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Abstract. In this paper, we prove that the degree of regularity of the family
of Square systems, an HFE type of systems, over a prime finite field of odd
characteristics q is exactly q, and therefore prove that

• inverting Square systems algebraically is exponential, when q = O(n),
where n is the number of variables of the system.

1. Introduction

In 1994 Peter Shor [20] showed that quantum computers could break all public
key cryptosystems based on these hard number theory problems. Recently signifi-
cant efforts have been put into the search for alternative public key cryptosystems,
post-quantum cryptosystems, which would remain secure in an era of quantum
computers. Multivariate public key cryptosystems (MPKC)[6] are one of the main
families of cryptosystems that have the potential to resist quantum computer at-
tacks.

Research into MPKC’s started in the middle of 1980s in the works of Diffie,
Fell, Tsujii, Shamir. However the success of this work was limited and the real
breakthrough was the cryptosystem proposed by Matsumoto and Imai [18], which
however was broken by Patarin [19]. The Hidden Field Equation (HFE) cryp-
tosystems are a family of cryptosystems proposed by Patarin based on the same
fundamental idea of quadratic functions on extension fields [19].

Fixing a finite field F of characteristic 2 and cardinality q, they suggested using
an almost bijective map P defined over K, an extension field of degree n over F. By
identifying K with Fn, P induces a multivariate polynomial map P ′ : Fn −→ Fn.
One then ”hides” this map by composing on the left by L1 and on the right by L2,
where the Li : Fn −→ Fn are invertible affine maps. This composition gives a map
P̄ : Fn −→ Fn defined by

P̄ (x1, . . . , xn) = L1 ◦ P ′ ◦ L2 (x1, . . . , xn) = (y1, . . . , yn) .

For the Hidden Field Equations (HFE) [19], P is given as a univariate polynomial
in the form:

P (X) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c ,

where the coefficients are randomly chosen. Here the total degree D of P should
not be too large since the decryption process involves solving the single variable
polynomial equation given by P (X) = Y ′ for a given Y ′ using Berlekamp-Massey
algorithm.
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Faugère and Joux showed that these systems can be broken rather easily in
the case when q = 2 and D is small [12] using the Gröbner basis algorithm F4.
Furthermore the experimental results suggested that such algorithms will finish at
degree of order logq(D), where the highest degree polynomials we deal with are of
the degree of order logq(D), and, therefore that the complexity of the algorithm is
O(nlogq(D)).

A key concept in the complexity analysis of these algorithms is that of de-
gree of regularity. The degree of regularity of the component functions of P ,
p1(x1, . . . , xn), . . . , pn(x1, . . . , xn) is the lowest degree at which non-trivial poly-
nomial relations between the pi occur. Experiments show that this is the degree
at which the algorithm will terminate and therefore determines the complexity.
Bardet, Faugère and Salvy defined (in a different notation) the degree of regularity
of random or generic systems and gave an asymptotic estimate formula for this
degree. However since the systems arising from HFE polynomials were far from
generic, the BFS bound does not yield useful information about the complexity
of solving HFE systems algebraically, which is based on counting of dimensions of
spaces with linear independence assumptions. Granboulan, Joux and Stern outlined
a new way to bound the degree of regularity in the case q = 2. Their approach was
to lift the problem back up to the extension field K, an idea that originated in the
work of Kipnis and Shamir [15] and Faugère and Joux [12]. They sketched that one
can connect the degree of regularity of the HFE system to the degree of regularity
of a lifted system over the big field. Assuming this assertion, the semi-regularity
of a subsystem of the lifted system, and that the degree of regularity of a subsys-
tem is greater than that of the original system, and using some asymptotic analysis
of the degree of regularity of random systems found in [1], they derived heuristic
asymptotic bounds for the case q = 2, which implied that if D is chosen to be
O(nα) for α ≥ 1, then the complexity of Gröbner basis attacks is quasi-polynomial.
While the results derived from this method match well with experimental results,
the asymptotic bound formula has not yet been proven rigorously. It relies on a
formula that holds for a class of over-determined generic systems but it is not yet
clear how to prove their systems belong to this class. Therefore to derive any de-
finitive general bounds on the degree of regularity for general q and n, or on the
asymptotic behavior of the degree of regularity remained an open problem.

The security of HFE systems in the case when the characteristic of the field is
odd has been the subject of much less study. The notions of degree of regularity
and semi-regularity in [1] can be generalized to the case when q is odd. However,
the asymptotic analysis on which the results of [14] depend, has not yet been
generalized to this situation. The work in [10] seemed to suggest that HFE systems
over a field of odd characteristic could resist the attack of Gröbner basis algorithms
even when D is small. Their rational is that when q is large the field equations
Xq

1 − X2, ..., X
q
n − X1 cannot be used effectively and this limits the efficiency of

the Gröbner basis algorithms, because one actually tries to solve the equations
over the algebraic closure of the finite field. A breakthrough in case of general q
came in the recent work of Dubois and Gama [11]. They first refined and gave a
rigorous mathematical foundation for the arguments in [14]. They then derived a
new method to compute the degree of regularity over any field similar to that in
[1]. This led to an algorithm that can be used to calculate a bound for the degree
of regularity for any choice of q, n and D. However it is not clear how to derive a
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closed form for their bound from their algorithm and therefore they were not able
to answer the question of whether the complexity was quasi-polynomial in this case.

Inspired by the work of [11], and using a similar idea to that used in [14] -
roughly that one can bound the degree of regularity of a system by finding a bound
for certain simpler subsystems, in [7], a new closed formula was found for the degree
regularities for all HFE systems for any field. However this bound is derived using
a very different approach. Previously all estimates on the degree of regularity were
based on a dimension counting argument, while the new approach constructively
proves the upper bound of the degree of regularity as an explicit function of q and
D. Such explicit formulas enable them to draw conclusions about the upper bound
complexity of inverting the system using Gröbner basis methods.

1.1. The contribution of this paper. In the paper[7], they presented a very
strong conjecture on the lower bound of the degree of regularity for the case of q
is odd and q is the size of O(n), which implies that to invert the related systems
algebraically is actually exponential.

Follows the same mathematical approach, we actually prove in this paper that
in the case of the Square system, which was proposed in [2], namely, when the HFE
system is given by:

P (X) = X2,

the degree of regularity is exactly q for odd prime q.
This theorem therefore allow us to draw the following conclusions about the

complexity of inverting an Square polynomial using a Gröbner basis algorithm.

Inverting Square systems algebraically is exponential, when q = O(n), where n
is the number of variables of the system.

This proves the conjecture in [7], though it does not answer the question about
the cases other than Square systems. However the common senses tells us that the
conjecture is very likely to be true for all generic HFE cases, since Square systems
are the simplest among all.

As far as we know, our work is the first to give a lower bound for degree of regu-
larity and therefore show a lower bound for the complexity of the related algebraic
attacks. Clearly from the point view of cryptography, this result could have pro-
found impact in many related areas, in particular, in understanding the complexity
of algebraic attacks and in designing new cryptosystems.

The results of this paper strongly suggest, as speculated in [10] that using odd
characteristics is indeed a very good idea to resist algebraic attacks, and therefore
confirms the idea that we should move to filed of odd characteristics. Also this
works points to a new direction of designing provable secure MPKCs. Indirectly,
this work also points to new directions in terms of algebraic immunity for function
that should be used in symmetric cryptosystems.

This paper is organized as follows. We will first introduce briefly HFE and
Square cryptosystems in the section below. In Section 3, we review the definition
and basic properties of the degree of regularity from [11][7]. In Section 4, we will
prove and main theorem that degree of regularity of Square systems is indeed q
and derive that the complexity of the Gröbner basis attacks on Square systems is
indeed exponential. .



4 JINTAI DING1,2

2. Square systems

2.1. HFE systems and Square systems. In this paper, the cases we will study
are that q is an odd prime number, which also implies that q > 2.

Let F be a finite field of order q and K an degree n extension of F.
Any map P from K to K can be expressed uniquely as a polynomial function

with coefficients in K and degree less than qn, namely

P (X) =
qn−1∑
i=0

aiX
i, ai ∈ K.

The degree of P (X) is the highest degree of the monomial above with non-zero
coefficients.

There is an standard map φ, which identifies K as Fn:

Fn φ→ K,

K φ−1

→ Fn.

Then we can build a new map

P ′(x0, .., xn−1) = (p0(x0, .., xn−1), ..., pn−1(x0, .., xn−1)) = φ−1 ◦ P ◦ φ(x0, .., xn−1),

which is essentially P but viewed from the perspective of Fn.
In this case, again each component pi(x0, ..., xn−1) can be expressed uniquely

as polynomials of xi such that the highest power of xi(i = 0, ..., n− 1) is not more
than q, which is due to the fact that xq

i = xi over F. Then the degree of the map
P ′ is the highest degree of all the p′i components.

In some way, we can say that these are two different way of defining the degree
for P , the degree over K and the degree over F. The degree over K, denoted by
degK(P ) is the degree of P (X).The degree of P over F, denoted degF(P ) is the
degree of P ′. For example, the functions Xqi

are all linear viewed from the point
of Fn. Thus

degF(P ) = 1.

The degree of the monomial Xd will be the sum of the digits in the base q expansion
of d. The degree of P over F, denoted degF(P ) is the same as the maximum of the
Hamming weight of the monomial terms of P (X).

An F-degree 2 or F-quadratic function from K to K is thus a polynomial all of
whose monomial terms have exponent qi + qj or qi for some i and j. The general
form of an F-quadratic function is

P (X) =
n−1∑
i,j=0

aijX
qi+qj

+
n−1∑
i=0

biX
qi

+ c.

The function P (X) with a fixed low K degree is used to build the HFE multivariate
public key cryptosystems and originally the q is selected as 2, which is very different
from what considered here, namely q is an odd primes.

The simplest form of an F-quadratic function is

P (X) = X2,

which is what we will study in this paper. Surely if q = 2, this map is of actually
degree one over F as explained above.
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In a Square HFE-type of system, just like an HFE system itself, we build a
system P̄ from an F-quadratic map P , where the nature of P is further hidden by
pre- and post-composition with invertible affine linear maps L1, L2 : Fn → Fn:

P̄ = L1 ◦ P ′ ◦ L2.

2.2. Algebraic solvers – Gröbner basis attacks. The question we will address
here is how difficult it is to find directly the solution of a system of quadratic
multivariate equations

p̄1 = b1, . . . , p̄n = bn.

The most successful attacks on HFE systems is to apply the improved Gröbner
basis algorithms F4 and F5 to solve the system p̄1 = b1, . . . , p̄n = bn.

Without loss of generality, and due to the fact that what L1 does is an trans-
formation of deriving a set of new polynomials from linear combination of the old
ones and what L2 does is nothing but a change of basis of the variables of the poly-
nomials, and those transformations do not change the complexity of the Gröbner
basis solver, therefore we only need to consider the case p1 = 0, . . . , pn = 0 where
the pi are the component functions of P ′ = φ ◦ P ◦ φ−1.

Implementation of the Gröbner basis algorithm involves searching through com-
binations of multiples of the pi by polynomials of a fixed degree for polynomials
of smaller degree. If the combination

∑
i gipi has smaller degree then the corre-

sponding combination of leading terms
∑

i g
h
i p

h
i is zero. The key moment in the

calculation is when non-trivial such combinations occur. These non-trivial relations
will very likely generate what is called mutant [5, 17, 17], which are instrumental
in solving the system. Obviously the combinations

ph
i p

h
j − ph

j p
h
i

are tautologically zero and the equation

((ph
i )q−1 − 1)pi = 0

is a result of the identity aq = a in F. A non-trivial relation is one that does not
follow from these trivial identities. The degree at which the first non-trivial relation
occurs is called the degree of regularity. Extensive experimental evidence has shown
that the algorithm will terminate at or shortly after the degree of regularity, in
particular, for the case of HFE. The algorithm will never finish before dealing
with polynomials at the degree of regularity. Thus the calculation of the degree of
regularity is crucial to understanding the complexity of the algorithm.

3. Degree of Regularity

We will present the definition of degree of regularity as defined in [11] and and
the main results in [11][7].

Let
nA = F[x1, . . . , xn] = F[x1, . . . , xn]/ 〈xq

1 − x1, . . . , x
q
n − xn〉 .

This is the algebra of functions over Fn. Let p1, . . . , pn be a set of quadratic polyno-
mials in A. Denote by nAk the subspace of nA consisting of functions representable
by a polynomial of degree less than or equal to k.

For all j we have a natural map ψj : nAj
n → nAj+2 given by

ψj(a1, . . . , an) =
∑

i

aipi,
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where
nAj

n = nAj × nAj × ...× nAj .

The key here is the non-trivial ”degree falls”; a degree fall occurs when the ai have
degree j but

∑
i aipi has degree less than degree j + 2. Obviously we can have

trivial degree falls of the form

pjpi + (−pi)pj = 0
or

(pq−1
i − 1)pi = 0.

The degree of regularity of the set {p1, . . . , pn} is the first degree at which such
a degree fall occurs. Obviously we can restrict our attention to the highest degree
terms in the ai and work modulo terms of smaller degree. Mathematically this
means working in the associated graded ring

nB = F[x1, . . . , xn] = F[x1, . . . , xn]/ 〈xq
1, . . . , x

q
n〉 .

The degree of regularity of the {p1, . . . , pn} in nA will be the first degree at which
we find non-trivial relations among the leading component ph

1 , . . . , p
h
n (considered as

elements of nB). By leading component, we mean the highest degree homogeneous
component of a multivariate polynomial.

Denote by nBk the subspace of nB consisting of homogeneous elements of degree
k. Consider an arbitrary set of homogeneous quadratic elements {λ1, . . . , λn} ∈ B2,
which are linear independent. For all j we have a natural map ψj : nBn

j → nBj+2

given by
ψj(b1, . . . , bn) =

∑
i

biλi,

where
nBn

j = nBj × nBj × ...× nBj ,

the direct product of n copies of nBj .
Let nRj(λ1, . . . , λn) = kerφj ; this is the subspace of relations of the form:∑

i

biλi = 0.

The key here is that nR(λ1, . . . , λn) = ∪jnRj(λ1, . . . , λn) as usual is also a module
of the ring nB, where each elements of nB acts on the module by multiplying to
each component of elements in nB:

a(b1, ..., bn) = (ab1, ..., abn),

where a ∈ nB and (b1, ..., bn) ∈ nR. Inside nRj(λ1, . . . , λn) is the subspace of trivial
relations, nZj(λ1, . . . , λn) belonging to a submodule generated by elements of the
form:

(1) b(0, . . . , 0, λj , . . . , 0 − λi, 0 . . . , 0) for 1 ≤ i < j ≤ n where b ∈ nBj−2; λj is
in the i-th position and −λi is in the j-th position;

(2) b(0, . . . , 0, λq−1
i − 1, 0 . . . , 0) for 1 ≤ i ≤ n and b ∈ nBj−2(q−1); where λq−1

i

is in the i-th position;
The space of non-trivial relations is the quotient space nRj(λ1, . . . , λn)/nZj(λ1, . . . , λn).

Definition 3.1. The degree of regularity of {λ1, . . . , λn} is defined by

Dreg({λ1, . . . , λn}) = min{j | nZj−2({λ1, . . . , λn}) ( nRj−2({λ1, . . . , λn})}
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The degree of regularity is dependent only on the subspace generated by the
λi assuming that the linear independence of λi, so we can simplify the notation
a little by denoting the space generated by the λi by V and writing Dreg(V ) for
Dreg({λ1, . . . , λn}).

There are two important properties of the degree of regularity were observed in
[11].

Property 1. Let V ′ be a subspace of V . Then Dreg(V ) ≤ Dreg(V ′).

Property 2. Let K be an extension of F. Then Dreg(VK) = Dreg(V ).

The second property tells us that the degree of regularity is invariant under field
extension.

Define BK = K[x1, . . . , xn] and let VK be the K-vector space generated by the λi.
If we look at the situation where P be a quadratic map with component functions
p1, . . . , pn ∈ A from it associated map P ′. Let V and V h be the vector spaces
generated by the p1, . . . , pn and their leading component, namely the component
of all their respective quadratic terms: ph

1 , . . . , p
h
n. Our goal is to find a bound for

DregV
h. We begin by extending the base field to K. When we extend the base field

in nA, we pass from functions from Fn to F to functions from Fn to K:

Fn pi→ F emdedding→ K.

Then via the linear isomorphism φ−1 : K → Fn, we can show that this algebra is iso-
morphic to the algebra of functions from K to K which is simply K[X]/

〈
Xqn −X

〉
[7].

From elementary Galois theory [7] we know that the space VK corresponds under
this identification with the space generated by P, P q, . . . , P qn−1

.
Further more, if we filter the algebra K[X]/

〈
Xqn −X

〉
by degree of functions

over F, then the linear component is spanned by X,Xq, . . . , Xqn−1
. We then can

show easily [7] that the associated graded ring will then be the algebra nBK =
K[X0, . . . , Xn−1] where Xi corresponds to Xqi

and Xq
i = 0. This is naturally

isomorphic to the algebra nB with coefficients extended to K.
We will denote this new ring as:

nB = K[X1, . . . , Xn]/ 〈Xq
1 , . . . , X

q
n〉 .

Let Pi denote the leading component of P qi

in BK. If P is defined as above for
the Square system, then

Pi = X2
i .

The space generated by the Pi is exactly V h
K , the subspace of BK generated by the

ph
i . Putting all the above together we get the following important theorem.

Theorem 3.2. [11] Dreg({p1, . . . , pn}) = Dreg({ph
1 , . . . , p

h
n}) = Dreg({P0, . . . , Pn−1})

In [7], inspired the work by [11], for the first time, there is a rigorous proof for
the following much expected important theorem:

Theorem 3.3. Let P be a quadratic operator of degree D. If Q-Rank(P ) > 1, the
degree of regularity of the associated system is bounded by

(q − 1)(blogq(D − 1)c+ 1)
2

+ 2 ,
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where Q-Rank(P ) of a quadratic operator P (X) is the minimal rank of all quadratic
forms spanned by V h

K generated by P0, . . . , Pn−1. If Q-Rank(P ) = 1, then the degree
of regularity is less than or equal to q.

It is clear that this theorem gives an upper bound of the degree of regularity,
and with some reasonable assumptions on the termination conditions, this gives us
the upper bound of the complexity ot break the related HFE systems algebraically.
But to ensure the security of the systems from algebraic attacks, what we actually
need is a lower bound, which is what we are going to prove in the next section for
Square systems.

4. The Degree of regularity of Square systems

To prove the main theorems, we will first present some basic results on nB.

Lemma 4.1. In
nB = K[X0, . . . , Xn−1]/ 〈Xq

1 , . . . , X
q
n〉 ,

the monomials
n−1∏

i

Xai
i , ai < q,

n∑
i

ai = k,

are linearly independent and form a basis of nBk.

This follows from definition.

Lemma 4.2. There is a natural ring embedding of nB into n+1B, which we denote
as En, where

En(Xi) = Xi,

for i=0,...,n-1.

The proof also follows from definition and the lemma above.

Lemma 4.3. n+1B is a direct sum of two subspaces:

n+1B = nB
∗ ⊕ Cn+1,

where
nB

∗ = En(nB),
which is the image space of nB in n+1B under En; and

n+1C = {The space spanned by monmials, which must include a nonzero power of Xn in n+1B}.
We call this lemma the inductive decomposition lemma.
This is a very natural decomposition of the ring namely into the sum a space con-

tains monomials of variable X0, .., Xn−1, which is nB
∗, and the space of monomials

involving Xn, which is n+1C.
This lemma can be easily proved by showing that the following ring homomor-

phism sequence is exact:

0 → Cn+1
In→ n+1B

Pn→ nB → 0,
where In is a ring embedding, Pn is a ring homomorphism such that

Pn(Xi) = Xi, i = 0, ..., n− 1; Pn(Xn) = 0,

and
Pn ◦ En = Id,

where Id stands for identity map on nB.
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Theorem 4.4. Let fi(X0, ..., Xn−1), i = 0, .., n − 1 be elements in nBj , j < q − 2,
if

φj(f0(X0, ..., Xn−1), ..., fn−1(X0, ..., Xn−1)) =
∑

fi(X0, ..., Xn−1)X2
i = 0,

then

F = (f0(X0, ..., Xn−1), ..., fn−1(X0, ..., Xn−1))
belongs to

nZj(X2
0 , . . . , X

2
n−1),

the subpage of degree j elements in the space of trivial syzygies.

We prove this by induction on n.
First, it is straightforward that when n = 1, the claim is true,since

X2
0 × f(X0) = 0,

implies that
f(X0) = Xq−2

0 F ′(x0).
Now, let us assume that the statement is true for the case n, we will try to

show the case n+ 1 is also true.
Assume that j < q − 2 and

φj(f0(X0, ..., Xn, Xn), ..., fn(X0, ..., Xn)) =
n∑
1

fi(X0, ..., Xn)X2
i = 0,

where fi(X0, ..., Xn) are homogeneous of degree j.
Then we will rewrite for each i < n:

fi(X0, ..., Xn) = f∗i (X0, ..., Xn) +Xnf
′(X0, ..., Xn),

which follows from decomposition lemma above and

f∗i (X0, ..., Xn) = En ◦ Pn(fi(X0, ..., Xn)).

Then we have that
n∑
0

fi(X0, ..., Xn−1)X2
i =

n−1∑
0

f∗i(X0, ..., Xn−1)X2
i +Xn

n−1∑
0

X2
i f

′
i(X0, ..., Xn)+X2

nfn(X0, ..., Xn) = 0,

where
n−1∑

1

f ∗i (X0, ..., Xn−1)X2
i = En ◦ Pn(

n∑
1

fi(X0, ..., Xn−1)X2
i ).

Due to the Inductive Decomposition lemma, this implies that

n−1∑
0

f∗i (X0, ..., Xn−1)X2
i = 0,

and

Xn

n−1∑
1

X2
i f

′
i(X0, ..., Xn) +X2

nfn(X0, ..., Xn) = 0,

Due to the induction assumption, we know that

(f∗0 (X0, ..., Xn−1), ..., f∗n−1(X0, ..., Xn−1)) ∈ nZj(X
2
0 , . . . , X

2
n−1)
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and therefore we have (I):

(f∗0 (X0, ..., Xn−1), ..., f∗n−1(X0, ..., Xn−1), 0) ∈ n+1Zj(X
2
0 , . . . , X

2
n−1, X

2
n).

Follow further decomposition by using the Inductive Decomposition lemma, we
have that

Xn

∑n−1
1 X2

i f
′
i(X0, ..., Xn) +X2

nfn(X0, ..., Xn)

= Xn(
∑n−1

1 X2
i (f

′∗
i (X0, ..., Xn−1) +Xnf

′′
i (X0, ..., Xn))

+X2
nfn(X0, ..., Xn) = 0,

where
f
′∗
i (X0, ..., Xn−1) = En ◦ Pn(f ′i(X0, ..., Xn)).

This induces that

Xn(
n−1∑

1

X2
i (f

′∗
i (X0, ..., Xn−1) +X2

n(
n−1∑

1

X2
i f

′′
i (X0, ..., Xn) + fn(X0, ..., Xn)) = 0.

Then from the first lemma in this section, we know that

Xn(
n−1∑

1

X2
i (f

′∗
i (X0, ..., Xn−1)) = 0

and

X2
n(

n−1∑
1

X2
i f

′′
i (X0, ..., Xn) + fn(X0, ..., Xn)) = 0.

Xn(
n−1∑

1

X2
i (f ′ ∗i (X0, ..., Xn−1)) = 0

implies that

(
n−1∑

1

X2
i (f ′ ∗i (X0, ..., Xn−1)) = 0

following from the first lemma in this section.
Since the degree of f ′ ∗i (X0, ..., Xn−1) for i < n is j − 1 < q − 2, following from

induction assumption, therefore we have

(f
′∗
0 (X0, ..., Xn−1), ..., f

′∗
n−1(X0, ..., Xn−1)) ∈ nZj−1(X

2
0 , . . . , X

2
n−1)

and therefore we have (II)

(f
′∗
0 (X0, ..., Xn−1), ..., f

′∗
n−1(X0, ..., Xn−1), 0) ∈ n+1Zj−1(X

2
0 , . . . , X

2
n−1, X

2
n),

and therefore we have (II):

(Xnf
′∗
0 (X0, .., Xn−1), .., Xnf

′∗ ∗n−1 (X0, .., Xn−1), 0) ∈ n+1Zj(X
2
0 , . . . , X

2
n−1, X

2
n).

Then again following from the first lemma in this section and the fact that the
annihilator of X2

n is generated by Xq−2
n , we have that

X2
n(

n−1∑
1

X2
i f

′′
i (X0, ..., Xn) + fn(X0, ..., Xn)) = 0,

imples
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n−1∑
1

f ′′i X
2
i (X0, ..., Xn) + fn(X0, ..., Xn) = 0,

and therefore

fn(X0, ..., Xn) = −
n−1∑

1

X2
i f

′′
i (X0, ..., Xn).

This means that

(X2
nf

′′
0 (X0, ..., Xn), ..., X2

nf
′′
n−1(X0, ..., Xn), fn(X0, ..., Xn))

= (X2
nf

′′
0 (X0, ..., Xn), ..., X2

nf
′′
0 (X0, ..., Xn),−

∑n−1
1 X2

i f
′′
i (X0, ..., Xn))

= (X2
nf

′′
0 (X0, ..., Xn), 0, ..., 0,−X2

0f
′′
0 (X0, ..., Xn)) +

(0, X2
nf

′′
1 (X0, ..., Xn), 0, ..., 0,−X2

1f
′′
1 (X0, ..., Xn)) + ...+

(0, .., 0, X2
nf

′′
n−1(X0, ..., Xn),−X2

n−1f
′′
1 (X0, ..., Xn))

= f ′′0 (X0, ..., Xn)(X2
n, 0, ..., 0,−X2

0 ) +
f ′′1 (X0, ..., Xn)(0, X2

n, 0, ..., 0−X2
1 ) + ...+

f ′′n−11(X0, ..., Xn)(0, .., X2
n,−X2

n−1).

This means that (III):

(X2
nf

′′
0 (X0, .., Xn), .., X2

nf
′′
n−1(X0, .., Xn), fn(X0, .., Xn) ∈ n+1Zj(X

2
0 , . . . , X

2
n−1, X

2
n).

Since

(f0(X0, ..., Xn−1, Xn), ..., fn(X0, ..., Xn))
= (f∗0 (X0, ..., Xn−1), ..., f∗n−1(X0, ..., Xn−1), 0) +

(Xnf
′∗
0 (X0, ..., Xn−1), ..., Xnf

′∗
n−1(X0, ..., Xn−1), 0) +

(X2
nf

′′
0 (X0, ..., Xn), ..., X2

nf
′′
n−1(X0, ..., Xn), fn(X0, ..., Xn)),

with (I), (II), (III), we have that

(f0(X0, ..., Xn, Xn), ..., fn(X0, ..., Xn)) ∈ n+1Zj(X
2
0 , . . . , X

2
n−1, X

2
n).

This gives us the proof for our theorem.

Lemma 4.5. (Xq−2
0 , 0..., 0) does not belong to Zq−2(X2

0 , . . . , X
2
n−1, X

2
n).

This surely follows from the main theorem above ffrom [7]
But, we give a different but direct proof also by induction.
It is obvious that for n=1, the case is true since Zq−2(X2

0 , . . . , X
2
n−1, X

2
n). con-

tains only the zero element.
Assume our claims is true for the case n, we now proceed to prove the case for

n+ 1.
Assume that (Xq−2

0 , 0..., 0) does belong to Zq−2(X2
0 , . . . , X

2
n−1, X

2
n), since 2(q −

1) > q − 2 then we have

(Xq−2
0 , 0..., 0) =

n∑
i<j

fij(X0, ..., Xn)(0, .., X2
i , 0, ..., 0,−X2

j , 0, ..., 0).
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Then we have

En ◦ Pn(Xq−2
0 , 0..., 0) = (Xq−2

0 , 0..., 0)
= En ◦ Pn(

∑n
i<j fij(X0, ..., Xn)(0, .., X2

j , 0, ..., 0,−X2
i , 0, ..., 0)) =

(
∑n−1

i<j f
∗
ij(X0, ..., Xn−1)(0, .., X2

j , 0, ..., 0,−X2
i , 0, ..., 0)) +

(
∑n−1

i<n f
∗
i,n(X0, ..., Xn−1)(0, .., 0, ..., 0, 0, 0, ...,−X2

i )).

Then if we only look at the first n components, we have

(Xq−2
0 , 0..., 0) =

n−1∑
i<j

f ∗ij (X0, ..., Xn−1)(0, .., X2
j , 0, ..., 0,−X2

i , 0, ..., 0)),

where (Xq−2
0 , 0..., 0) is of size n. This implies that all f∗ij are zero follows from

induction assumption.
We therefore have that

fij(X0, ..., Xn) = Xnf
′
ij(X0, ..., Xn)

for i < j < n.
Then have that

(Xq−2
0 , 0..., 0) =∑n−1

i<j Xnf
′
ij(X0, ..., Xn)(0, .., X2

j , 0, ..., 0,−X2
i , 0, ..., 0) +

(
∑n−1

i<n fi,n(X0, ..., Xn−1)(0, .., X2
n, ..., 0, 0, 0, ...,−X2

i )) =∑n−1
i<j Xnf

′
ij(X0, ..., Xn)(0, .., X2

j , 0, ..., 0,−X2
i , 0, ..., 0) +

(f0,n(X0, ..., Xn−1)X2
n, .., 0, ..., 0, 0, 0, ...,−f0,n(X0, ..., Xn−1)X2

i ) +

(
∑n−1

0<i<n fi,n(X0, ..., Xn−1)(0, .., X2
n, ..., 0, 0, 0, ...,−X2

i )).

Let us look at the first component, we have

Xq−2
0 = Xn(

n−1∑
n0<jXnf

′
0j(X0, ..., Xn)X2

j ) +X2
nf0,n(X0, ..., Xn−1),

which is impossible since the LHS can factor our Xn, while the right can not.
This prove our lemma.

This lemma implies that

Dreg({P0, . . . , Pn−1}) ≤ q,

while the theorem above implies that

Dreg({P0, . . . , Pn−1}) ≥ q,

therefore we have

Theorem 4.6. For a Square system,

Dreg({P0, . . . , Pn−1}) = q

Theorem 4.7. For a square systems,

Dreg({p1, . . . , pn}) = q

Theorem 4.8. For a Square systems with n variables and q = O(n) > n, the
complexity to invert the system algebraically is exponential.
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If we look at a Gröbner basis attack on a Square system with the assumption
that these algorithms will terminate at degree equal to the degree of regularity or
shortly after this. The runtime of this algorithm will be O(n3Dreg), which is clearly
exponential.

Remark If one pays close attention, one can reach an easy conclusion that our
theorems works also in the case of any odd characteristic field including composite
field, however the situation of composite field is a little subtle in terms of complexity
analysis due to the fact that we can work on smaller filed ( the prime field ) with
more variables. We will deal with this case in a subsequent paper.

5. Conclusion

Following the previous works of [14], [11],[7], this paper proves that in the case
of the Square system, which was proposed in [2], namely, when the HFE system is
given by:

P (X) = X2,

the degree of regularity is exactly q.
This theorem proves a very strong conjecture in [7] on the lower bound of the

degree of regularity for the case of q is odd and q is the size of O(n), which implies
that to invert the related systems algebraically is actually exponential.

This work is the first ever to give a lower bound for degree of regularity and
therefore show a lower bound for the complexity of the related algebraic attacks.
Clearly from the point view of cryptography, this result could have profound im-
pacts in many related areas, in particular, in understanding the complexity of
algebraic attacks and in designing new cryptosystems. The results of this paper
strongly suggest, as speculated in [10], that using odd characteristics is indeed a
very good idea to resist algebraic attacks, and therefore confirms the idea that we
should move to filed of odd characteristics. Also this works points to a new di-
rection of designing provablely secure MPKCs. Indirectly, this work also points to
new directions in terms of algebraic immunity for function that should be used in
symmetric cryptosystems.
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