and covariance matrix of the templates.

If an exponent is constant, as would be the case with a näıve implementation of RSA,
multiple traces with different inputs can be used in an amplified template attack, as described
in [27]. By multiplying the probabilities for consecutive traces, the correct operation can be
identified with a high probability after very few traces, as illustrated in the example in
Figure 4. In this example, using templates built from 5000 traces, 1000 sets of 5 traces are
classified and the success rate for each set is plotted taking consecutive traces into account
(as opposed to the success rate for each individual trace in the last example). The success
rate increases as more traces are taken into account, correctly classifying the operation 94%
of the time if 5 traces from the same exponent are available.

We can note that there will be more information to exploit as the bit length of the tar-
geted operations increases, since there will be more single-precision multiplications required
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Fig. 3. Success rate of template attack - 1024-bit simulated traces
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Fig. 4. Success rate of amplified tempate attack - 1024-bit simulated traces

to compute each operation. This observation was also utilised in the attack presented in [33].
In the case of a 4096-bit multiplication operation there are four times as many information
bearing single-precision multiplications to compute than in a 1024-bit operation. This allows
us to more accurately classify an operation using a single trace. To verify this we generated
simulated traces as before, except for with 4096-bit inputs. Figure 5 shows us that the suc-
cess rate has increased from 82% to 95%. Therefore, for example, in the case of a blinded
implementation of the RSA signature scheme with a key length equal to (or greater than)
4096-bits, one can deduce the operations from a single trace using templates with a high
probability of success.

3.2 Attack using Acquired Traces

To verify the practical implications of our attack, we also implemented a 1024-bit Mont-
gomery Mulitplication on an ARM7 microprocessor [2], which has a 32-bit architecture
leading to the same number of single-precision multiplications that leak useful information
as the simulated case. For simplicity, the Montgomery multiplication algorithm was imple-
mented with a redundant subtraction since this operation will have no effect on the analysis
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Fig. 5. Success rate of template attack - 4096-bit simulated traces

described in this section. The traces were acquired with a sampling rate of 100 Ms/s, while
the ARM7 microprocessor was clocked with a 7.37 MHz clock. To reduce the effect of noise,
the traces were filtered using a 10 MHz lowpass filter. To reduce the computational com-
plexity of the resultant attack, the maximum point within each clock cycle was extracted
to shorten the trace length, as described in [21]. This also has the effect of synchronising
the traces where the offset is less than the width of a clock cycle. Using the same inputs as
before, 10, 000 traces for each operation were acquired, and split evenly into generation and
attack traces.

Figure 6 shows the difference of means trace between the operations, the crosses indi-
cating the points retained to generate the templates. Here, two points per multiplication
are retained per single-precision multiplication. The lower plot shows the detail of a single
peak from the upper plot. We can see that there are two peaks where the power difference
between a multiplication and squaring operation can be observed. Therefore more points
are available to build our templates with than in the simulated case.
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Fig. 6. Difference of means trace between multiplication and squaring operations.

The effect of the extra peaks available to generate the templates can be seen in Figure 7
where the success rate is higher with actual power traces than in the simulated case. The



attacker is also not limited to retaining a single point for each peak. In this scenario, the
highest success rate of over 90% comes when four points per single-precision multiplication
are used to build templates. Retaining further points leads to the templates modeling the
generation set of traces more accurately, but not the general output of the multiplication
operation as a whole, which is what is required to successfully classify the attack traces. The
success rate of an amplified template attack also shows a corresponding increase with the
ARM7 traces, giving a success rate of 97% when templates are generated with 5000 traces
for each operation, and 5 traces are available with a constant exponent.
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4 Application to Secure Implementations

When implementing a cryptographic algorithm on a device that is potentially vulnerable to
side channel analysis, one would typically include specific countermeasures, in conjunction
with side channel atomicity, to prevent an attacker being able to derive information on
cryptographic keys. When implementing RSA this would typically mean implementing the
blinding countermeasures described by Coron [11].

These countermeasures modify the exponentiation algorithm such that the values being
operated on at a given point in time cannot be predicted by an attacker. Given that both
the side channel leakage models discussed above are based on the number of bits being
manipulated at a given point in time, these countermeasures randomize the bitwise repre-
sentation of all the variables being manipulated. For instance, to implement a function to
compute a RSA signature s = µ(m)d mod N , as defined in Section 2.1, each variable would
be modified with a random value as shown in Algorithm 5. This is referred to as blinding
since an attacker is unable to determine the values being manipulated at a given point in
time.

The addition of r1 N to µ(m) provides a redundant representation of µ(m) modulo N
and is referred to a message blinding. Given that µ(m) + r1 N ≡ µ(m) (mod N), and this
will remain true for all the intermediate states during the execution of the algorithm, the
computation should not take place in (Z/NZ)∗ since the blinding would be removed. The
bit length of the modulus is therefore increased by multiplying it by a random value so that
the computation takes place in (Z/r2 NZ)∗. The values held in memory at a given point
during the computation of the exponentiation cannot be predicted without knowing these



Algorithm 3: Blinded Exponentiation

Input: m, d,N , µ a padding function, φ Euler’s Totient function and non-zero random
values ri, for i ∈ {1, 2, 3}.

Output: s = µ(m)d mod N .

1 m′ ← µ(m) + r1 N
2 N ′ ← r2 N
3 d′ ← r3 φ(N) + d

4 s′ ← µ(m)d
′

mod N ′

5 return s′ mod N

random values. However, the values held in memory at a given point in time would represent
the same value in (Z/NZ)∗ for a fixed exponent.

The bitwise representation of the exponent is also modified by replacing the exponent d
with r3 φ(N)+d, where φ is Euler’s Totient function, and is referred to as exponent blinding.
Any value raised to a multiple of φ(N) will be equal to itself in (Z/NZ)∗, i.e. it is an identity
function. Adding a multiple of φ(N) to the exponent changes the bitwise representation of
the exponent without changing the result of its use in (Z/NZ)∗.

One would typically choose the values of ri, for i ∈ {1, 2, 3}, to be at least 32 bits. As
noted in [31], one would also want the bit length of r2 to be longer than the longest run of
zeros in the bitwise representation of φ(N) so that all the bits of d are blinded. Furthermore,
some side channel attacks could potentially derive an exponent if the bit length of these
random values is too small [10]. The discussion of this topic is beyond the scope of this
paper, and we will assume that each random value has the same bit length as one word of
the processor computing the algorithm.

4.1 Effect on the Attack

When implementing the attack described in Section 3 the use of exponent blinding changes
the required strategy, while the use of message blinding aids an attacker.

The use of message blinding randomises the bitwise representation of the values being
operated on by the exponent. This aids an attacker since the values being operated on will be
random and uniformly distributed and any values set to a constant will be randomized, e.g.
the X509 and PKCS padding schemes set large parts of their output bytes to fixed values. The
increase in the bit length of the modulus will also mean that it will require an extra word in
memory. This also means that the Montgomery multiplication (see Algorithm 2) will require
one more iteration of the main loop, providing one more single-precision multiplication that
could be analyzed by an attacker (i.e. one more single precision multiplication that will
either be a multiplication or a squaring operation). This will provide another point in the
traces that can be included in the template attack. As illustrated in Section 3, the more
single-precision multiplications available to build templates with, the higher the success rate
of the attack.

The use of exponent blinding randomizes the bit wise representation of the exponent
and therefore randomizes the sequence of multiplication and squaring operations that are
computed. An attacker would be unable to take several acquisitions to improve the quality
of classification since the operation being computed at a given point in time during the
execution of the algorithm will vary from instantiation to another. This means that an
attacker has to determine whether an operation is a multiplication or a squaring operation
from one acquisition. Moreover, an attacker also needs to acquire a single trace that includes
the power consumption during an entire exponentiation to attempt to derive the exponent
used, and therefore a value equivalent to the exponent d in (Z/NZ)∗. Deriving partial



information from two traces will provide partial information on two values that are equivalent
to the exponent d in (Z/NZ)∗, which will not be sufficient to derive d.

The results from Section 3 are directly applicable to a secure implementation, but only
if we add the constraint that an attacker can use one target trace. In Section 3.2 an at-
tacker could expect to correctly identify 90% of the bits of an exponent used in an ARM
implementation of Algorithm 5.

The incorrect classification of operations can be corrected to a certain extent, since the
Hamming weight of the entire exponent can be computed by observing the total number of
operations, and that a multiplication will always be preceded, and followed by, a squaring
operation (see Algorithm 1). One approach to conducting this analysis was proposed by
Green et al. [14] using hidden Markov models.

5 Conclusion

In this paper we demonstrate that the principle of side channel atomicity is not valid simply
because the same code is executed for a given function for all possible inputs. This was done
by characterizing the difference in expected Hamming weight of the result of a multiplication
and squaring operation given random uniformly distributed inputs to generate templates,
based on previous descriptions of this difference [1]. These templates are generated by con-
sidering single-precision multiplications rather than multiplications between multi-precision
values.

These templates can be used to characterize multiplications and squaring operations
to determine a private exponent when an RSA signature is generated using Algorithm 1.
Previous work in this area has concentrated on building templates on intermediate values
(e.g. such as observing where the input value is reused in a left-to-right exponentiation
algorithm) rather than the expected distribution of the result of a given function [16, 22].

The advantage of this work over previous work based on the model originally proposed
by Chari et al. [8] is that an attacker does not need an open identical device to conduct the
attack. That is, an attacker does not need a device where all the input and cryptographic
keys can be changed to arbitrary values. An attacker can use an identical device with a known
key, or a verification functions that uses the same operations. Furthermore, the values being
operated on do not need to be known, an attacker just needs to know that the values are
random.

The proposed attack can be used to derive the private key used in RSA, where one
needs to obtain the least significant quarter of an exponent to be able to derive the entire
exponent [5]. This naturally extends to the computation of a RSA signature using the
Chinese Remainder Theorem (CRT). Again, one needs to obtain a quarter of the least
significant bits of the private key modulo one of the two prime factors of the modulus N
(i.e. one of the two exponents used in this algorithm) [4]. The proposed method can also be
used to derive a blinded exponent with a certain probability, however there are currently
no results detailing how many bits one would need to identify (i.e. how efficient an attack
would be).

The work presented in this paper also applies to elliptic curve scalar multiplication over
large prime fields. If strongly unified formulae (e.g. these have been defined for Edward’s
curves [3] and Weierstraß curves [7]) are used then an algorithm equivalent to Algorithm 1
can be defined. An attacker could potentially distinguish an addition from a doubling op-
eration using the attack described above. While the bit length of the prime field using in
elliptic curve cryptography is significantly smaller than the bit length of an RSA modulus
there are numerous operations in the prime field for each operation, i.e. the addition and
doubling operation, that could be exploited.

As noted in [22], this type of attack naturally extends to attacking implementations of
the Digital Signature Algorithm (DSA), and its elliptic curve equivalent (ECDSA) [36]. In



each case a known value is raised to the power of a random value as part of the signature
generation. If some bits of the random value can be determined in one, or several, instanti-
ations of the signature scheme the private key can be derived [25, 26]. The work described
in this paper should allow an attacker to derive sufficient bits of this random value to break
a näıve implementation of these algorithms with a reasonable probability.

The template attack described in this paper will, counterintuitively, become more effec-
tive with longer key lengths due to the extra single-precision multiplications required, as
previously noted in [33] for similar reasons. This gives a strong argument for using regular
exponentiation algorithms (see [17] for a summary of this topic) rather than side channel
atomic algorithms.
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Koç, D. Naccache, and C. Paar, editors, CHES 2001, volume 2162 of LNCS, pages 251–261.
Springer, 2001.

14. P. J. Green, R. Noad, and N.P. Smart. Further hidden Markov model cryptanalysis. In J. R.
Rao and B. Sunar, editors, CHES 2005, volume 3659 of LNCS, pages 61–74. Springer, 2005.



15. G. Hachez and J.-J. Quisquater. Montgomery exponentiation with no final subtractions: Im-
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