
OBSERVATION: An explicit form for a class of
second preimages for any message M for the

SHA-3 candidate Keccak

Danilo Gligoroski1, Rune Steinsmo Ødeg̊ard2, and Rune Erlend
Jensen2,3

1 Department of Telematics, NTNU, Trondheim, Norway
danilo.gligoroski@item.ntnu.no

2 Centre for Quantifiable Quality of Service in Communication Systems - Q2S,
NTNU, Trondheim, Norway
rune.odegard@q2s.ntnu.no

3 Department of Computer and Information Science, NTNU, Trondheim, Norway
runeerle@stud.ntnu.no

Abstract. In this short note we give an observation about the SHA-
3 candidate Keccak[r, c, d], where the parameters r, c and d receive
values from the formal proposal for the Keccak hash function (with
the hash output of n = c

2
bits). We show how an attacker that will

spend a one-time effort to find a second preimage for the value z0 =
Keccak[r, c, d](0r) will actually get infinite number of second preimages
for free, for any message M . Our observation is an adaptation of similar
attacks that have been reported by Aumasson et.al and Ferguson et.al
for the SHA-3 candidate CubeHash. By this observation we do not con-
tradict security claims present in the official Keccak submission, but we
allocate a property in the design of the function: we get an explicit form
for a class of second preimages for any message M . As far as we know,
this kind of property is not known neither for MD5, SHA-1, SHA-2 nor
the other SHA-3 candidates.

1 Description of the observation

Hash function designs based on sponge functions are recent design concept
invented in 2007 by Bertoni, Daemen, Peeters and Van Assche [1]. The
design concept has attracted big interest by cryptographic hash designers
and in the ongoing SHA-3 competition there are four sponge (or sponge-
like) designs.

As an introduction to this note we want to recall the remark that
sponge function designers have written in their paper [1]: “More recently,
a series of attacks [9, 10, 5, 12] has shown that certain hash function con-
structions do not offer as much security as expected, leading to the intro-
duction of yet other criteria, such as chosen target forced prefix preimage
resistance. As was already predicted in [1], there is no reason to assume

that no new criteria will appear, so the design of a hash function seems
like a moving target.”.

In this observation we will show one property that is present in sponge
function designs based on permutations, and as far as we know it is
not present in other hash designs (like wide-pipe or narrow-pipe Merkle-
Damg̊ard designs). From the point of view of the “moving target” that
sponge designers were talking about in their paper, it seems that one
property present in older designs (MD5, SHA-1, SHA-2) that we took
for granted and there was no attempt to define it precisely as a prop-
erty (or requirement) is not present in sponge function designs based on
permutations.

Fig. 1. One time effort of 2× 2c/2 = 2× 2n calls to the permutation f and its inverse
f−1 in order to find the messages P1, P2, P3 and P4 that give collision in the part
C2. This computational effort is independent of the messages that will be attacked
afterwards.

Namely, the essence of the observation is the following: If we are re-
quested to find a second preimage of the zero message 0r for the hash
function H (where H is any hash function from the set {MD5, SHA-1,
SHA-2 } we will need approximately 2n calls to its compression function.
This effort should be non-correlated with our efforts to find the second
preimage for the hash H(M) of another message M i.e. for finding that
second preimage we will need again 2n calls to the compression function.
However, in this observation we will show that for the the Second Round
SHA-3 candidate Keccak[2] an attacker that will find a second preim-

age of the message 0r will have for free second preimages for any other
message M .

We will consider the official variant of Keccak[r, c, d], where the pa-
rameters r, c and d receive values from the official proposal for the Kec-
cak hash function and where the hash output is n = c

2 bits.
Our observation is in fact based on the observations and attacks in

[3] that Aumasson, Meier, Naya-Plasencia and Peyrin did against Cube-
Hash[4] hash function and on attacks in [5] that Ferguson, Lucks and
McKay did also against CubeHash hash function.

The idea is presented in Figure 1 and the goal is to find one internal
collision in the part that has c bits (the part that represents the capacity
of the hash function). More concretely, we want to find two r-bit messages
P1 and P3 such that:{

f [r + c](P1||0c) = (P2||C2),
f−1[r + c](P3||0c) = (P4||C2).

(1)

If the design of the permutation f is such that it behaves as a pseudo-
random permutation, then finding the required collision will need approx-
imately 2× 2c/2 = 2× 2n calls to the permutation f and its inverse f−1.
However, this effort can be performed independently of the messages for
which we will launch afterwards a second-preimage attack.

Now, once we have found the messages P1, P2, P3 and P4 let us in-
vestigate how many second preimages we have for the hash value z0 =
Keccak[r, c, d](0r).

Proposition 1. The message P1||(P2 ⊕ P4)||P3 is the second-preimage
for z0 = Keccak[r, c, d](0r).

Proof. For digesting the message 0r we have the following iterative pro-
cess:

Keccak[r, c, d](0r)
Initialization and padding

S
(1)
0 = 0r+c,

M = 0r||PADDING ≡
≡ 0r|| (0x01||byte(d)||byte(r/8)||0x01||0x00||...||0x00)︸ ︷︷ ︸

r bits

,

Absorbing phase

S
(1)
1 ← S

(1)
0 ⊕ (0r||0c),

S
(1)
2 ← f(S

(1)
1)

S
(1)
3 ← S

(1)
2 ⊕ (PADDING||0c),

S
(1)
4 ← f(S

(1)
3)

Squeezing phase

z
(1)
0 ← first c

2
bits of S

(1)
4 .

For digesting the message P1||(P2⊕P4)||P3 we have the following iterative
process (in absorbing phase we are applying relations (1)):

Keccak[r, c, d](P1||(P2 ⊕ P4)||P3)
Initialization and padding

S
(2)
0 = 0r+c,

M = P1||(P2 ⊕ P4)||P3||PADDING ≡
≡ P1||(P2 ⊕ P4)||P3|| (0x01||byte(d)||byte(r/8)||0x01||0x00||...||0x00)︸ ︷︷ ︸

r bits

,

Absorbing phase

S
(2)
1 ← S0 ⊕ (P1||0c),

S
(2)
2 ← f(S

(2)
1) ≡ (P2||C2)

S
(2)
3 ← S

(2)
2 ⊕ (P2 ⊕ P4||0c) ≡ (P4||C2),

S
(2)
4 ← f(S

(2)
3) ≡ (P3||0c)

S
(2)
5 ← S

(2)
4 ⊕ (P3||0c) ≡ 0r+c ≡ S

(1)
1 ,

S
(2)
6 ← f(S

(2)
5) ≡ S

(1)
2

S
(2)
7 ← S

(2)
6 ⊕ (PADDING||0c) ≡ S

(1)
3 ,

S
(2)
8 ← f(S

(2)
7) ≡ S

(1)
4

Squeezing phase

z
(2)
0 ← first c

2
bits of S

(2)
8 = first c

2
bits of S

(1)
4 = z

(1)
0 .

⊓⊔

Beside the message P1||(P2⊕P4)||P3 that is a second preimage for the
value z0 = Keccak[r, c, d](0r) we have an infinite set of second preimages
defined with the following Proposition:

Proposition 2. Let M0 be the set of messages defined by the following
definition:

M0 = {P1||(P2 ⊕ P4)||
(
(P3 ⊕ P1)||(P2 ⊕ P4)

)i||P3 | for i ≥ 1}, (2)

where the expression
(
(P3⊕P1)||(P2⊕P4)

)i
means i times concatenation

of the message (P3 ⊕ P1)||(P2 ⊕ P4).

Every message M0 ∈ M0 is a second-preimage for the value z0 =
Keccak[r, c, d](0r). ⊓⊔

The role of the values P1, P2, P3 and P4 do not stop here. We can
use them to define infinite classes of second preimages for the digests
computed for every message M .

Proposition 3. Let z0 = Keccak[r, c, d](M) be the hash digest for an
arbitrary message M , and let M ′ = M0||M1 . . . ||Mk be the message ob-
tained from the message M after a proper padding as it is defined in the
function Keccak.

Let Many be the set of messages defined by the following definition:

Many = {P1||(P2⊕P4)||
(
(P3⊕P1)||(P2⊕P4)

)i||(P3⊕M0) | for i ≥ 1}. (3)

Every message Many ∈ Many is a second-preimage for the value z0 =
Keccak[r, c, d](M). ⊓⊔

2 Conclusions and comments

Our opinion is that the designers’ decision not to include explicitly the
length of the message in the PADDING part in combination with the
invertibility of the permutation f and the capacity c = 2n gives opportu-
nities to define huge sets of second preimages for any message.

The observed property is unreachable for any practical computational
effort since to find the values of P1, P2, P3 and P4 in relations (1) one
must spend 2 × 2n calls to the permutation f and its inverse f−1. The
designers of Keccak in [1] have discussed similar scenarios of finding
inner collisions and basically they consider that finding an inner collision
should be hard. Additionally in the introduction of their original paper [1]
they have already stated that an inner collision allows generating colliding
messages ad libitum.

Here, with this observation we extend that finding not just to gener-
ating colliding messages ad libitum but generating second preimages ad
libitum. Or, we can interpret our observation from the following point of
view: For all other known cryptographic hash functions (MD5, SHA-1,
SHA-2, SHA-3 candidates), there is not known explicit form for a class
of second preimages for an arbitrary message M . However, for Keccak
one class of second preimages is known and is defined in Proposition 3.

We can give here two research directions that are logically popping
up from this observation.

1. Our observation is solely based on the general design decisions made
by the designers of Keccak, and are not exploiting the internal def-
initions of the permutation f , that can possibly lead into reducing
the computational efforts of 2× 2n calls to the permutation f and its
inverse f−1 in relations (1).

2. It would be interesting to investigate applicability of this observation
to other sponge functions that are in the Second Round of SHA-3
competition.

Acknowledgement

We would like to thank the Keccak team for valuable discussions while
preparing this note that helped to improve the quality of the text a lot.

References

1. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche: “Sponge Functions”, Ecrypt
Hash Workshop 2007.

2. Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche: “Keccak
sponge function family main document, Submission to NIST (Round 2)”. Avail-
able: http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Keccak_
Round2.zip

3. Jean-Philippe Aumasson, Eric Brier, Willi Meier, Mari’a Naya-Plasencia, Thomas
Peyrin:“Inside the Hypercube”, In Proceedings of ACISP, LNCS 5594, pp. 202-213,
Springer, 2009

4. Daniel J. Bernstein: “CubeHash, Submission to NIST (Round 2)”. Available:
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/CubeHash_

Round2.zip

5. Niels Ferguson, Stefan Lucks, Kerry A. McKay:“Symmetric States and their
Structure: Improved Analysis of CubeHash”, Cryptology ePrint Archive, Report
2010/273, 2010

